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ABSTRACT 
Time-Frequency transformation and spectral representations of audio signals are commonly used in various 

machine learning applications. Typically the Mel-Spectrogram is used to create the input features to the network 

justified by the Mel scale’s human auditory system basis.  In this paper, we compare several spectral features in a 

gender detection speech model comparing their performance and showing that the Mel-Spectrogram is not 

always the best choice for input features. 

1. Introduction

Two dimensional representations of audio where 

frequency or spectral features are computed against 

time are often used in neural networks because they 

allow modelling characteristics of the auditory 

system, such as masking, perception, or resolution. 

Having a two dimensional input allows audio 

applications to leverage the progress made in the 

image processing field. 

Spectral data such as the Mel-Spectrogram [1] 

(Melgram), Chromagram [2] or Cochleogram [3] are 

some examples of such Time Frequency (TF) 

representations. They are often used in applications 

where estimation [4], classification [5][6] or 

detection is sought.  

While there have been some networks which use 

time-samples as input, such as WaveNet [7], the 

majority of recent published work still uses spectral 

features as input to the models as the results have 

shown that they provide superior performance to 

taking in raw audio samples [8].  However, most 

audio neural networks still use Melgrams as their 

input features.  For example, in the 2020 DCASE 

Task 1, Low Complexity Scene Classification 

challenge [9] all ten of the top performing entries 

used log Mel energies, or a variation thereof. 

Because a variety of transforms can be used and 

easily incorporated into the networks early layers 

[10][11], the natural question is which transform is 

the best.  This paper investigates several spectral 

representations comparing their relative 

performances.  In addition to the Mel-Spectrogram, 

the Chromagram, Cochleogram, and Short Time 

Fourier Transform (STFT) are implemented in a 

Gender Detection model using a Convolutional 

Neural Network (CNN). 
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2. Model Description and Definition

The Pytorch framework [12] was used in this work 

because it provided a flexible and powerful 

development environment.  The model was based on 

the VGG image classification model using a scaled 

down network appropriate to the input feature size 

[13]. 

Each time-frequency transform is constructed to 

have 64 columns each with 64 values.  This allows 

all approaches to use the same neural network and 

eases comparison of the results.   

The network was modelled after the VGG networks, 

but with a smaller structure.  The pattern of two 2D 

convolutional layers, Batch Norm, and ReLU 

modules followed by a max pool layer was repeated 

four times.  The output of these layers was 4 4 96x x

which was fed into three fully connected layers with 

ReLU and dropout in between.  The output of the 

fully connected layer yielded the three classes which 

were fed into a softmax function.   

The resulting network has eight 2D convolutional 

layers followed by three linear layers for a total of 

708,291 parameters.  Figure 1 illustrates the 

structure of the network. 

Figure 1:  Network Architecture 

3. Input Feature Generation

A. Mel-Spectrogram

a. Definition

A Spectrogram is a convenient way to visualize the

magnitude of the DFT points for each analysis

frame.  A spectrogram is a 3D plot with the x and y

axis being the time and frequency indices

respectively.  The third dimension is often replaced

with an intensity value so that the entire plot is

viewed in 2D.

The Mel scale came about with the realization that 

human hearing does not perceive frequency on a 

linear, but a more logarithmic-like, scale [14].  The 

Mel scale was developed based on having a unit of 

pitch such that equal distances in pitch sounded 

equally distant to the listener.  A transformation 

from frequency in Hz to the Mel pitch scale [15] is 

given by: 

  102595log 1
700

mel

f
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 
  

 
 (1) 

With the reverse transformation from Mel to Hz as: 

 /2595( ) 700 10 1m

Hzf m    (2) 

b. Functional Implementation

The Mel-Spectrogram is generated by first

computing a DFT on the signal, using a given frame

length (N) and an overlap. We then compute the so-

called Mel-scale filterbank, which is a set of M

filters that are applied to the spectrogram. Each one

of these filters combines the energy of a number of

frequency points representing the Mel unit. Each

vector representing the filter is mostly zero except

for a small segment of the spectrum.

c. Determining the Mel Filters

The span and values of each filter coefficient is a

function of the sampling frequency, the number of

DFT points, and the desired bandwidth of the signal

to cover. Below is the summary of the key steps

detailed in [16].

 Define the frequency range and compute the

end points in Hz and Mels.

 Decide how many filterbanks are needed, and

define equally spaced frequencies in Mels using

Eq. 1.

 Convert these frequencies to Hz using Eq. 2.
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 Translate these frequencies to bins, based on the

STFT size and generate the set  f m in bins for

1,...,m M .

 Construct the M filters:   1,...,mH k m M
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In this work the Melgram filter from the Librosa 

library is used. 

B. Chromagram

a. Definition

In music analysis, pitch is a perceptual property of

sounds and allows their ordering on a frequency-

related scale. It is this quality that makes it possible

to judge sounds as "higher" or "lower" in pitch. The

human perception of pitch is periodic in the sense

that two pitches are perceived as similar in “color”,

or harmonic role, if they differ by one or several

octaves. Based on this observation, a pitch can be

separated into two components, which are referred

to as tone height and Chroma, and sometimes called

the pitch helix [17]. The Chroma, or color, captures

the harmonic and melodic characteristics of music,

and is robust to changes in timbre and

instrumentation. Such features are commonly used

in music analysis, where the pitches can be

meaningfully categorized. Assuming the equal-

tempered scale, one considers twelve Chroma values

represented by the set {C, C♯, D, D♯, E , F, F♯, G,

G♯, A, A♯, B} which are the twelve pitch spelling

attributes used in Western music notation.

From a signal processing perspective, the term 

Chroma vector, or Chromagram, relates to the 

twelve pitch classes. It is typically a 12-element 

feature vector, though it may contain more elements, 

and indicates how much energy from each pitch 

class {C, C#,D, D#, E, ..., B} is present in the signal. 

b. Functional Implementation

The conversion of an audio recording into a Chroma

representation, or Chromagram, may be performed

by using the Short-Time Fourier Transform (STFT)

in combination with binning strategies [18]. The

idea is to aggregate all spectral information that

relates to a given pitch class into a single coefficient.

c. Determining the Chroma Filters

The Chroma filters are somewhat similar to the Mel

filters described earlier. They combine the energies

of a selected set of frequency bins to yield the

desired filter output. In this case each Chroma filter

combines the energy of one pitch class, for example

the C# pitch class, from the various bins of the DFT

vector which conceptually represent the various

octaves.

In this work, we make use of the Librosa library 

function to synthesize such filters, given the number 

of FFT points, sampling rate, and the number of 

filters. An example is given in Fig. 2 below showing 

four of 24 filters. 

Figure 2: Subset of Chroma Filters (from Librosa) 

C. Cochleogram

a. Background

The use of the Cochleogram stems from the attempt

to model the response of the human auditory system,

namely the inner ear or cochlea. It was found that

each point along the basilar membrane (BM) inside

the cochlea responds best to a range of frequencies.
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This movement is sensed by the inner hair cells [3] 

which translate it into neural signals to the brain. 

The resonant frequency along the cochlea varies 

smoothly from high frequencies at the base to low 

frequencies at the apex.  

A common way to describe this frequency specific 

behaviour is to model it as a bank of parallel 

auditory filters (AF). The AF are highly overlapping 

since each point of the BM defines its own AF, with 

a critical frequency determined by its distance from 

the apex. 

b. Cochleogram Implementation

Auditory filters can be modeled in the frequency

domain.  The PyCochleogram [19] functionality

used in this work is a frequency-based Python

implementation of the Cochleogram.  The various

steps carried out in [19] are illustrated in Fig. 3.  The

incoming signal  s n   is transformed to the

frequency domain  S f   and multiplied by the

frequency representation  mH f   of the filters. A

Hilbert transform is applied to the frequency domain 

outputs  mY f and creates the so-called analytical

signals. An inverse-DFT brings the results back to a 

complex time-domain representation  mx n . From 

these real and imaginary components, the envelope 

of each filter output is computed and yields, after a 

power operator, the Cochleogram value. Note that 

for each N input data points,  s n , there are also N

data points at the  mx n  output of each filter, which

is down-sampled from 512 to obtain 64 samples. 

D. Short Time Fourier Transform

a. Definition

The Short Time Fourier Transform (STFT) provides

the Fourier spectrum on shorter time segments.  A

windowed subset of the source data is transformed

with an FFT to provide a frequency representation of

a short time interval of the original signal.  The

STFT can be written for the discrete time case as:

     
2

0,., 1 (3)N
j k n

m
n

Y k x n w n m e k N



   
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   

Where  x n  is the function to be transformed,  w n

is the window function, m is the sample offset for 

the time segment, k  the discrete frequency index 

and N the transform size. 

Figure 3: Frequency-based PyCochleogram 

b. Functional Implementation

In this work a Hanning window and the Librosa
STFT was used.  A 1024 sample FFT was input and

the average magnitude was taken over every 8

samples to yield 64 output values per STFT.

4. Network Training

A. Optimizers and Loss Functions

The Adam optimizer was used with all input features 

[20].  The Stochastic Gradient Descent (SGD) was 

tested but yielded inferior results.  The default 

values for Adam parameters were used in most cases 

except where noted in the results section. 

Several loss functions were tested with each input 

feature and the MSELoss() and SmoothL1Loss() 
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functions performed the best. The other loss 

functions tested were CrossEntropyLoss(), 

NLLLoss(), and BCEWithLogistsLoss().  All loss 

functions came from the torch.nn package [21]. 

5. Datasets

Publically available data sets were used for all 

samples.  Because the speech files included some 

gaps, any segment without speech longer than 0.5 

second was removed.   

All data which was not single channel and 16 KHz 

sampling rate was converted to this format.  Each 

transform processed 1024 samples to generate the 64 

input feature values to the network.  Subsequent 

samples were taken with a hop size of 512, thereby 

having each sample overlap with its neighbours by 

50%.  The 64 samples in each input spanned 2.048 

seconds. 

Table 1 shows the training set as created from the 

VOX I ‘Male’ and ‘Female’ samples [22] and a 

combination of 99 Sound Effects [23], ESC-50 [24] 

and non-vocal music. 

Dataset Files samples 

Vox 1 (2 Minute files) Female 15 1740 

Vox 1 (2 Minute files) Male 25 1740 

Vox 1 (5 Minute files) Female 15 4365 

Vox 1 (5 Minute files) Male 25 4365 

99 Sound Effects 99 982 

ESC-50 1980 5940 

NonVocalMusic (instrumental) 1 195 

Table 1: Training Set 

Because there were more ‘Male’ than ‘Female’ 

samples, the ‘Male’ samples were selected randomly 

from the total to end up with the same number for 

each.  The final Training set was comprised of 6105 

‘Male’, 6105 ‘Female’, and 7117 Neither samples. 

The validation set was generated from a subset of 

VOX 1 with different speakers from the training set 

and non-speech files from the BBC Sound Effects 

[25] site and is shown in Table 2.

Dataset Files Samples 

BBC Sound Effects 72 5606 

Vox 1 (10 Minute files) Female 4 2100 

Vox 1 (10 Minute files) Male 4 2100 

Table 2: Validation Set 

Because there were a different number of ‘Male’ and 

‘Female’ samples, 2100 were selected randomly 

from each to obtain the final set.  The final 

Validation set included 2100 ‘Male’, 2100 ‘Female’, 

and 5606 Neither samples. 

The Test set was generated from the Librispeech 

Test set [26] for speech samples and samples from 

the BBC Sound Effects not used in the Validation 

set and is listed in Table 3. 

Dataset Files Samples 

BBC Sound Effects 95 7335 

Librispeech Test set 40 14133 

Table 3: Test Set 

The final Test set included approximately 7000 

‘Male’, 7000 ‘Female’, and 7335 ‘Neither’ samples. 

6. Results

Each of the data sets was processed for each input 

feature transform to create transformed training, 

validation, and testing datasets for the network. 

During the training of each input feature, different 

optimizers, loss functions, batch normalization, and 

input normalization were tried.  Variations were 

seen in successive trainings so when the best 

performing model for each input feature transform 

was selected, ten additional trainings were made for 

each configuration to average out variations as 

reported below. 

Training times for each input feature type were 

essentially the same because the networks were 

identical and the differences in the features were in 
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how the features were computed.  Each training was 

run for 200 epochs, and the model with the lowest 

validation loss was chosen.  Training took 

approximately 6.6 seconds per epoch on an NVIDIA 

RTX 2080. 

For each model a count of True Positive ( TP ) True 

Negative ( TN ), False Positive ( FP ), and False 

Negative ( FN ) was kept.  From these counts, 

metrics were computed as: 

TP
precision

TP FP



 (4) 

TP
recall

TP FN



 (5) 

TP TN
accuracy

TP TN FP FN




  
(6) 

1 2
precision recall

F
precision recall





    (7) 

Each model was evaluated using the test data set for 

‘Precision’, ‘Recall’, ‘Accuracy’ and ‘F1’ score.  

Eleven models were trained and the average scores 

are given below.  

A. Melgram

The model trained with the Melgram transformed 

data gave the best results using the MSE loss and 

Adam optimizer with a learning rate of 0.0002, betas 

were (0.95, 0.999), and weight_decay of 1e-
06. All other parameters were the default values.

Averaged test results for the Melgram based models

are given in Table 4.

Class Precision Recall Accuracy F1 

Male 0.8680 0.8615 0.9123 0.8644 

Female 0.8988 0.8416 0.9181 0.8689 

Neither 0.9141 0.9745 0.9587 0.9430 

Table 4: Melgram Results 

B. Chromagram

The model trained with the Chromagram 

transformed data gave the best results with the 

SmoothL1Loss() and Adam  optimizer with the 

learning rate equal to 0.0001.  All other parameters 

were the default values.  Table 5 shows testing 

results from the Chromagram models. 

Class Precision Recall Accuracy F1 

Male 0.8696 0.8208 0.8998 0.8440 

Female 0.8626 0.8671 0.9109 0.8645 

Neither 0.9401 0.9850 0.9734 0.8902 

Table 5. Chromagram Results 

C. Cochleogram

The model trained with the Cochleogram transform 

data gave the best results with the SmoothL1Loss 

and Batch Normalization.  All Adam optimizer 

parameters were the default values, except the 

learning rate was 0.0001.  Test results from the 

Cochleogram trained models are in Table 6. 

Class Precision Recall Accuracy F1 

Male 0.8684 0.9890 0.9464 0.9245 

Female 0.9911 0.8455 0.9468 0.9120 

Neither 0.9933 0.9983 0.9971 0.9958 

Table 6. Cochleogram Results 

D. STFT

The model trained by the STFT transformed data 

which gave the best results used the 

SmoothL1Loss() function,  Batch Normalization 

was applied to each convolutional layer and the 

Adam optimizer with all default values.  Table 7 

provides the test results from the STFT model. 

Class Precision Recall Accuracy F1 

Male 0.8888 0.9695 0.9496 0.9271 

Female 0.9672 0.8729 0.9485 0.9172 

Neither 0.9941 0.9983 0.9973 0.9962 

Table 7: STFT Results 

E. Comparison

The average F1 scores for all models are given in 

Table 8. 
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Melgram Chromagram Cochleogram STFT 

0.8921 0.8902 0.9441 0.9468 

Table 8: F1 Score Comparison 

With the STFT and Cochleogram based models 

performing the best with the Chromagram and 

Melgram at the bottom.  Because there was 

significant variation between trainings, all of the 

averaged F1 scores are shown in Figure 4. 

Figure 4: Average F1 Scores for all Trainings 

The single best performing model was based on the 

Cochleogram input features.  In the classical 

thinking of audio signal processing, it would seem 

that analysing the pitch excursions and ranges would 

be sufficient to differentiate between male and 

female voices. In this line of reasoning, any TF 

representation would be equally informative in that 

it clearly shows the pitch harmonics across time. The 

results of this study suggest that other patterns in the 

TF domain are valuable in achieving an accurate 

classification. The Cochleogram, being modelled 

after the human cochlea, seems to highlight such 

patterns better than any other representation. 

7. Conclusion

This paper evaluated neural network performance 

when a model is trained with different spectral 

representations of an audio signal.  The evaluation 

was done with a gender detection model based on a 

VGG style CNN.  The Mel-Spectrogram, 

Chromagram, Cochleogram, and STFT were used to 

create the input features to the network.  The results 

show that for this model, the Cochleogram and 

STFT features performed the best.  

The issue of what constitutes an optimal set of input 

features for an audio neural network is not a simple 

one. It is worth evaluating alternatives to the 

commonly used Mel-Spectrogram, for the specific 

application and the network structure sought. 
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