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Two sound field reproduction methods, weighted pressure matching and weighted mode
matching, are theoretically and experimentally compared. Weighted pressure and mode match-
ing are a generalization of conventional pressure and mode matching, respectively. Both meth-
ods are derived by introducing a weighting matrix in the pressure and mode matching. The
weighting matrix in the weighted pressure matching is defined on the basis of the kernel
interpolation of the sound field from pressure at a discrete set of control points. In weighted
mode matching, the weighting matrix is defined by a regional integration of spherical wave-
functions. It is theoretically shown that the weighted pressure matching is a special case of the
weighted mode matching by infinite-dimensional harmonic analysis for estimating expansion
coefficients from pressure observations. The difference between the two methods is discussed
through experiments.

0 INTRODUCTION

The aim of sound field reproduction is to synthe-
size spatial sound using multiple loudspeakers (or sec-
ondary sources), which has various applications such as vir-
tual/augmented reality audio, generation of multiple sound
zones for personal audio, and noise cancellation in a spatial
region. In some applications, the desired sound field to be
reproduced is estimated using multiple microphones, which
is called sound field capturing or estimation.

There are two major categories of sound field repro-
duction methods. One category includes analytical meth-
ods based on the boundary integral representations derived
from the Helmholtz equation, such as wave field synthe-
sis and higher-order ambisonics [1–7]. The other category
includes numerical methods based on the minimization of
a certain cost function defined for synthesized and desired
sound fields inside a target region, such as pressure match-
ing and mode matching [8–10, 3, 11–13]. Many analytical
methods require the array geometry of loudspeakers to have
a simple shape, such as a sphere, plane, circle, or line, and
driving signals are obtained from a discrete approximation
of an integral equation.

*To whom correspondence should be addressed,
e-mail: koyama.shoichi@ieee.org.

In numerical methods, the loudspeaker placement can
be arbitrary, and driving signals are generally derived as
a closed-form least-squares solution. Pressure matching is
based on synthesizing the desired pressure at a discrete set
of control points placed over the target region. In mode
matching, driving signals are derived so that the expansion
coefficients of the spherical wavefunctions of the synthe-
sized and desired sound fields are equivalent. Because the
region in which the loudspeakers can be placed is limited in
practical situations, a flexible loudspeaker array geometry
in numerical methods will be preferable.

In this study, we theoretically and experimentally com-
pare two numerical methods for sound field reproduction:
weighted pressure matching [14] and weighted mode match-
ing [12]. These two methods are derived by introducing a
weighting matrix in the pressure and mode matching, re-
spectively; therefore, they can be regarded as a general-
ization of the pressure and mode matching. The weight-
ing matrix for the weighted pressure matching is derived
on the basis of the kernel interpolation of the sound field
[15, 16] from pressure at control points. In weighted mode
matching, the weighting matrix is defined as a regional
integration of spherical wavefunctions. The relationship
between pressure and mode matching has not been suffi-
ciently elucidated from a theoretical perspective. We show
that the weighted pressure matching is a special case of the
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weighted mode matching by combining with an infinite-
dimensional harmonic analysis for sound field capturing
[17, 16], starting with a common optimization problem.
Experimental evaluation comparing pressure/mode match-
ing and weighted pressure/mode matching is carried out.
The codes for reproducing the results are publicly available
at https://sh01k.github.io/MeshRIR/.

The rest of this paper is organized as follows. In SEC. 1,
notations and basic theories on the sound field representa-
tion used throughout the paper are presented. The infinite-
dimensional harmonic analysis for sound field capturing
is also introduced. In SEC. 2, the sound field reproduction
problem is described. The weighted pressure and mode
matching is formulated and theoretically compared in SEC.
3. Experimental comparisons are shown in SEC. 4. In SEC.
5, differences between the two methods are discussed. Fi-
nally, SEC. 6 concludes this paper.

1 NOTATIONS AND PRELIMINARIES

First, we provide several basic notations. Then, a sound
field representation by spherical wavefunction expansion is
introduced. We also briefly introduce a sound field captur-
ing method based on infinite-dimensional harmonic analy-
sis, which plays an important role in sound field reproduc-
tion methods.

1.1 Notations
Italic letters denote scalars, lowercase boldface italic

letters denote vectors, and uppercase boldface italic letters
denote matrices. The sets of real and complex numbers are
denoted by R and C, respectively. Subscripts of scalars,
vectors, and matrices indicate their indexes. To illustrate,
the (i, j)th entry of the matrix X is represented as xi,j. The
imaginary unit and Napier’s constant are denoted by j and e,
respectively. The complex conjugate, transpose, conjugate
transpose, and inverse are denoted by superscripts ( · )*,
(·)T, (·)H, and ( · )−1, respectively. The absolute value of a
scalar x and the Euclidean norm of a vector x are denoted
by |x| and ‖x‖, respectively. The absolute value for each
element of matrix X is also denoted by |X|.

The angular frequency, sound velocity, and wavenumber
are denoted by ω, c, and k =ω/c, respectively. The harmonic
time dependence e−jωt with the time t is assumed according
to conventions.

1.2 Expansion Representation of Sound Field
A solution of the homogeneous Helmholtz equation

u(r,ω) of angular frequency ω at position r ∈ R
3 can be

expanded around ro by using spherical wavefunctions [18,
19] as

u(r,ω) =
∞∑

ν=0

ν∑
μ=−ν

ůν,μ(ro,ω)ϕν,μ(r − ro,ω)

= ϕ(r − ro,ω)Tů(ro,ω), (1)

where ů(ro,ω) ∈ C
∞ and ϕ(r − ro,ω) ∈ C

∞ are the
infinite-dimensional vectors of expansion coefficients and

spherical wavefunctions, respectively. The spherical wave-
function of the order ν and the degree μ, ϕν,μ(r,ω), is
defined as

ϕν,μ(r,ω) =
√

4π jν(k‖r‖)Yν,μ

(
r

‖r‖
)

, (2)

where jν( · ) is the νth-order spherical Bessel function, and
Yν, μ( · ) is the spherical harmonic function of order ν and
degree μ [19]. The function ϕν, μ is scaled by the factor√

4π so that ů0,0(r,ω) corresponds to the pressure u(r,ω).
Note that this scaling factor is not included in the standard
definition of the spherical wavefunction. Hereafter, ω is
omitted for notational simplicity.

The translation operator T (ro − r ′
o) ∈ C

∞×∞ relates the
expansion coefficients about two different expansion cen-
ters ro and r ′

o, i.e., ů(ro) and ů(r ′
o), respectively, as [19]

ů(r ′
o) = T (r ′

o − ro)ů(ro), (3)

where the element corresponding to the order ν and the
degree μ of T (r)ů, denoted as [T (r)ů]ν,μ, is defined as

[
T (r)ů

]
ν,μ

=
∞∑

ν′=0

ν′∑
μ′=−ν′

[
4π(−1)μ

′
jν−ν′

·
ν+ν′∑
l=0

jl jl(k‖r‖)Yl,μ−μ′

(
r

‖r‖
)
G(ν′,μ′; ν,−μ, l)

]
ůν′,μ′ .

(4)

Here, G(·) is the Gaunt coefficient. The translation opera-
tion is derived from the addition theorem of the spherical
wavefunction [19, 20]. The translation operator T (r − r ′)
has the following important properties:

T (−r) = T (r)−1 = T (r)H (5)

T (r + r ′) = T (r)T (r ′) (6)

ϕ(r − r ′)TT (r ′ − r ′′) = ϕ(r − r ′′). (7)

1.3 Sound Field Capturing Based on
Infinite-Dimensional Harmonic Analysis

Here, we briefly introduce a method of estimating ex-
pansion coefficients of spherical wavefunctions of a sound
field from microphone measurements [17], i.e., sound field
capturing/estimation method. Let D ⊆ R

3 be a source-free
target capturing region, and M microphones are arbitrar-
ily placed in D. The sound field capturing problem is to
estimate the expansion coefficients at the position r ∈ D,
ů(r), using the observed signal of the microphones sm at
the positions rm,m ∈ D (m ∈ {1, . . ., M}).

The microphone directivity patterns are assumed to be
given as their expansion coefficients cm,ν,μ of spherical har-
monic functions. By denoting the infinite-dimensional vec-
tor of the expansion coefficients cm,ν,μ by cm ∈ C

∞, we
describe the observed signal sm as the inner product of cm

174 J. Audio Eng. Soc., Vol. 71, No. 4, 2023 April

https://sh01k.github.io/MeshRIR/


PAPERS WEIGHTED PRESSURE AND MODE MATCHING FOR SOUND REPRODUCTION

and ů(rm,m) as

sm =
∞∑

ν=0

ν∑
μ=−ν

c∗
m,ν,μůν,μ(rm,m)

= cH
m ů(rm,m)

= cH
m T (rm,m − r)ů(r), (8)

where the translation operator is used in the last line to
relate sm with ů(r). See Appendix for the derivation of the
first line. Equation (8) can be rewritten as

s = �(r)Hů(r), (9)

where s = [s1, . . . , sM ]T ∈ C
M and �(r) ∈ C

∞×M is de-
scribed as

�(r) = [
(cH

1 T (rm,1 − r))H, . . . , (cH
M T (rm,M − r))H

]
= [

T (r − rm,1)c1, . . . , T (r − rm,M )cM
]
. (10)

Here, the property of the translation operator (5) is used.
The expansion coefficient ů(r) is estimated as

ů(r) = �(r) (� + ξI)−1 s, (11)

where ξ is a constant parameter and � := �(r)H�(r) ∈
C

M×M . From the property in Eq. (6), the (m, m′)th element
of � becomes

(�)m,m ′ = cH
m T (rm,m − r)T (r − rm,m ′ )cm ′

= cH
m T (rm,m − rm,m ′ )cm ′ . (12)

Therefore, � does not depend on the position r and de-
pends only on the microphones’ positions and directivi-
ties. Because the microphone directivity cm,ν,μ is typically
modeled by low-order coefficients, Eq. (12) can be simply
computed in practice.

Next, we consider estimating the pressure distribution
u(r) = ů0,0(r) using pressure microphones. The expansion
coefficient of the directivity, cm,ν,μ, is written as

cm,ν,μ =
{

1, ν = 0,μ = 0
0, otherwise

. (13)

Then, estimation Eq. (11) can be simplified as

u(r) = κ(r)T (K + ξI)−1 s, (14)

where

K =

⎡
⎢⎣

j0(k‖r1 − r1‖) · · · j0(k‖r1 − r M‖)
...

. . .
...

j0(k‖r M − r1‖) · · · j0(k‖r M − r M‖)

⎤
⎥⎦ (15)

κ(r) = [
j0(k‖r − r1‖) . . . j0(k‖r − r M‖)

]T
. (16)

This equation can be regarded as kernel ridge regression
with the kernel function of the 0th-order spherical Bessel
function, which enables us to interpolate pressure distri-
bution in a three-dimensional (3D) space with the con-
straint that u(r) satisfies the Helmholtz equation [15]. In
a two-dimensional (2D) sound field, the kernel function is
replaced with the 0th-order Bessel function.

In the sound field capturing, it is frequently impractical
to capture the sound field in a large region using a single

: Target region

Secondary source

Fig. 1. The desired sound field is synthesized inside the target
region � using multiple secondary sources.

large microphone array, such as a spherical array. The esti-
mation method described here enables us to use arbitrarily
placed microphones, for example, distributed microphones
[21]. Such a sound field capturing system will be useful in
practical situations because of its flexibility and scalability.

2 SOUND FIELD REPRODUCTION PROBLEM

Suppose that L secondary sources (loudspeakers) are
placed around a target reproduction region � ⊂ R

3 as
shown in Fig. 1. The desired sound field at r ∈ � is de-
noted by udes(r) in the frequency domain. The sound field
usyn(r) synthesized using the secondary sources is repre-
sented as

usyn(r) =
L∑

l=1

dl gl(r), (17)

where dl is the driving signal of the lth secondary source,
and gl(r) is the transfer function from the lth secondary
source to the position r (l ∈ {1, . . ., L}). The transfer
functions gl(r) are assumed to be known by measuring or
modeling them in advance. The goal of sound field repro-
duction is to obtain dl of the L secondary sources so that
usyn(r) coincides with udes(r) inside �.

We define the cost function to determine the driving
signal dl for l ∈ {1, . . ., L} as

J =
∫

�

∣∣∣∣∣
L∑

l=1

dl gl(r) − udes(r)

∣∣∣∣∣
2

dr

=
∫

�

∣∣g(r)Td − udes(r)
∣∣2

dr, (18)

where g(r) = [g1(r), . . . , gL (r)]T ∈ C
L and

d = [d1, . . . , dL ]T ∈ C
L are the vectors of the trans-

fer functions and driving signals, respectively. The optimal
driving signal d can be obtained by solving the minimiza-
tion problem of J. The cost function J is formulated as the
mean square error of the reproduction over the region �.
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To incorporate the expected regional accuracy, a weighting
function ρ(r) (r ∈ �) is sometimes used as [12]

Jρ =
∫

�

ρ(r)
∣∣g(r)Td − udes(r)

∣∣2
dr. (19)

The function ρ(r) is designed on the basis of the regional
importance of the reproduction accuracy. However, in this
study, we focus on the case of a uniform distribution, i.e.,
ρ(r) = 1, for simplicity.

3 WEIGHTED PRESSURE AND MODE
MATCHING

Several methods of approximately solving the minimiza-
tion problem of Eq. (18) have been proposed. We introduce
two sound field reproduction methods, weighted pressure
matching and weighted mode matching.

3.1 Weighted Pressure Matching
A simple strategy to solve the minimization problem of

Eq. (18) is to discretize the target region � into multiple
control points, which is referred to as the pressure-matching
method. Assume that N control points are placed over �

and their positions are denoted by rc,n (n ∈ {1, . . ., N}).
The cost function J is approximated as the error between the
synthesized and desired pressures at the control points. The
optimization problem of pressure matching is described as

minimize
d∈CL

‖Gd − udes‖2 + η‖d‖2, (20)

where udes = [udes(rc,1), . . . , udes(rc,N )]T ∈ C
N is the

vector of the desired sound pressures, and G =
[g(rc,1), . . . , g(rc,N )]T ∈ C

N×L is the transfer function ma-
trix between L secondary sources and N control points. The
second term is the regularization term to prevent an exces-
sively large amplitude of d, and η is a constant parameter.
The solution of Eq. (20) is obtained as

dPM = (
GHG + ηI

)−1
GHudes. (21)

Owing to the discrete approximation, the cost function
of pressure matching is formulated so that the synthesized
pressure corresponds to the desired pressure only at the con-
trol points. Therefore, the region between the control points
is not taken into consideration. When the distribution of the
control points is sufficiently dense, the pressure values at
the control points are sufficient to represent the sound field
in the target region. However, because the pressures at the
control points are measured by microphones in practice, a
small number of control points is preferable. Therefore, we
consider approximating the cost function J by interpolating
the sound field from the pressures at the control points. On
the basis of the kernel interpolation introduced in SEC. 1.3,
gl(r) and udes(r) are interpolated from those at the control
points as

ĝl(r) = κc(r)T (K c + ξI)−1 gc,l (22)

ûdes(r) = κc(r)T (K c + ξI)−1 udes, (23)

where gc,l (∈ C
N ) is the lth column vector of G, and K c ∈

C
N×N and κc ∈ C

N are, respectively, the matrix and vector
consisting of the kernel function defined with the positions
{rc,n}N

n=1. Then, the cost function J can be approximated as

J ≈
∫

�

∣∣∣∣∣
L∑

l=1

dl ĝl(r) − ûdes(r)

∣∣∣∣∣
2

dr

=
∫

�

∣∣κc(r)T (K c + ξI)−1
(
Gd − udes

)∣∣2
dr

= (
Gd − udes

)H
W PM

(
Gd − udes

)
, (24)

where W PM is defined as

WPM := PH
∫

�

κc(r)∗κc(r)Tdr P (25)

with

P := (K c + ξI)−1 . (26)

The resulting cost function can be regarded as the
weighted mean square error between the synthesized and
desired pressures at the control points. Note that the weight-
ing matrix W PM can be computed only with the positions
of the control points and the target region �.

The optimization problem of the weighted pressure
matching is formulated using the approximated cost func-
tion (24) as

minimize
d∈CL

(
Gd − udes)H

W PM
(
Gd − udes) + λ‖d‖2, (27)

where λ is the regularization parameter. This weighted
least-squares problem also has the closed-form solution as

dWPM = (
GHWPMG + λI

)−1
GHWPMudes. (28)

The weighted pressure matching enables the enhance-
ment of the reproduction accuracy of pressure matching
only by introducing the weighting matrix W PM. This idea
has already been applied in the context of the spatial ac-
tive noise control [22, 23]. This interpolation-based sound
field reproduction method is particularly effective when the
region that the control points can be placed is limited.

3.2 Weighted Mode Matching
Weighted mode matching is a method of solving the

minimization problem of Eq. (18) on the basis of the spher-
ical wavefunction expansion of the sound field. The desired
sound field udes(r) and transfer function of the lth secondary
source gl(r) are expanded around the expansion center ro

as

udes(r) =
∞∑

ν=0

ν∑
μ=−ν

ůdes,ν,μ(ro)ϕν,μ(r − ro) (29)

gl(r) =
∞∑

ν=0

ν∑
μ=−ν

g̊l.ν,μ(ro)ϕν,μ(r − ro). (30)

By truncating the maximum order of the expansion in
Eq. (30) up to Ntr, we can approximate udes and g(r)T as

udes(r) ≈ ϕ̄(r)Tůdes (31)
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g(r)T ≈ ϕ̄(r)TG̊, (32)

where ϕ̄(r) ∈ C
(Ntr+1)2

, ůdes ∈ C
(Ntr+1)2

, and
G̊ ∈ C

(Ntr+1)2×L are the vectors and matrix consisting
of ϕν,μ(r − ro), ůdes,ν,μ(ro), and g̊l,ν,μ(ro), respectively.
Thus, the cost function J is approximated as

J ≈
∫

�

∣∣∣ϕ̄(r)T
(

G̊d − ůdes
)∣∣∣2

dr

=
(

G̊d − ůdes
)H

W MM

(
G̊d − ůdes

)
, (33)

where W MM ∈ C
(Ntr+1)2×(Ntr+1)2

is defined as

WMM :=
∫

�

ϕ̄(r)∗ϕ̄(r)Tdr. (34)

As in the weighted pressure matching, the resulting cost
function can be regarded as the weighted mean square er-
ror between synthesized and desired expansion coefficients
around ro. The weighting matrix WMM can be computed
only by using the spherical wavefunctions and target region
�. In a 2D sound field, the spherical wavefunctions in the
integrand are replaced with the cylindrical wavefunctions
[17]. When ůdes and G̊ are obtained from measurements,
for example, to reproduce a captured sound field and/or
to compensate for reverberation in the transfer functions
of secondary sources, sound field capturing methods such
as the infinite-dimensional harmonic analysis introduced in
SEC. 1.3 can be applied.

The optimization problem of the weighted mode match-
ing is formulated using the approximated cost function J in
Eq. (33) as

minimize
d∈CL

(
G̊d − ůdes

)H
W MM

(
G̊d − ůdes

)
+ γ‖d‖2,

(35)

where γ is the regularization parameter. Again, this
weighted least squares problem can be solved as

dWMM =
(

G̊
H

W MMG̊ + γI
)−1

G̊
H

WMMůdes. (36)

The weights for each expansion coefficient are deter-
mined by the weighting matrix W MM. When W MM is the
identity matrix, Eq. (36) corresponds to the driving signal
of standard mode matching.

dMM =
(

G̊
H

G̊ + γI
)−1

G̊
H

ůdes (37)

In the mode matching, the appropriate setting of the trun-
cation order Ntr for the spherical wavefunction expansion
is necessary. When the target region � is a spherical region
of radius R, Ntr = �kR� is empirically known to be a proper
truncation criterion; however, when � is not spherical, the
appropriate setting of Ntr is not simple. In particular, the
target region of the sound field reproduction is sometimes
set to be around a horizontal plane because listeners can be
considered not to move largely in the vertical directions.

3.3 Relationship Between Weighted Pressure
and Mode Matching

As discussed in SEC. 3.1 and 3.2, weighted pressure and
mode matching can be regarded as a generalization of pres-
sure and mode matching. Furthermore, weighted pressure
matching can be regarded as a special case of weighted
mode matching. Suppose that the expansion coefficients
ůdes and G̊ are estimated from the pressure observations
at the control points

{
rc,n

}N

n=1. On the basis of infinite-

dimensional harmonic analysis in SEC. 1.3, ůdes and G̊ are
estimated as

ˆ̊udes = �c(ro)(�c + ξI)−1udes

ˆ̊G = �c(ro)(�c + ξI)−1G, (38)

where �c and �c are the matrices defined in Eqs. (10)
and (12) with the control positions {rc,n}N

n=1, respectively.
Therefore, the cost function J of the weighted mode match-
ing becomes

J ≈
(

ˆ̊Gd − ˆ̊udes
)H

W MM

(
ˆ̊Gd − ˆ̊udes

)
= (

Gd − udes
)H

QH�c(ro)HWMM�c(ro) Q
(
Gd − udes

)
,

(39)

where

Q := (�c + ξI)−1. (40)

Because the observations at the control points are as-
sumed to be pressure, i.e., omnidirectional microphone
measurements, �c is equivalent to K c, thus Q = P . More-
over, �c(ro)HW MM�c(ro) is calculated as

�c(ro)HW MM�c(ro)

=
∫

�

(
ϕ(r − ro)T�c(ro)

)H (
ϕ(r − ro)T�c(ro)

)
dr

=
∫

�

κc(r)∗κc(r)Tdr, (41)

because

ϕ(r − ro)T�c(ro)

= [
ϕ(r − r1)Tc1, . . . , ϕ(r − rN)TcN

]
= [

j0(k‖r − r1‖), . . . , j0(k‖r − r N ‖)
]
. (42)

Here, property (7) is used. Note that {cn}N
n=1 is obtained

as Eq. (13). In summary, when the expansion coefficients
ůdes and G̊ in the weighted mode matching are obtained
by infinite-dimensional harmonic analysis from the pres-
sure observations at the control points udes and G, the
weighted mode matching corresponds to the weighted pres-
sure matching.

4 EXPERIMENTS

We conducted experiments to compare pressure match-
ing, weighted pressure matching, mode matching, and
weighted mode matching, which are hereafter denoted as
PM, WPM, MM, and WMM, respectively. First, we show
numerical simulation results. Then, experimental results
obtained using real data are demonstrated.
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Fig. 2. Experimental setup for numerical simulation. The target
region was set as a 2D square region. Dots and crosses indicate
loudspeakers and control points, respectively.

4.1 Numerical Simulation
The reproduction performances of the four methods are

evaluated by numerical simulation in a 3D free field. Fig. 2
shows the experimental setup. A target region, loudspeak-
ers, and control points were set on the x–y-plane at z = 0.
Forty-eight loudspeakers were regularly placed along the
border of a square with dimensions 2.0 m × 2.0 m. The
target region � was set as a 2D square region of 1.0 m ×
1.0 m at z = 0. The centers of these squares were at the
origin. Thirty-six control points were regularly placed over
the target region. In Fig. 2, the loudspeakers and control
points are indicated by dots and crosses, respectively. Each
loudspeaker was assumed to be a point source. The desired
sound field was a single plane wave, whose propagation
direction was (θ, φ) = (π/2, π/4) rad.

In PM and WPM, udes and G in Eqs. (21) and (28) were
given as pressure values at the control points. The expan-
sion coefficients G̊ in Eqs. (37) and (36) were estimated up
to the maximum order Ntr from G by infinite-dimensional
harmonic analysis (11) in the mode and weighted mode
matching. The desired expansion coefficients ůdes were an-
alytically given up to Ntr. In MM, the truncation order was
determined as Ntr = �kR�, where R was set to 0.5

√
2 m to

cover the target region. Furthermore, to enhance the repro-
duction accuracy on the x–y-plane at z = 0, the coefficients
of ν = |μ| were only used [24]. The truncation order Ntr for
WMM was set to 30, which is sufficiently larger than the
maximum required order of MM. The regularization pa-
rameters in Eqs. (21), (28), (37), and (36) were determined
at each frequency as σ2

max(A) × 10−3, where σ2
max(A) is the

maximum eigenvalue of the matrix to be inverted A. There-

fore, A is GHG, GHW PMG, G̊
H

G̊, and G̊
H

WMMG̊ in PM,
WPM, MM, and WMM, respectively. The parameter ξ in
Eqs. (26) and (11) was set as σmax(K ) × 10−3 at each fre-
quency.

Fig. 3. SDR with respect to frequency.

For evaluation measure in the frequency domain, we de-
fine the signal-to-distortion ratio (SDR) as

SDR(ω) =
∫
�

|udes(r,ω)|2dr∫
�

|usyn(r,ω) − udes(r,ω)|2dr
, (43)

where the integration was computed at the evaluation
points. The evaluation points were obtained by regularly
discretizing the target region every 0.02 m.

The SDR with respect to the frequency is plotted from
100 Hz to 1,500 Hz in Fig. 3. The SDRs of MM were smaller
than those of the other three methods below 1,000 Hz. This
can be considered to be due to the empirical truncation and
weighting for the expansion coefficients in MM. Note that
the reproduction accuracy further deteriorated when all the
expansion coefficients up to the truncation order were used
without the extraction of ν = |μ|. The other three methods,
PM, WPM, and WMM, achieved high reproduction accu-
racy. However, the SDRs of PM sharply decreased above
1,000 Hz. The SDRs of WPM and WMM were slightly
higher than those of PM below 1,000 Hz, and they were
maintained high up to 1,100 Hz. Furthermore, the plots of
WPM and WMM almost overlapped below 1,200 Hz be-
cause of the equivalence between the two methods except
the setting of the desired sound field, i.e., the desired pres-
sures at the control points or desired expansion coefficients.

As an example, the synthesized pressure distribution
of each method at 1,100 Hz is shown in Fig. 4. Fig. 5
is the square error distribution of each method at 1,100
Hz. In WPM and WMM, the error was particularly small
around a line in the target region. This is due to the 2D
placement of the loudspeakers in 3D space. The amplitude
of the synthesized sound field in PM was high outside the
target region. In MM, the region of small reproduction error
was limited around the center of the target region. The SDRs
at this frequency were 12.9, 18.0, 14.4, and 18.2 dB for PM,
WPM, MM, and WMM, respectively.

Next, we consider the case that the expansion coef-
ficients of the transfer functions G̊ are also analytically
given in MM and WMM to investigate the difference be-
tween WPM and WMM. The other settings were the same
as the previous ones. Fig. 6 shows the SDR with respect to
the frequency. Note that the results of PM and WPM are
the same as those in Fig. 3. The SDRs of MM and WMM
gradually decreased, but there was no sharp decrease in
SDR appeared in Fig. 3 up to 1,500 Hz. Therefore, the
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(a) PM (b) WPM

(c) MM (d) WMM

Fig. 4. Reproduced pressure distribution at 1,100 Hz. SDRs of (a)
PM, (b) WPM, (c) MM, and (d) WMM were 12.9, 18.0, 14.4, and
18.2 dB, respectively.

(a) PM (b) WPM

(c) MM (d) WMM

Fig. 5. Square error distribution at 1,100 Hz for (a) PM, (b) WPM,
(c) MM, and (d) WMM.

Fig. 6. SDR with respect to frequency when true expansion coef-
ficients were used in MM and WMM.

Fig. 7. SDR with respect to number of control points at 1,000 Hz.

Fig. 8. Absolute value of weighting matrices of WPM |W PM|
(M = 64) at 1,000 Hz.

sharp decrease of the SDR in Fig. 3 can be considered to
be due to the limitation of the estimation accuracy of the
expansion coefficients from the pressure measurements at
the control points. The SDRs of PM and WPM at 1,000
Hz are plotted with respect to the number of control points
in Fig. 7. In each case, the control points were regularly
placed in the target region. To attain 18.4 dB of SDR, 196
control points were necessary for PM, although 64 control
points were sufficient for WPM owing to the interpolation
by the weighting matrix W PM. The absolute value of the
weighting matrix |WPM|for M = 64 is shown in Fig. 8.

MM and WMM does not depend on the control points in
this setting. Fig. 9 shows the SDR with respect to the maxi-
mum order Ntr in the spherical wavefunction expansion. The
black line indicates the order of �kR� used as the truncation
criterion for MM in the previous experiment (Fig. 3). From
Ntr = 2 to 14, the SDR of MM increased up to around 14.8
dB, and it was maintained up to Ntr = 23. However, above
Ntr = 24, the SDR of MM sharply decreased. The SDR of
WMM attained 18.4 dB above Ntr = 15, although it was
lower than that of MM between Ntr = 4 and 12. Although
the excessively large truncation order degenerates the re-
production accuracy in MM, the weighting matrix WMM in
WMM appropriately weights the expansion coefficients to
enhance the reproduction accuracy in the target region. The
absolute value of the weighting matrix |WMM| at 1,000 Hz
is shown in Fig. 10(a) up to Ntr = 7. The index of WMM,
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Fig. 9. SDR with respect to maximum order of spherical wave-
functions Ntr at 1,000 Hz. Black line indicates the order of �kR�.

(a) |WWWMM | (Ntr = 7)

(b) Diagonal elements of |WWWMM | (Ntr = 18)

Fig. 10. Absolute value of weighting matrices of WMM |W MM|
and its diagonal elements sorted with respect to ν and μ at 1,000
Hz. Blue lines in (a) indicate the range of the indexes of the same
ν.

denoted by i, corresponds to the order ν and degree μ as
i = ν2 + ν + μ. The blue line indicates the range of the
indexes of the same ν. The diagonal elements of |WMM|
are shown in Fig. 10(b) by sorting them with respect to ν

and μ. The weights on the expansion coefficients of ν = |μ|
were relatively larger than those of the other coefficients.
Therefore, the empirical weighting scheme of MM, i.e., the
extraction of the components of ν = |μ|, is somehow rea-
sonable. However, the weighting matrix obtained by Eq.
(34) enables achieving much higher reproduction accuracy.

4.2 Experiments Using Real Data
We conducted experiments using impulse responses

measured in a practical environment included in the re-

Fig. 11. Positions of loudspeakers and evaluation points in exper-
iments using real data.

Fig. 12. Impulse response measurement system.

cently published impulse response dataset MeshRIR [25].
The positions of the loudspeakers and evaluation points are
shown in Fig. 11. Along the borders of two squares with
dimensions of 2.0 m × 2.0 m at heights of z = −0.2 m and
0.2 m, 32 loudspeakers were regularly placed; therefore, 16
loudspeakers were placed along each square. We used or-
dinary closed loudspeakers (YAMAHA, VXS1MLB). The
measurement region was a square with dimensions of 1.0
m × 1.0 m at z = 0.0 m. The measurement region was
discretized at intervals of 0.05 m, and 21 × 21 (=441) eval-
uation points were obtained; therefore, its spatial Nyquist
frequency is around 3,400 Hz. We measured the impulse
response at each evaluation point using an omnidirectional
microphone (Primo, EM272J) attached to a Cartesian robot
(see Fig. 12). The excitation signal of impulse response
measurement was a linear swept-sine signal [26]. The re-
verberation time T60 was 190 ms. The details of the mea-
surement conditions are described in Ref. [25]. The sam-
pling frequency of the impulse responses was 48 kHz, but
it was downsampled to 8 kHz.

We compared the four methods in terms of their re-
production performance in a practical environment. The
target region was the same as the region of the evaluation
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(a) PM (b) WPM

(c) MM (d) WMM

Fig. 13. Reproduced pressure distribution at t = 0.51 s. SDRs of
(a) PM, (b) WPM, (c) MM, and (d) WMM were 1.73, 3.57, 2.43,
and 3.48 dB, respectively.

points. Thirty-six microphone positions were regularly cho-
sen from the evaluation points, which were used as control
points in PM and WPM and to estimate expansion coeffi-
cients of the transfer functions G̊ in MM and WMM. The
expansion coefficients were estimated up to the 12th or-
der. In MM, the truncation order was set to Ntr = min (12,
�kR�) with R = 0.5

√
2 m and the expansion coefficients of

ν = |μ| were only used. Again, the regularization parameter
in Eqs. (21), (28), (37), and (36) was set as σ2

max(A) × 10−3

with the matrix to be inverted A at each frequency. The pa-
rameter ξ in Eqs. (26) and (11) was set as σmax(K ) × 10−3.
We set the desired sound field to a single plane wave prop-
agating to (θ, φ) = (π/2, −π/4). The source signal was a
pulse signal whose frequency band was low-pass-filtered
up to 900 Hz. The filter for obtaining driving signals was
designed in the time domain, and its length was 8,192 sam-
ples. For the evaluation measure in the time domain, we
define SDR as

SDR =
∫∫ |udes(r, t)|2drdt∫∫ |usyn(r, t) − udes(r, t)|2drdt

. (44)

Fig. 13 shows the reproduced pressure distributions at
t = 0.51 s. Time-averaged square error distributions are
shown in Fig. 14. In PM, a small time-averaged square
error was observed at the positions of the control points,
but the region between them contains large errors. The
time-averaged square error of MM was small around the
center of the target region, but that was high in the off-
center region. In WPM and WMM, a small square error was
obtained over the target region. SDRs of PM, WPM, MM,
and WMM were 1.73, 3.57, 2.43, 3.48 dB, respectively.

(a) PM (b) WPM

(c) MM (d) WMM

Fig. 14. Time-averaged square error distribution.

5 DISCUSSION

The weighting matrices in weighted pressure and mode
matching, WPM and W MM, were derived to enhance the
reproduction accuracy of pressure and mode matching. Al-
though the simple formulations were only shown to discuss
the relationship between the two methods, the reproduction
accuracy can be further enhanced by introducing direc-
tional weighting for sound field capturing and/or regional
weighting for sound field reproduction [12, 16, 14]. We here
discuss the difference between the two methods in detail.

Although the cost functions of the weighted pressure and
mode matching are similar, the roles of the weighing ma-
trices are different. The weighting matrix W PM in weighted
pressure matching is derived from the interpolation of the
pressure field between the control points based on the kernel
ridge regression to alleviate the effect of spatial aliasing ar-
tifacts owing to the spatial sampling in the target region. In
contrast, the weighted mode matching is formulated based
on the spherical wavefunction expansion with the given ex-
pansion coefficients of the transfer functions and desired
field. Therefore, weighted mode matching, as well as mode
matching, does not suffer from spatial aliasing owing to the
sound field capturing as long as the accurate expansion co-
efficients are given. The weighting matrix W MM is derived
from the approximation of the original cost function J in Eq.
(18) instead of simply matching the expansion coefficients
up to an empirical truncation order.

However, in practical situations, the expansion coeffi-
cients of the transfer functions G̊ must be estimated from the
microphone measurements because it is difficult to accu-
rately model the practical loudspeakers and reverberations
without the measurements. The expansion coefficients of
the desired field ůdes must also be estimated from the dis-
crete set of measurements when their analytical represen-
tations are difficult to obtain. The infinite-dimensional har-
monic analysis is one of the methods to estimate the expan-
sion coefficients from the measurements. As shown in SEC.
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3.3, when the expansion coefficients G̊ and ůdes in weighted
mode matching are estimated from the pressure observa-
tions at the control points by the infinite-dimensional har-
monic analysis, weighted mode matching corresponds to
weighted pressure matching. In the experiments, the repro-
duction accuracy of these two methods were almost identi-
cal.

Because the computation of W PM is generally simpler
than that of W MM and the estimation operator of the infinite-
dimensional harmonic analysis in Eq. (11), weighted pres-
sure matching is simpler for implementation compared with
weighted mode matching. However, the weighted pressure
matching is applicable only when the pressure measure-
ments at the control points are available because the kernel
function is derived for interpolating the pressures. When
the microphones have directivity, the infinite-dimensional
harmonic analysis can be applied.

Another difference is the number of parameters to rep-
resent the sound field. It has been shown that the number
of expansion coefficients required for the weighted mode
matching can be smaller than the number of control points
required for pressure matching when the target region is a
sphere in Ref. [12] (see Fig. 4 in Ref. [12]). When the tar-
get region is not a sphere, for example, a horizontal plane,
as in the experiments, the representation by the spherical
wavefunction expansion is sometimes redundant, and that
is the reason why mode matching does not perform well in
the experiments. In the experiment in SEC. 4.1, the max-
imum order Ntr = 15 required to attain 18.4 dB of SDR
in weighted mode matching corresponds to 256 expansion
coefficients, which is much larger than the number of con-
trol points, 64, required to attain the same SDR in weighted
pressure matching. The number of control points can be
further reduced by the sensor placement methods [13].

However, the weighting matrix W MM of the weighted
mode matching is significantly sparse, as shown in Fig. 10.
By extracting the columns and rows of the index set
{k | ∑

i

∑
k |WMM,i,k | + ∑

j

∑
k |WMM,k, j | > δ} with δ =

max(|WMM|) × 10−3, the number of expansion coefficients
was reduced to 120 with the same SDR. Therefore, it is pos-
sible to extract required expansion coefficients based on the
weighting matrix W MM to reduce the number of parameters
to represent the sound field. In addition, the expansion coef-
ficients of the spherical wavefunctions are compatible with
the existing ambisonics format. Their independence from
the microphone positions as an intermediate representation
is useful for storing and transmitting data.

Although we focused on the relationship between the
weighted pressure and mode matching, a common issue for
the sound field reproduction methods, including both the
analytical and numerical methods, is spatial aliasing, owing
to the discrete arrangement of the secondary sources. Al-
though this issue is beyond the scope of this paper, we here
briefly discuss the spatial aliasing problem in the sound
field reproduction. Based on the single layer potential [27],
any source-free sound field in the interior target region can
be synthesized by continuously distributed point sources on
a surface surrounding the target region. Because the contin-
uous distribution is replaced with a discrete set of secondary

sources in practice, the reproduction accuracy can deterio-
rate at high frequencies. Specifically, degradation in sound
localization and coloration of reproduced sounds can occur.

In some applications such as local-field reproduction and
noise cancellation, the reproduced frequency range is tar-
geted at low frequencies; therefore, the required number
of secondary sources for accurate reproduction is relatively
small. The sound field reproduction for the audible fre-
quency range requires a large number of secondary sources.
Several attempts have been made to combine with other spa-
tial audio reproduction techniques for high frequencies [28]
to prioritize the flat amplitude response under the assump-
tion that inaccurate phase distribution is acceptable at high
frequencies in the human auditory system.

Nevertheless, there are several techniques to further re-
duce the number of secondary sources. The first technique is
to reduce the number of parameters to be controlled, which
makes the problem to be solved in the (weighted) pressure
and mode matching overdetermined even with the small
number of secondary sources. For example, by limiting the
range of the target region and introducing the regional im-
portance of reproduction, the number of control points or
expansion coefficients to be controlled can be reduced. As
in the experiments, the target region is frequently limited
to the horizontal plane because the listeners’ ears can be
assumed to be approximately on the same plane in practi-
cal situations. The second technique is the optimization of
the secondary source placement [29, 13, 30]. By selecting
an optimal set of secondary source positions from candi-
date positions in a certain criterion, the minimum required
number of secondary sources and their optimal placement
can be obtained. We consider that spatial aliasing due to the
secondary sources is still an open issue in this field.

6 CONCLUSION

Theoretical and experimental comparisons of two sound
field reproduction methods, weighted pressure and mode
matching, were carried out, which can be regarded as a gen-
eralization of conventional pressure and mode matching,
respectively. In weighted pressure matching, the weighting
matrix is obtained on the basis of the kernel interpolation
of the sound field from the pressure at the control points.
The weighted mode matching is derived on the basis of the
spherical wavefunction expansion of the sound field, and
the weighting matrix is defined as the regional integration
of the spherical wavefunctions.

When the expansion coefficients of the desired sound
field and transfer functions are estimated from the pressure
observations at the control points by infinite-dimensional
harmonic analysis, weighted mode matching corresponds to
weighted pressure matching. In this sense, weighted mode
matching is more general than weighted pressure matching
because the desired sound field can be given as the analyt-
ical formulation of expansion coefficients and directional
microphones can also be used to estimate the expansion co-
efficients. The advantage of the weighted pressure matching
is its simplicity for implementation. The difference in the
number of parameters required to represent the sound field
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is discussed through the experiments. The redundancy of
the spherical wavefunction expansion when the target re-
gion is not a sphere can be alleviated to some extent by
extracting the expansion coefficients based on the weight-
ing matrix of the weighted mode matching.

7 ACKNOWLEDGMENT

This work was supported by JST FOREST Program,
Grant Number JPMJFR216M, and JSPS KAKENHI, Grant
Number 22H03608.

8 REFERENCES

[1] A. J. Berkhout, D. de Vries, and P. Vogel, “Acous-
tic Control by Wave Field Synthesis,” J. Acoust. Soc.
Amer., vol. 93, no. 5, pp. 2764–2778 (1993 May).
https://doi.org/10.1121/1.405852.

[2] S. Spors, R. Rabenstein, and J. Ahrens, “The Theory
of Wave Field Synthesis Revisited,” presented at the 124th
Convention of the Audio Engineering Society (2008 May),
paper 7358.

[3] M. A. Poletti, “Three-Dimensional Surround Sound
Systems Based on Spherical Harmonics,” J. Audio Eng.
Soc., vol. 53, no. 11, pp. 1004–1025 (2005 Nov.).

[4] J. Ahrens and S. Spors, “An Analytical Ap-
proach to Sound Field Reproduction Using Circular
and Spherical Loudspeaker Distributions,” Acta Acustica
United Acust., vol. 94, no. 6, pp. 988–999 (2008 Nov.).
https://doi.org/10.3813/AAA.918115.

[5] Y. J. Wu and T. D. Abhayapala, “Theory and
Design of Soundfield Reproduction Using Continuous
Loudspeaker Concept,” IEEE Trans. Audio Speech Lang.
Process., vol. 17, no. 1, pp. 107–116 (2009 Jan.).
https://doi.org/10.1109/TASL.2008.2005340.

[6] S. Koyama, K. Furuya, Y. Hiwasaki, and Y. Haneda,
“Analytical Approach to Wave Field Reconstruction Filter-
ing in Spatio-Temporal Frequency Domain,” IEEE Trans.
Audio Speech Lang. Process., vol. 21, no. 4, pp. 685–696
(2013 Apr.). https://doi.org/10.1109/TASL.2012.2229985.

[7] S. Koyama, K. Furuya, H. Uematsu, Y. Hiwasaki, and
Y. Haneda, “Real-Time Sound Field Transmission System
by Using Wave Field Reconstruction Filter and Its Eval-
uation,” IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci., vol. E97-A, no. 9, pp. 1840–1848 (2014 Sep.).
https://doi.org/10.1587/transfun.E97.A.1840.

[8] O. Kirkeby and P. A. Nelson, “Reproduc-
tion of Plane Wave Sound Fields,” J. Acoust. Soc.
Amer., vol. 94, no. 5, pp. 2992–3000 (1993 Nov.).
https://doi.org/10.1121/1.407330.

[9] P. A. Nelson, “Active Control of Acoustic
Fields and the Reproduction of Sound,” J. Sound
Vibr., vol. 177, no. 4, pp. 447–477 (1994 Nov.).
https://doi.org/10.1006/jsvi.1994.1446.

[10] J. Daniel, S. Moureau, and R. Nicol, “Further Inves-
tigations of High-Order Ambisonics and Wavefield Synthe-
sis for Holophonic Sound Imaging,” presented at the 114th
Convention of the Audio Engineering Society (2003 Mar.),
paper 5788.

[11] T. Betlehem and T. D. Abhayapala, “Theory and De-
sign of Sound Field Reproduction in Reverberant Rooms,”
J. Acoust. Soc. Amer., vol. 117, no. 4, pp. 2100–2111 (2005
Apr.), https://doi.org/10.1121/1.1863032.

[12] N. Ueno, S. Koyama, and H. Saruwatari,
“Three-Dimensional Sound Field Reproduction Based on
Weighted Mode-Matching Method,” IEEE/ACM Trans. Au-
dio Speech Lang. Process., vol. 27, no. 12, pp. 1852–
1867 (2019 Dec.). https://doi.org/10.1109/TASLP.2019.
2934834.

[13] S. Koyama, G. Chardon, and L. Daudet, “Opti-
mizing Source and Sensor Placement for Sound Field
Control: An Overview,” IEEE/ACM Trans. Audio Speech
Lang. Process., vol. 28, pp. 686–714 (2020 Jan.).
https://doi.org/10.1109/TASLP.2020.2964958.

[14] S. Koyama and K. Arikawa, “Weighted Pressure
Matching Based on Kernel Interpolation for Sound Field
Reproduction,” in Proceedings of the 24th International
Congress on Acoustics (ICA 2022) (Gyeongju, Republic of
Korea) (2022 Oct.).

[15] N. Ueno, S. Koyama, and H. Saruwatari, “Ker-
nel Ridge Regression With Constraint of Helmholtz Equa-
tion for Sound Field Interpolation,” in Proceedings of the
16th International Workshop on Acoustic Signal Enhance-
ment (IWAENC), pp. 436–440 (Tokyo, Japan) (2018 Sep.).
https://doi.org/10.1109/IWAENC.2018.8521334.

[16] N. Ueno, S. Koyama, and H. Saruwatari, “Di-
rectionally Weighted Wave Field Estimation Exploiting
Prior Information on Source Direction,” IEEE Trans.
Signal Process., vol. 69, pp. 2383–2395 (2021 Apr.).
https://doi.org/10.1109/TSP.2021.3070228.

[17] N. Ueno, S. Koyama, and H. Saruwatari, “Sound
Field Recording Using Distributed Microphones Based
on Harmonic Analysis of Infinite Order,” IEEE Signal
Process. Lett., vol. 25, no. 1, pp. 135–139 (2018 Jan.).
https://doi.org/10.1109/LSP.2017.2775242.

[18] E. G. Williams, Fourier Acoustics: Sound Radiation
and Nearfield Acoustical Holography (Academic Press,
London, UK, 1999).

[19] P. A. Martin, Multiple Scattering: Interaction of
Time-Harmonic Waves with N Obstacles (Cambridge Uni-
versity Press, Cambridge, UK, 2006).

[20] N. A. Gumerov and R. Duraiswami, Fast Multipole
Methods for the Helmholtz Equation in Three Dimensions
(Elsevier, Amsterdam, The Netherlands, 2004).

[21] N. Iijima, S. Koyama, and H. Saruwatari, “Binaural
Rendering from Microphone Array Signals of Arbitrary
Geometry,” J. Acoust. Soc. Amer., vol. 150, no. 4, pp. 2479–
2491 (2021 Oct.). https://doi.org/10.1121/10.0006538.

[22] H. Ito, S. Koyama, N. Ueno, and H.
Saruwatari, “Feedforward Spatial Active Noise Con-
trol Based on Kernel Interpolation of Sound Field,”
in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pp. 511–515 (Brighton, UK) (2019 May).
https://doi.org/10.1109/ICASSP.2019.8683067.

[23] S. Koyama, J. Brunnström, H. Ito, N. Ueno, and H.
Saruwatari, “Spatial Active Noise Control Based on Kernel
Interpolation of Sound Field,” IEEE/ACM Trans. Audio

J. Audio Eng. Soc., Vol. 71, No. 4, 2023 April 183



KOYAMA, KIMURA, AND UENO PAPERS

Speech Lang. Process., vol. 29, pp. 3052–3063 (2021 Aug.).
https://doi.org/10.1109/TASLP.2021.3107983.

[24] C. Travis, “A New Mixed-Order Scheme For Am-
bisonic Signals,” in Proceedings of the Ambisonics Sympo-
sium (Graz, Austria) (2009 Jun.).

[25] S. Koyama, T. Nishida, K. Kimura, T. Abe, N.
Ueno, and J. Brunnström, “MeshRIR: A Dataset of
Room Impulse Responses on Meshed Grid Points for
Evaluating Sound Field Analysis and Synthesis Meth-
ods,” in Proceedings of the IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WAS-
PAA), pp. 151–155 (New Paltz, NY, USA) (2021 Oct.).
https://doi.org/10.1109/WASPAA52581.2021.9632672.

[26] Y. Suzuki, F. Asano, H.-Y. Kim, and T. Sone, “An
Optimal Computer-Generated Pulse Signal Suitable for the
Measurement of Very Long Impulse Responses,” J. Acoust.
Soc. Amer., vol. 97, no. 2, pp. 1119–1123 (1995 Feb.).
https://doi.org/10.1121/1.412224.

[27] D. Colton and R. Kress, Inverse Acoustic and Elec-
tromagnetic Scattering Theory (Springer, New York, NY,
USA, 2013).

[28] N. Kamado, H. Saruwatari, and K. Shikano,
“Robust Sound Field Reproduction Integrating Multi-
Point Sound Field Control and Wave Field Synthesis,”
in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pp. 441–444 (Prague, Czech Republic) (2011 May).
https://doi.org/10.1109/ICASSP.2011.5946435.

[29] H. Khalilian, I. V. Bajić, and R. G. Vaughan, “Com-
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REPRESENTATION OF OBSERVED SIGNAL

The detailed derivation of Eq. (8) is described, which is
also shown in Refs. [17, 16]. First, the sound field u(r) in
Eq. (A1) can also be represented by plane wave expansion
around the expansion center ro as

u(r) =
∫

η∈S2

ũ(η; ro)e−jηT(r−ro)dη, (A1)

where ũ is the planewave weight and η denotes the arrival
direction of the plane wave defined on the unit sphere S2.
Suppose that a microphone with the directivity pattern c(η)
is placed at ro. Then, the microphone’s response s is given
by

s =
∫

η∈S2

ũ(η; ro)c(η)dη. (A2)

When the spherical wavefunction ϕν,μ(r − ro) is repre-
sented by plane wave expansion, its weight ϕ̃ν,μ(η; ro) is
obtained from the Funk–Hecke formula [19] as

ϕ̃ν,μ(η; ro) = jν√
4π

Yν,μ(η). (A3)

Therefore, the microphone’s response of the sound field
represented by Eq. (A1) is described as

s =
∞∑

ν=0

ν∑
μ=−ν

ůν,μ(ro)
∫

η∈S2

jν√
4π

Yν,μ(η)c(η)dη

=
∞∑

ν=0

ν∑
μ=−ν

ůν,μ(ro)c∗
ν,μ, (A4)

where

cν,μ = (−j)ν√
4π

∫
η∈S2

c(η)∗Yν,μ(η)∗dη. (A5)

Therefore, the observed signal is represented by Eq. (8).
Note that generally used directivity patterns are represented
by low-order coefficients of cν, μ. For example, the direc-
tivity pattern of unidirectional microphone is represented
as

c(η,ηdir) = β + (1 − β)η · ηdir (A6)

with the constant β ∈ [0, 1] and direction of the microphone
(peak of directivity) ηdir. Hence, cν, μ is obtained as

cν,μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β ν = 0,μ = 0
√

4πj
3 (1 − β)Y 1

−1(ηdir)∗ ν = 1,μ = −1
√

4πj
3 (1 − β)Y 1

0 (ηdir)∗ ν = 1,μ = 0
√

4πj
3 (1 − β)Y 1

1 (ηdir)∗ ν = 1,μ = 1

0 otherwise

, (A7)

which corresponds to the case of the omnidirectional mi-
crophone Eq. (13) by setting β = 1.
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