
Audio Engineering Society

 Convention Paper 10634
Presented at the 153rd Convention

2022 October

This paper was peer-reviewed as a complete manuscript for presentation at this Convention. This paper is available in the
AES E-Library, http://www.aes.org/e-lib. All rights reserved. Reproduction of this paper, or any portion thereof, is not
permitted without direct permission from the Journal of the Audio Engineering Society.

Comparison of Audio Spectral Features in a Convolutional
Neural Network

Greg Vines and Elias Nemer

San Diego, CA, U.S.A.

Correspondence should be addressed to G. Vines (gvines@ieee.org)

ABSTRACT
Time-Frequency transformation and spectral representations of audio signals are commonly used in various

machine learning applications. Typically the Mel-Spectrogram is used to create the input features to the network

justified by the Mel scale’s human auditory system basis. In this paper, we compare several spectral features in a

gender detection speech model comparing their performance and showing that the Mel-Spectrogram is not

always the best choice for input features.

1. Introduction

Two dimensional representations of audio where

frequency or spectral features are computed against

time are often used in neural networks because they

allow modelling characteristics of the auditory

system, such as masking, perception, or resolution.

Having a two dimensional input allows audio

applications to leverage the progress made in the

image processing field.

Spectral data such as the Mel-Spectrogram [1]

(Melgram), Chromagram [2] or Cochleogram [3] are

some examples of such Time Frequency (TF)

representations. They are often used in applications

where estimation [4], classification [5][6] or

detection is sought.

While there have been some networks which use

time-samples as input, such as WaveNet [7], the

majority of recent published work still uses spectral

features as input to the models as the results have

shown that they provide superior performance to

taking in raw audio samples [8]. However, most

audio neural networks still use Melgrams as their

input features. For example, in the 2020 DCASE

Task 1, Low Complexity Scene Classification

challenge [9] all ten of the top performing entries

used log Mel energies, or a variation thereof.

Because a variety of transforms can be used and

easily incorporated into the networks early layers

[10][11], the natural question is which transform is

the best. This paper investigates several spectral

representations comparing their relative

performances. In addition to the Mel-Spectrogram,

the Chromagram, Cochleogram, and Short Time

Fourier Transform (STFT) are implemented in a

Gender Detection model using a Convolutional

Neural Network (CNN).

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 2 of 8

2. Model Description and Definition

The Pytorch framework [12] was used in this work

because it provided a flexible and powerful

development environment. The model was based on

the VGG image classification model using a scaled

down network appropriate to the input feature size

[13].

Each time-frequency transform is constructed to

have 64 columns each with 64 values. This allows

all approaches to use the same neural network and

eases comparison of the results.

The network was modelled after the VGG networks,

but with a smaller structure. The pattern of two 2D

convolutional layers, Batch Norm, and ReLU

modules followed by a max pool layer was repeated

four times. The output of these layers was 4 4 96x x

which was fed into three fully connected layers with

ReLU and dropout in between. The output of the

fully connected layer yielded the three classes which

were fed into a softmax function.

The resulting network has eight 2D convolutional

layers followed by three linear layers for a total of

708,291 parameters. Figure 1 illustrates the

structure of the network.

Figure 1: Network Architecture

3. Input Feature Generation

A. Mel-Spectrogram

a. Definition

A Spectrogram is a convenient way to visualize the

magnitude of the DFT points for each analysis

frame. A spectrogram is a 3D plot with the x and y

axis being the time and frequency indices

respectively. The third dimension is often replaced

with an intensity value so that the entire plot is

viewed in 2D.

The Mel scale came about with the realization that

human hearing does not perceive frequency on a

linear, but a more logarithmic-like, scale [14]. The

Mel scale was developed based on having a unit of

pitch such that equal distances in pitch sounded

equally distant to the listener. A transformation

from frequency in Hz to the Mel pitch scale [15] is

given by:

 102595log 1
700

mel

f
m f

 (1)

With the reverse transformation from Mel to Hz as:

 /2595() 700 10 1m

Hzf m (2)

b. Functional Implementation

The Mel-Spectrogram is generated by first

computing a DFT on the signal, using a given frame

length (N) and an overlap. We then compute the so-

called Mel-scale filterbank, which is a set of M

filters that are applied to the spectrogram. Each one

of these filters combines the energy of a number of

frequency points representing the Mel unit. Each

vector representing the filter is mostly zero except

for a small segment of the spectrum.

c. Determining the Mel Filters

The span and values of each filter coefficient is a

function of the sampling frequency, the number of

DFT points, and the desired bandwidth of the signal

to cover. Below is the summary of the key steps

detailed in [16].

 Define the frequency range and compute the

end points in Hz and Mels.

 Decide how many filterbanks are needed, and

define equally spaced frequencies in Mels using

Eq. 1.

 Convert these frequencies to Hz using Eq. 2.

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 3 of 8

 Translate these frequencies to bins, based on the

STFT size and generate the set f m in bins for

1,...,m M .

 Construct the M filters: 1,...,mH k m M

0 1

1 1

1

11

1
1

0

1

mH k

for
k f m

k f m f m k f m

f m f m

f m k f mf m k

f m f m
k f m

k f m

In this work the Melgram filter from the Librosa

library is used.

B. Chromagram

a. Definition

In music analysis, pitch is a perceptual property of

sounds and allows their ordering on a frequency-

related scale. It is this quality that makes it possible

to judge sounds as "higher" or "lower" in pitch. The

human perception of pitch is periodic in the sense

that two pitches are perceived as similar in “color”,

or harmonic role, if they differ by one or several

octaves. Based on this observation, a pitch can be

separated into two components, which are referred

to as tone height and Chroma, and sometimes called

the pitch helix [17]. The Chroma, or color, captures

the harmonic and melodic characteristics of music,

and is robust to changes in timbre and

instrumentation. Such features are commonly used

in music analysis, where the pitches can be

meaningfully categorized. Assuming the equal-

tempered scale, one considers twelve Chroma values

represented by the set {C, C♯, D, D♯, E , F, F♯, G,

G♯, A, A♯, B} which are the twelve pitch spelling

attributes used in Western music notation.

From a signal processing perspective, the term

Chroma vector, or Chromagram, relates to the

twelve pitch classes. It is typically a 12-element

feature vector, though it may contain more elements,

and indicates how much energy from each pitch

class {C, C#,D, D#, E, ..., B} is present in the signal.

b. Functional Implementation

The conversion of an audio recording into a Chroma

representation, or Chromagram, may be performed

by using the Short-Time Fourier Transform (STFT)

in combination with binning strategies [18]. The

idea is to aggregate all spectral information that

relates to a given pitch class into a single coefficient.

c. Determining the Chroma Filters

The Chroma filters are somewhat similar to the Mel

filters described earlier. They combine the energies

of a selected set of frequency bins to yield the

desired filter output. In this case each Chroma filter

combines the energy of one pitch class, for example

the C# pitch class, from the various bins of the DFT

vector which conceptually represent the various

octaves.

In this work, we make use of the Librosa library

function to synthesize such filters, given the number

of FFT points, sampling rate, and the number of

filters. An example is given in Fig. 2 below showing

four of 24 filters.

Figure 2: Subset of Chroma Filters (from Librosa)

C. Cochleogram

a. Background

The use of the Cochleogram stems from the attempt

to model the response of the human auditory system,

namely the inner ear or cochlea. It was found that

each point along the basilar membrane (BM) inside

the cochlea responds best to a range of frequencies.

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 4 of 8

This movement is sensed by the inner hair cells [3]

which translate it into neural signals to the brain.

The resonant frequency along the cochlea varies

smoothly from high frequencies at the base to low

frequencies at the apex.

A common way to describe this frequency specific

behaviour is to model it as a bank of parallel

auditory filters (AF). The AF are highly overlapping

since each point of the BM defines its own AF, with

a critical frequency determined by its distance from

the apex.

b. Cochleogram Implementation

Auditory filters can be modeled in the frequency

domain. The PyCochleogram [19] functionality

used in this work is a frequency-based Python

implementation of the Cochleogram. The various

steps carried out in [19] are illustrated in Fig. 3. The

incoming signal s n is transformed to the

frequency domain S f and multiplied by the

frequency representation mH f of the filters. A

Hilbert transform is applied to the frequency domain

outputs mY f and creates the so-called analytical

signals. An inverse-DFT brings the results back to a

complex time-domain representation mx n . From

these real and imaginary components, the envelope

of each filter output is computed and yields, after a

power operator, the Cochleogram value. Note that

for each N input data points, s n , there are also N

data points at the mx n output of each filter, which

is down-sampled from 512 to obtain 64 samples.

D. Short Time Fourier Transform

a. Definition

The Short Time Fourier Transform (STFT) provides

the Fourier spectrum on shorter time segments. A

windowed subset of the source data is transformed

with an FFT to provide a frequency representation of

a short time interval of the original signal. The

STFT can be written for the discrete time case as:

2

0,., 1 (3)N
j k n

m
n

Y k x n w n m e k N

Where x n is the function to be transformed, w n

is the window function, m is the sample offset for

the time segment, k the discrete frequency index

and N the transform size.

Figure 3: Frequency-based PyCochleogram

b. Functional Implementation

In this work a Hanning window and the Librosa
STFT was used. A 1024 sample FFT was input and

the average magnitude was taken over every 8

samples to yield 64 output values per STFT.

4. Network Training

A. Optimizers and Loss Functions

The Adam optimizer was used with all input features

[20]. The Stochastic Gradient Descent (SGD) was

tested but yielded inferior results. The default

values for Adam parameters were used in most cases

except where noted in the results section.

Several loss functions were tested with each input

feature and the MSELoss() and SmoothL1Loss()

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 5 of 8

functions performed the best. The other loss

functions tested were CrossEntropyLoss(),

NLLLoss(), and BCEWithLogistsLoss(). All loss

functions came from the torch.nn package [21].

5. Datasets

Publically available data sets were used for all

samples. Because the speech files included some

gaps, any segment without speech longer than 0.5

second was removed.

All data which was not single channel and 16 KHz

sampling rate was converted to this format. Each

transform processed 1024 samples to generate the 64

input feature values to the network. Subsequent

samples were taken with a hop size of 512, thereby

having each sample overlap with its neighbours by

50%. The 64 samples in each input spanned 2.048

seconds.

Table 1 shows the training set as created from the

VOX I ‘Male’ and ‘Female’ samples [22] and a

combination of 99 Sound Effects [23], ESC-50 [24]

and non-vocal music.

Dataset Files samples

Vox 1 (2 Minute files) Female 15 1740

Vox 1 (2 Minute files) Male 25 1740

Vox 1 (5 Minute files) Female 15 4365

Vox 1 (5 Minute files) Male 25 4365

99 Sound Effects 99 982

ESC-50 1980 5940

NonVocalMusic (instrumental) 1 195

Table 1: Training Set

Because there were more ‘Male’ than ‘Female’

samples, the ‘Male’ samples were selected randomly

from the total to end up with the same number for

each. The final Training set was comprised of 6105

‘Male’, 6105 ‘Female’, and 7117 Neither samples.

The validation set was generated from a subset of

VOX 1 with different speakers from the training set

and non-speech files from the BBC Sound Effects

[25] site and is shown in Table 2.

Dataset Files Samples

BBC Sound Effects 72 5606

Vox 1 (10 Minute files) Female 4 2100

Vox 1 (10 Minute files) Male 4 2100

Table 2: Validation Set

Because there were a different number of ‘Male’ and

‘Female’ samples, 2100 were selected randomly

from each to obtain the final set. The final

Validation set included 2100 ‘Male’, 2100 ‘Female’,

and 5606 Neither samples.

The Test set was generated from the Librispeech

Test set [26] for speech samples and samples from

the BBC Sound Effects not used in the Validation

set and is listed in Table 3.

Dataset Files Samples

BBC Sound Effects 95 7335

Librispeech Test set 40 14133

Table 3: Test Set

The final Test set included approximately 7000

‘Male’, 7000 ‘Female’, and 7335 ‘Neither’ samples.

6. Results

Each of the data sets was processed for each input

feature transform to create transformed training,

validation, and testing datasets for the network.

During the training of each input feature, different

optimizers, loss functions, batch normalization, and

input normalization were tried. Variations were

seen in successive trainings so when the best

performing model for each input feature transform

was selected, ten additional trainings were made for

each configuration to average out variations as

reported below.

Training times for each input feature type were

essentially the same because the networks were

identical and the differences in the features were in

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 6 of 8

how the features were computed. Each training was

run for 200 epochs, and the model with the lowest

validation loss was chosen. Training took

approximately 6.6 seconds per epoch on an NVIDIA

RTX 2080.

For each model a count of True Positive (TP) True

Negative (TN), False Positive (FP), and False

Negative (FN) was kept. From these counts,

metrics were computed as:

TP
precision

TP FP

 (4)

TP
recall

TP FN

 (5)

TP TN
accuracy

TP TN FP FN

(6)

1 2
precision recall

F
precision recall

 (7)

Each model was evaluated using the test data set for

‘Precision’, ‘Recall’, ‘Accuracy’ and ‘F1’ score.

Eleven models were trained and the average scores

are given below.

A. Melgram

The model trained with the Melgram transformed

data gave the best results using the MSE loss and

Adam optimizer with a learning rate of 0.0002, betas

were (0.95, 0.999), and weight_decay of 1e-
06. All other parameters were the default values.

Averaged test results for the Melgram based models

are given in Table 4.

Class Precision Recall Accuracy F1

Male 0.8680 0.8615 0.9123 0.8644

Female 0.8988 0.8416 0.9181 0.8689

Neither 0.9141 0.9745 0.9587 0.9430

Table 4: Melgram Results

B. Chromagram

The model trained with the Chromagram

transformed data gave the best results with the

SmoothL1Loss() and Adam optimizer with the

learning rate equal to 0.0001. All other parameters

were the default values. Table 5 shows testing

results from the Chromagram models.

Class Precision Recall Accuracy F1

Male 0.8696 0.8208 0.8998 0.8440

Female 0.8626 0.8671 0.9109 0.8645

Neither 0.9401 0.9850 0.9734 0.8902

Table 5. Chromagram Results

C. Cochleogram

The model trained with the Cochleogram transform

data gave the best results with the SmoothL1Loss

and Batch Normalization. All Adam optimizer

parameters were the default values, except the

learning rate was 0.0001. Test results from the

Cochleogram trained models are in Table 6.

Class Precision Recall Accuracy F1

Male 0.8684 0.9890 0.9464 0.9245

Female 0.9911 0.8455 0.9468 0.9120

Neither 0.9933 0.9983 0.9971 0.9958

Table 6. Cochleogram Results

D. STFT

The model trained by the STFT transformed data

which gave the best results used the

SmoothL1Loss() function, Batch Normalization

was applied to each convolutional layer and the

Adam optimizer with all default values. Table 7

provides the test results from the STFT model.

Class Precision Recall Accuracy F1

Male 0.8888 0.9695 0.9496 0.9271

Female 0.9672 0.8729 0.9485 0.9172

Neither 0.9941 0.9983 0.9973 0.9962

Table 7: STFT Results

E. Comparison

The average F1 scores for all models are given in

Table 8.

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 7 of 8

Melgram Chromagram Cochleogram STFT

0.8921 0.8902 0.9441 0.9468

Table 8: F1 Score Comparison

With the STFT and Cochleogram based models

performing the best with the Chromagram and

Melgram at the bottom. Because there was

significant variation between trainings, all of the

averaged F1 scores are shown in Figure 4.

Figure 4: Average F1 Scores for all Trainings

The single best performing model was based on the

Cochleogram input features. In the classical

thinking of audio signal processing, it would seem

that analysing the pitch excursions and ranges would

be sufficient to differentiate between male and

female voices. In this line of reasoning, any TF

representation would be equally informative in that

it clearly shows the pitch harmonics across time. The

results of this study suggest that other patterns in the

TF domain are valuable in achieving an accurate

classification. The Cochleogram, being modelled

after the human cochlea, seems to highlight such

patterns better than any other representation.

7. Conclusion

This paper evaluated neural network performance

when a model is trained with different spectral

representations of an audio signal. The evaluation

was done with a gender detection model based on a

VGG style CNN. The Mel-Spectrogram,

Chromagram, Cochleogram, and STFT were used to

create the input features to the network. The results

show that for this model, the Cochleogram and

STFT features performed the best.

The issue of what constitutes an optimal set of input

features for an audio neural network is not a simple

one. It is worth evaluating alternatives to the

commonly used Mel-Spectrogram, for the specific

application and the network structure sought.

References
[1] K. Prahallad. “Spectrogram, Cepstrum and Mel-Frequency

Analysis”. http://www.speech.cs.cmu.edu/15-

492/slides/03_mfcc.pdf.

[2] Chroma Feature.

https://en.wikipedia.org/wiki/Chroma_feature

[3] R. F. Lyon, "A Computational Model of Filtering,

Detection, and Compression in the Cochlea", in IEEE

International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 1282-1285. (1982).

[4] R. Martin, “Noise Power Spectral Density Estimation Based

on Optimal Smoothing and Minimum Statistics,” IEEE

Transactions on Speech and Audio Processing, vol. 9, no. 5,

pp. 504–512, 2001.

[5] B. Gao, W. Woo, L.C. Khor. “Cochleagram-based Audio

Pattern Separation Using Two-dimensional Non-Negative

Matrix Factorization with Automatic Sparsity Adaptation”.

Journal of Acoustical Society of America. 2014

Mar;135(3):1171-85. doi: 10.1121/1.4864294. PMID:

24606260.

[6] R. V. Sharan, T. J. Moir, “Acoustic Event Recognition

Using Cochleagram Image and Convolutional Neural

Networks”, Applied Acoustics, Volume 148, 2019, Pages

62-66, ISSN 0003-682X,

[7] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O.

Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K.

Kavukcuoglu, ``WaveNet: A generative Model for Raw

Audio,'' 2016, arXiv:1609.03499. [Online]. Available:

http://arxiv.org/abs/1609.03499

[8] http://dcase.community/challenge2020/task-acoustic-scene-

classification-results-b

[9] “Low-Complexity Acoustic Scene Classification.” DCASE

2020, http://dcase.community/challenge2020/task-acoustic-

scene-classification-results-b.

[10] E. Nemer, "Audio Cochleogram with Analysis and

Synthesis Banks Using 1D Convolutional Networks", in 1st

International Conference on Artificial Intelligence and Data
Analytics (CAIDA), 2021, doi:

10.1109/CAIDA51941.2021.9425342.

[11] E. Nemer, G. Vines. “1D Convolutional Layers to Create

Frequency-Based Spectral Features for Audio Networks”,

AES 153rd convention. 2022.

[12] A. Paszke et al. “PyTorch: An Imperative Style, High-

Performance Deep Learning Library”. In H. Wallach et al.,

eds. Advances in Neural Information Processing Systems

32. Curran Associates, Inc., pp. 8024–8035. 2019 Available

http://www.speech.cs.cmu.edu/15-492/slides/03_mfcc.pdf
http://www.speech.cs.cmu.edu/15-492/slides/03_mfcc.pdf
https://en.wikipedia.org/wiki/Chroma_feature
http://arxiv.org/abs/1609.03499
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-b
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-b
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-b
http://dcase.community/challenge2020/task-acoustic-scene-classification-results-b

Vines and Nemer Comparison of Audio Spectral Features in a CNN

AES 153rd Convention, 2022 October

Page 8 of 8

at: http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-

library.pdf.

[13] https://github.com/pytorch/vision/blob/master/torchvision/m

odels/vgg.py

[14] S. Umesh, L. Cohen, and D. Nelson, ``Fitting the Mel

scale,'' in Proc. IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), vol. 1,

Mar. 1999, pp. 217-220.

[15] D. O'Shaughnessy, Speech Communications: Human and

Machine. New York, NY, USA: Wiley, 1987.

[16] H. Fayek “Speech Processing for Machine Learning”, online

at: https://haythamfayek.com/2016/04/21/speech-

processing-for-machine-learning.html.

[17] M. A. Bartsch and G. H. Wakefield, "Audio Thumbnailing

of Popular Music Using Chroma-based Representations," in

IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 96-104,

Feb. 2005, doi: 10.1109/TMM.2004.840597.

[18] E. Gómez, Emilia. "Tonal Description of Music Audio

Signals". PHD Thesis, UPF Barcelona, Spain. 2006.

[19] R. Gonzales. “Pycochleogram: Generate Cochleagrams

Natively in Python.” Documentation and code available

online at:

https://pycochleagram.readthedocs.io/en/latest/index.html.

[20] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic

Optimization”, online at: https://arxiv.org/abs/1412.6980

[21] https://pytorch.org/docs/stable/optim.html

[22] https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

[23] https://99sounds.org/

[24] https://www.researchgate.net/publication/305854186_ESC_

Dataset_for_Environmental_Sound_Classification

[25] https://sound-effects.bbcrewind.co.uk/

[26] https://www.openslr.org/12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://pycochleagram.readthedocs.io/en/latest/index.html
https://arxiv.org/abs/1412.6980
https://pytorch.org/docs/stable/optim.html
https://99sounds.org/
https://www.researchgate.net/publication/305854186_ESC_Dataset_for_Environmental_Sound_Classification
https://www.researchgate.net/publication/305854186_ESC_Dataset_for_Environmental_Sound_Classification
https://sound-effects.bbcrewind.co.uk/

