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ABSTRACT

Size and design constraints in products such as soundbars and TVs require loudspeaker spiders of small diameter
to allow for large voice-coil excursion. Spider designs that undergo exceedingly large displacements can exhibit
buckling of the spider rolls, resulting in very audible distortion. Such buckling events are non-trivial to simulate
with finite element methods and often lead to solver non-convergence. When wrapping numerical optimization
algorithms around the finite-element simulations to achieve optimal spider designs, it is important to ensure that all
simulated designs can be solved without errors or convergence issues. The optimal spider design might be right
within the buckling limits and an automated numerical optimization algorithm will need to be able to resolve some
designs that exhibit buckling. This work shows how an augmented FEM method can be used to circumvent issues
when employing numerical optimization for a spider design near its buckling limits.
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1 Introduction

Smaller and thinner designs for TV audio modules set
aggressive excursion limits on conventional transducers.
For example, the 6-inch transducer in the subwoofer of
the Samsung HW S800B soundbar has been designed
to have excursion limits exceeding 25 mm. Such size
requirements pose design challenges for all parts of the
transducer. This work focuses on the specific design
challenges for the spider. The spider’s main task is
to keep the voice coil, former, and diaphragm assem-
bly centered to avoid rocking motion of the diaphragm
or rubbing of the voice coil or former against the el-
ements of the magnetic circuit. A secondary task of
the spider is to aid the surround in creating a restoring
force to keep the moving elements of the transducer
centered in axial direction with the voice coil optimally
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Fig. 1: The Samsung HW S800B soundbar and dimen-
sions. Its subwoofer consists of an 8-liter enclo-
sure with a 6-inch transducer and 8-inch passive
radiator.

located in the magnetic gap. In order to keep a high
acoustic efficiency, the restoring force cannot be too
high. The spider and surround must thus allow for large

excursions of the voice coil without creating and un-
reasonably high restoring force. This restoring force
is generally a nonlinear function function of voice-coil
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excursion.

For impregnated cloth spiders the major design param-
eters are number of rolls, height of rolls, and shape of
roll tips [1]. The design variables are typically chosen
to increase the linearity of the suspension, i.e., to keep
the restoring force F(x,.) a linear function of voice
coil excursion x,.. At maximum excursion, spiders are
typically designed to progressively increase the stiff-
ness, which provides a mechanical protection against
the voice coil bottoming out inside the gap. This pro-
gressive nature of F(x,.) can be relaxed in modern
loudspeaker systems that employ control technologies
to provide an electronic protection against bottoming
out [2, 3].

Spider design increasingly relies on Finite Element
Method (FEM) modeling to predict the linear and non-
linear behavior of F(x) [4, 5, 6]. The use of modeling
methods also allow the application of numerical design
optimization to tune a transducer design to a defined
target [7, 8, 9, 10]. Several publications document the
design process for shallow (large radiating area, low
max excursion), and long-throw (smaller radiating area,
high max excursion) transducers [6, 11, 12].

If F(x,) is monotonously and smoothly increasing
with x,., the spider is considered weakly nonlinear
and it will result in harmonic distortion. If F(x,.) is
discontinuous or non-monotonous then the spider is
considered strongly nonlinear. The effects of such a
spider design can be observed in jumps of the trans-
ducer’s resonant frequency with increasing drive level
[13], or in buckling of one or more spider rolls at large
excursions, resulting in a rapid jump of the voice coil
excursion [5]. These effects can be very detrimental
to the reproduced audio signal, and they can also pose
real challenges for the FEM solver.

FEM solvers solve a system of equations that relies on
an equilibrium of forces and moments. When solving
non-linear problems, the solvers iteratively solve for
this equilibrium and discontinuous force-displacement
relationships can severly impede solver convergence.
Sometimes the solvers cannot find any solution that
fulfills the equilibrium and return an error message
instead. This becomes particularly problematic when
FEM solvers are used in conjunction with numerical
optimization algorithms, as these algorithms rely on
evaluating FEM models with many different design
parameter combinations. If the FEM solver cannot

converge for one particular combination of parame-
ters, the optimization algorithm will abort too. The
solvers thus need to be robust against failure due to
non-convergence.

First, we describe a simple method to augment conven-
tional FEM solvers with an equation to improve their
robustness in convergence when encountering buck-
ling. We then show three parametric studies where we
attempt to find a maximally linear spider with large
excursion capabilities. The power of the augmented
method is finally demonstrated in an optimization prob-
lem, where it is paramount that the FEM solver can
solve for the force-deflection curve for all excursion
values, even beyond buckling events.

2 Spider Buckling

Bolafios [5] describes how compression stresses can
cause a spider roll to buckle. In generalized terms,
buckling occurs when a loaded structure has a lower to-
tal potential energy V' in the buckled configuration than
it does in the unbuckled configuration. The potential
energy V can be written as a function of strain energy
Ustrain and work performed by external forces W.

V = Ustrain — W7 (1)

where W can generally be defined as the sum of the
dot products of the externally applied forces P, and the
displacements i; at the locations of the applied forces.

W=Y P 2)

and Ug,4i,n can be calculated by integrating the product
of stresses ¢ and strains € over the entire structure
domain Q.

1 n
Ustrain = E % oedQ (3)

Closed-form solutions for critical loads P; or displace-
ments u; can be found in statics textbooks for some
simple geometries like slender columns, beams, or rect-
angular plates. But for a general geometry like a spider
it not possible to define a closed-form solution to de-
termine the critical loads I_’; or displacements u; of an
unstable configuration that leads to buckling. In such
cases, the nonlinear force-deflection curve F (x,.) can
be calculated to infer buckling behavior.

A typical calculation of the force-deflection curve can
be done in two analogous ways: impose a prescribed
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voice coil displacement x,, at the inner radius of the spi-
der and calculate the restoring force F(x,.) by finding
the static equilibrium state, and then repeat the calcula-
tion for —X;ar < Xye < Xmax, Where X, is the maximal
allowable voice-coil excursion.

Alternatively, one can prescribe a force F' at the inner
radius of the spider and calculate the resulting displace-
ment x,.(F). Plotting F vs x,.(F) then yields the de-
sired force-displacement curve. This latter method is
generally favored in FEM simulations, since a finite
physical force will always results in a finite physical
displacement. With the former method, it is conceiv-
able to request a deformation that is incompatible with
the degrees of freedom in the structure, which would
be an ill-posed problem to solve.

If the method of prescribing F and solving for x,.(F)
is used, one needs to know the necessary forces F,
and F;,4x to displace the voice-coil from —xqx tO Xjax.
The designer might be tempted to define the range of
Fuin to Fq with a large enough margin to overshoot
the mechanical limits of the voice-coil excursion. This
leads to unnecessary calculations and does not suit
itself for a numerical optimization where the relation-
ship between F and x,. is only of interest within the
mechanical limits of 4x;;,4y.

In order to solve the conundrum presented above, we
propose an augmented FEM method that solves an
additional algebraic equation in combination with the
system of equations for the FEM solution. This is
very similar to using a Riks solver [14], but it can be
implemented for quasi-static problems in most FEM
software packages by adding the following equation to
the system of FEM equations:

x—%=0 )

where %, is the "desired" voice-coil excursion for the
yet-unknown applied force F'. Solving the FEM equa-
tions with addition of (4), one essentially solves for the
static equilibrium with prescribed force, without know-
ing F,in, Finax to result in a voice-coil displacement
equivalent to £X.

2.1 Simple Beam Buckling

To illustrate the above method, we first apply it to a
simple steel beam that is loaded on-axis. The beam
has length L = 3 m, a square cross-sectional shape of
width d = 0.1 m, and is made of steel with Young’s

modulus E =210 GPa. Any statics textbook will define
the critical axial buckling load P, for a slender beam
in a pinned-slider configuration as

T2El

Fr="12~

)
For the above beam dimension and an moment of area
for a square cross-section / = d* /12, we can calculate
the critical buckling force to be P., = 1.9 X 10°N. A
"perfectly straight" numerical FEM model does not
exhibit buckling, unless a small eccentricity is applied
to either the force or the geometry. To test this case we
applied an initial slight eccentricity of Ay = 0.1 mm at
the center of the beam. Figure 2 shows a diagram of
the simple beam in its initial and buckled configuration.
Figure 3 shows the simulated force-deflection curve of
the buckling beam compared to a perfect beam as well
as the deflection Ay of the beam center-point.

Fig. 2: Diagram of a simply supported beam with axial
load in its initial (solid) and buckled (dashed)

state.
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Fig. 3: Force-Deflection simulation for a simple beam
with and without a small eccentricity at its cen-
ter. Ay is the lateral deflection for the beam’s
center-point.

As can be seen, the simulation with the augmented
FEM method perfectly captures the analytical criti-
cal load P,,; and it can be used to predict the behav-
ior after initial buckling. The nearly horizontal force-
deflection curve after the beam has buckled indicates
that stiffness of the simple beam has reduced from
about 0.7 x 10 N/mm to only 4.3 x 103 N/mm. This
test case serves as validation example that the aug-
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Fig. 4: Design parameters used in this study are the
roll height H,,;;, and roll radius R,,;;. The other
paramers are assumed to be fixed, including the
inner diameter &;, and outer diameter &,.

mented FEM method presented here works to simulate
buckling and post-buckling behavior.

2.2 Spider Design For Large-Excursion Woofer

A loudspeaker engineering study is presented for a
spider used in a woofer with a 50.8-mm (2-inch) voice-
coil with high-excursion capabilities. The mechanical
excursion limit was required to be at least 30 mm. Tight
space constraints in the enclosure allowed for a maxi-
mal outer spider diameter of only 152.4 mm (6 inches).

Under these space constraints we would like to design a
spider with maximally linear force-deflection behavior
all the way to the maximal voice-coil excursion limit
of Xuax = 30 mm. To keep the number of variables to
a manageable limit in this paper, we will only consider
spider geometries comprising of straight sections cou-
pled to tangential circular arcs at the tips of the spider
N1 = 10 rolls, and spider material thickness of 0.5
mm. The material parameters are also kept constant
with a Young’s modulus of £ = 500 MPa, density of
p = 600 kg/m?, and a Poisson’s ratio of v = 0.33. The
basic spider geometry and remaining parameters H,,;;
and R,,;; are shown in Figure 4.

2.2.1 Spider Roll Height Study

As a first study, we vary the overall spider half-roll
height from 1.5 mm to 6 mm. The radius of the roll
tips is kept constant at 1.5 mm (measured at center
line of spider material thickness). As can be seen in
Figure 5, the shallower rolls result in spiders that are
relatively soft (flat tangent) near the rest position of
xye = 0 and become increasingly stiff (steep tangent)
at higher excursion. This behavior is explained by
the fact that the rolls get stretched completely. A spi-
der with roll heights of 1.5 mm does not allow for

F vs. ch for different Roll Heights
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Fig. 5: Effect of roll height on force-deflection curve.
At rest position, shallow rolls are softer than
tall rolls. At large excursion, shallow rolls are
stiffer than tall rolls. Solid line is out-stroke,
and dotted line is back-stroke.

a full voice coil excursion to £30 mm. In contrast,
spiders with tall rolls are stiffer near the rest position
and become increasingly soft at higher excursions, up
to a point where buckling occurs (jog in curve). The
excursion at which buckling occurs can also depend
on whether the spider is undergoing an out-stroke (in-
creasing |x,|) or a back-stroke (decreasing |xy.|). This
can be seen for example in the curve of the spider
with H,,;; = 3.5 mm, where buckling on the negative
out-stroke happens around x,, = —27 mm (solid green
curve), but on the back-stroke the buckled state is main-
tained until about x,, = 22 mm (dotted green curve)
before the spider reverts back to the unbuckled state.
This asymmetric behavior results from the fact that
the buckled state is at lower potential energy V than
the unbuckled state. For the buckling to reverse itself,
the excursion must thus be reduced beyond the initial
buckling point.

With regards to the aim of achieving maximally linear
spider, the spider with roll height of 2.5 mm is the
best candidate in this first round. However, the force-
deflection curve for this spider indicates that it buckles
at x,. = 27 mm.

Figure 6 shows the spider deformation for a number of
voice coil positions of the spider with a roll height of 4
mm. For spider excursions between 0 mm and 20 mm,
the deformation is fairly uniform between the rolls, but
at 25 mm and 30 mm the outermost roll is clearly over-
stretched, indicating that buckling had occurred. From
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Fig. 6: Deformation of spider with H,,; of 4 mm at
different voice coil excursions during the out-
stroke. Buckling occurs between x,,, = 20 mm
and x,, = 25 mm. Color indicates the von
Mises stress in the spider material in units of
Pa.

F vs. X“ for different Roll Radii
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Fig. 7: Force-deflection curve for spiders with different
roll radii. Solid lines are for the out-stroke and
dotted lines are for the back-stroke.

Figure 5, one can see that the buckling occurs at a voice
coil excursion between 21 and 22 mm.

2.2.2 Spider Roll Radius Study

In a second study, we investigate the effect of the roll ra-
dius, while keeping the roll height and other parameters
constant. Figure 7 shows the force-deflection curves for
spiders with roll height of R,,;; = 2.5 mm and roll radii
R0 between 1 mm and 2.5 mm. The figure shows
that all four versions show buckling behavior at high
positive excursion. The largest roll radius shows the
most non-linear behavior and the other examples are
relatively linear up to =24 mm excursion.

However, when looking at the maximal von Mises
stress in the spider (see Figure 8), one can see that the

Mises Stress vs. }(“ for different Roll Radii
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Fig. 8: Maximal von Mises stresses in spiders with
different roll radii during the positive excursion.
Solid lines are for the out-stroke and dotted
lines are for the back-stroke.

small roll radii yield stresses that are about 2x higher,
which could cause cracking in the spider matrix mate-
rial. None of the simulated spiders satisfy the require-
ment of avoiding buckling and linear force-deflection
curve for excursions in the range of £30 mm. Even
small buckling bumps in the force-deflection curve can
yield audible and unwanted distortion. Thus the search
for a suitable spider geometry must continue.

2.2.3 Progressive and Regressive Spider Roll
Height

Observation of plots like the one shown in Figure 6
suggest that the stress distribution in the spider rolls
is not uniform. Typically the rolls near the outer edge
of the spider show significantly larger stresses than the
remaining rolls. This suggests that a uniform roll shape
with equal height and roll radius might not be the opti-
mal solution for a large-excursion spider. Hutt claimed
that a "regressive" spider geometry with roll heights
that diminish with increasing radius is optimal in terms
of linearity and frequency shift with increasing power
[1]. We have thus run a study of spider geometries
with varying roll height. The mean half-roll height is
kept constant at H* = 2.5 mm, and the change in roll
height is defined to be linear. The difference between
outermost and innermost half-roll height is defined as
AH, and the height of the individual half-rolls H; is
given as

. AH .
Hi=H*——+(j—1) +J € (1,Nyou) (6)

lel -1
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F vs. ch for different Height Progression Rates
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Fig. 9: Force-Deflection curves for progressive and re-
gressive spiders. Each curve is offset by 50 N
to better show the differences. The thin dot-
ted black lines show the linear regression for
each case. Solid colored lines are for the out-
stroke, and dashed colored lines are for the
back-stroke.

With this formula and positive value for AH, the inner-
most half-roll height H; is AH shorter than the outer-
most half-roll height Hy_,,, and the average half-roll
height is H*. This is considered a "progressive roll
height" spider. When AH is negative, the innermost
half-roll is taller than the outermost half-roll and is
considered a "regressive roll height" spider. The re-
sulting force-deflection curves for the progressive and
regressive spider designs are shown in Figure 9.

This result shows that it is possible to design a spider
geometry with the given constraints that will not buckle
within the excursion range of 30 mm. Progressive
spiders with mean half-roll height of H* = 2.5 mm and
AH between 1 mm and 3 mm do not show signs of
buckling. Furthermore, the example with AH = 2 mm
shows a very linear force-deflection curve. Further
improvement might be achieved by varying the roll
radii as well, but that has not been studied for this
work.

2.2.4 Roll Height Optimization

The great advantage of being able to simulate F (xy()
past the point buckling is the ability to employ numeri-

Fig. 10: Optimized spider geometry (black) and ini-
tial guess (gray). H; progression is not
monotonous anymore, but the geometry does
improve the symmetry of the force-deflection
curve.

cal optimization routines to a problem without getting
bogged down by solver problems. Numerical optimiza-
tion methods require the objective function to be rela-
tively smooth across the design space. If a solver cannot
finish an evaluation due to singularities like a buckling
event, then the optimizer cannot know what value to
apply. Simply applying an artificially large objective
value can lead to optimized non-convergence or drive
the search for an optimal set of parameters far away
from the true optimal solution. To demonstrate that
the presented augmented buckling simulation method
indeed can be applied to spider design, we have let
the optimizer find an optimal set of half-roll heights
Hj, with the objective to linearize the force-deflection
curve as much as possible.

The best design from the previous study (H* = 2.5 mm,
AH =2 mm, R,,;; = 1.5 mm) is taken as initial design
and the optimizer is allowed to vary the individual
half-roll heights H; between 0.5 mm and 6 mm. We
employ a parametric strategy [7], and a gradient-free
Nelder-Mead optimization solver [15], along with a
least-squares objective between the force-deflection
curve and its linear regression as objective function.
The initial guess and resulting optimized geometry can
be seen in Figure 10, and the optimized individual half-
roll heights are listed in Table 1.

The least squares error between the force deflec-
tion curve and its linear regression is reduced from
0.0853 N for the initial guess to 0.0116 N for the opti-
mized solution. If the linearized force deflection curves
were to be calculated to a spider stiffness value, then
the designs result in Kj,; = 0.583 N/mm for the initial
guess, and an almost identical K,,; = 0.584 N/mm for
the optimized solution.
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Table 1: The values of the optimized half-roll heights H.

j 1 2 3 4 5 6 7 8 9 10
H;[mm] | 1.85 | 1.30 | 2.41 | 2.22 | 3.15 | 2.54 | 479 | 424 | 3.11 | 4.43
3 Conclusion [3] Brunet, P, Li, Y., Kubota, G., and Mariajohn, A.,
“Application of Al Techniques for Nonlinear Con-
We have demonstrated an augmented FEM method trol of Loudspeakers,” Audio Engineering Society
that allows the simulation of force-deflection curves Convention 151, p. 10535, 2021.
for loudspeaker spiders past buckling events that can
occur at large excursion. Without such an augmented [4] Rausch, M., Kaltenbacher, M., Landes, H., Lerch,
method, the standard FEM solvers will not converge to R., Kreitmeier, L., and Krump, G., “Computer-
a solution at the point of buckling. We have presented Aided Design of Electrodynamic Loudspeakers
three parametric studies to illustrate how spider design by Using a Finite Element Method,” Audio Engi-
can be pushed to the extreme by optimizing a spider neering Society Convention 111, p. 5420, 2001.
that can operatjc ne'arly linear. fgr large exc.ursions of [5] Bolafios, F., “Stress Analysis on Moving Assem-
430 mm, despite its constral.mng dimensions. The blies and Suspensions of Loudspeakers.” Audio
augment.ed methoq presenFeq is even robust enough to Engineering Society - 121st Convention Papers
pe used ina numetlcal optlmlzatlgn where: some .Of the 2006, 2, pp. 928-947, 2006.
intermediate solutions will result in buckling. Without
this robust solution method, numerical optimization [6] Martinez, J., Segovie, E., Ramis, J., Espi, A.,
would not be possible. and Carbajo, J., “An approach to small size di-
We point out the fact that we have used an isotropic ma- rect ! adlaFlon trapsdu]ce;s w1tl:1 hlg}; SEL’ Audio
terial, but real-world spiders are typically made of an Engineering Society 131, p. 8467, 2011.
impregnated fabric. Such materials are better described [7]1 Bezzola, A., “Numerical Optimization Strategies
by material models that have different properties in for Acoustic Elements in Loudspeaker Design,” in
different directions. With the isotropic material as- Audio Engineering Society Convention 145, New
sumption, it was also possible to use axi-symmetric York City, 2018.
FEM models to more quickly iterate between different B ) .
designs. [8] COMSOL AB, “Loudspeaker Spider Optimiza-
tion,” 2022.
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