
Audio Engineering Society

Convention Express Paper 42
 Presented at the 153rd Convention

2022 October

This Express Paper was selected on the basis of a submitted synopsis that has been peer reviewed by at least two qualified
anonymous reviewers. The complete manuscript was not peer reviewed. This express paper has been reproduced from the
author’s advance manuscript without editing, corrections, or consideration by the Review Board. The AES takes no responsibility
for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights reserved. Reproduction of this
paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society.

GPU-Accelerated Drum Kit Synthesis Plugin Design
Travis Skare1

1CCRMA, Stanford University

Correspondence should be addressed to Travis Skare (travissk@ccrma.stanford.edu)

ABSTRACT

We present a real-time, GPU-accelerated drum set model: the application itself, a description of the synthesis
involved, and a discussion of GPGPU development strategies and challenges. Real-time controls enabled by these
synthesis methods are a focus. The project is and will remain noncommercial.

1 Introduction

Rich, physically-accurate drum set component models
are proposed by e.g. the NESS project (overview[1]
and with specific models such as snare[2]); these and
other FDTD models are high-quality but may be compu-
tationally prohibitive running many drums in real-time
as part of a larger audio production. In contrast, the
plugin discussed herein utilizes “spare” resources on
a GPU and less expensive “building blocks” to syn-
thesize drum set sounds, but may be seen as more of
an analysis-resynthesis system with real-time controls
different from those expected from a more common
sample-based virtual instrument.

The plugin is developed with the JUCE toolkit; UI may
be seen in Figure 1.

The resources page for this paper, including sound
examples, and code pointers may be found at:
https://ccrma.stanford.edu/~travissk/aes2022media/

2 Methods

2.1 Synthesis

Cymbals and shells are implemented using two strate-
gies: modal synthesis and digital waveguides/meshes.

Modal cymbal synthesis runs up to 2,000 modes (dy-
namic) per cymbal. Implementation is via phasor filters
which allow simple, stable per-sample modulation of
parameters. Such filters, suggested by Mathews and
Smith [3] and for modal reverberators by Abel et al.
[4], consist of a recursive complex update equation:

ym(t) = γmx(t)+ e(jωm−αm)ym(t −1) (1)

where:

x() is an input or excitation signal,

ωm is mode frequency for mode index m,

γm is a per-mode complex input amplitude gain, and

Skare GPGPU Drum Kit Plugin Design

Fig. 1: Plugin’s Simple UI, viewing a details page for
a cymbal. The user may choose a precomputed
modal or waveguide network cymbal model and
adjust real-time model and effect parameters. A
styling refresh is in progress.

αm is a per-mode dampening factor.

Mode responses for three or more velocities of 10 cym-
bals are captured and analyzed offline. At runtime, rel-
evant sets of modes are excited. It is possible to simply
map MIDI velocity to a mode set or a mix of multi-
ple sets; a current and more interesting approach feeds
velocity to a re-excitable energy envelope to choose a
mode set. This was found to be an efficient method to
simulate cymbal rolls, as the user may keep a cymbal
in a high-energy regime with several lower-velocity
strokes. These calculations are performed on the CPU.

Number of modes may be limited to 50 per critical
band to reduce cost. Shell-based drums may also be
implemented as such, with far fewer modes; three ve-
locities are. In this case, a preprocessing step to “round”
modes close to each other.

Novel performance controls are introduced: Artifact-
free pitch shifting and time-stretching or even freezing
(extending a cymbal wash indefinitely) are computa-
tionally “free:” we adjust ωm or αm from Equation 1
across all modes, or a subset.

A shimmer control is essentially multi-band tremolo
and seeks to simulate movement and modulation of
cymbal crash sounds. As with the the other effects,
the modal filter bank makes this computationally triv-
ial, with one more multiply of the amplitude gains α .
In contrast with a traditional tremolo effect operating
on the entire signal, we may ramp modulation of αm
frequency and/or phase across bands.

A damping or tilt control adjusts frequency-dependent
gain on a per-instrument basis.

A shortcoming of especially linear modal synthesis is
the rich, inharmonic attack of a crash symbal. Multi-
velocity captures and simple linear analysis-resynthesis
provides some improvement, but towards, a separate
set of high-velocity modes is optionally faded in with
high . This is currently behind the development control
in Figure 1.

A second approach utilizes a digital waveguide network
consisting of three (shells), to ten or more (cymbals)
digital waveguides[5], here acting as rich oscillators or
“modal compression,” a way of efficiently synthesizing
and controlling several harmonics in one block. As
with the modal parameters, these are mapped to a sound
recording ahead of time.

For harmonically-rich sources such as cymbals, an
approximate approach was developed to place these
waveguide oscillators: Obtain a set of sound sources
for a cymbal at multiple velocity levels. Then, while
the remaining signal energy is above some level:

1. Compute the top modes, only considering frequen-
cies below some fth (e.g. 1KHz) as a baseline1.

2. Place a digital waveguide oscillator at the most
prominent mode. Our baseline digital waveguide
includes three variations with stronger allpasses
for frequency smearing, and the closest one is
mapped. There is certainly more rigor that could
be introduced into this process.

3. Synthesize and subtract from the residual. We
operate on half-critical-band sized granularity.

4. If residual above fth remains, it could be synthe-
sized with modes or an alternative approach.

An approach training a Machine Learning network to
this task was explored but did not yield generalizable
results; we suspect a more comprehensive input data
set compared to the mode sets captured and augmented
with synthetic data might fit the task better.

1discarding very high modes altogether might even work for
cymbals, if upper modes and damping are to be introduced and
controlled with a performance control

AES 153rd Convention, 2022 October
Page 2 of 5

Skare GPGPU Drum Kit Plugin Design

Fig. 2: System architecture: a DAW plugin, on audio
callback request, sends control data to a GPU
process, which launches and waits for kernels
to run on the GPU.

2.2 Mixing and Effects

We may optionally post-process the drums on the GPU.
There is a tradeoff here: as we would like to avoid
multiple transfers to and from the GPU.

GPU-side insert effects on each drum may be added af-
ter the synthesis step, reusing registers and thread-local
memory. Two examples: A simple textbook digital
compressor may be implemented with only a handful
of registers. Convolution reverb was an early GPU-
accelerated effect, with academic[6], open-source, and
commercial applications.

As an example, simple two-pole lowpass and highpass
filters are provided to reduce mud or ring.

Two bus compressors are available to mix into GPU-
side. These are “textbook” implementations rather than
specific emulations of specific hardware, but have con-
figurable threshold, attack and release.

3 Discussion

3.1 Implementation Considerations

The system comprises two pieces (Figure2). The user
interacts with a DAW plugin or standalone app compo-
nent, which accepts MIDI input and outputs multichan-
nel audio, as most virtual instruments do.

The plugin/app communicates to the second compo-
nent, a background synthesis process which itself han-
dles communication to the GPU. This is an evolution of
the approach from our earlier cymbal-only work [7] and

the GPU process may be adapted to serve requests for
applications such as network audio for a multichannel
installation.

Communication between the two is over shared mem-
ory and semaphores, all using low-level OS primitives
for compatibility and to avoid adding a dependency on
an additional library.

Implementation is via the CUDA GPGPU toolkit and
was developed on the Windows platform; the GPU
process and plugin code have Linux shared memory
support as well.

An optimization to this system is to execute kernels a
buffer ahead of time, requesting on a thread outside the
audio processing callback threads. This would remove
the synchronous wait, but could introduce a buffer of
latency to respond to input.

3.2 Mixing and Effects

After each set of GPU threads processes a buffer, the
state of each synthesis element (modal filter, digital
waveguide, mesh) must be written to persistent global
GPU memory. At the beginning of the next block it is
read from that memory.

Audio state for each output audio channel is written to
a separate area of global memory, and copied back to
the CPU host, explicitly or implicitly depending on the
GPU API used.

As the data is available in global memory, it is straight-
forward to add a bus processing step that operates on
this data and appends additional audio channels. Be-
cause this waits for data, it introduces additional se-
quential execution time. Figure 3 shows a timeline
of dependencies for a single buffer processing request.
Note that the synthesis and effects kernels may com-
prise more than one processing batch, but the GPU
scheduler handles this transparently.

4 Results

Please see the sound examples, or the convention demo
for practical results. A spectrogram of a synthesized
cymbal can be seen in Figure 4.

AES 153rd Convention, 2022 October
Page 3 of 5

Skare GPGPU Drum Kit Plugin Design

Fig. 3: Processing timeline for two parallel synthesis
kernels and one sequential effects bus process-
ing kernel

4.1 Performance

Our test system is consumer-level, containing an Intel
i5 3570K CPU and NVIDIA GeForce GTX 1080Ti
GPU.

The synthesis process runs at 44.1KHz and during de-
velopment and demos, DAW or JUCE buffer sizes of
either 512 (5.8ms) or 256 were used. 128 seemed qual-
itatively practical, however in debug mode we noted
occasional missed audio callback deadlines. At 256+,
100k modes, 10k waveguides, and dozens of small
meshes may be synthesized in parallel with either con-
current or sequential kernels; sequential kernels started
to run against real-time considerations.

Synthesis kernel benchmarks were run on a system-on-
chip developer kit successfully as a proof of concept,

Fig. 4: Spectrogram of modally-synthesized cymbal,
1000 phasor filters.

though the entire app has not been ported.

For specific performance figures: micro-benchmarking
and single-instrument benchmarking has been covered
in our prior work, but the introduction of a second
synthesis kernel raises the need to benchmark the real
synthesis kernels.

Table 1 measures mean and maximum kernel execution
for the two (modal/DWG) kernels running sequentially
and in parallel at buffer sizes of 256 and 1024, which
must execute in at 5.6ms and 23.2ms at 44.1KHz re-
spectively. We see they execute with room to spare,
though system overhead is not accounted for and we
are dependent on the DAW for scheduling.

Approach Mean Max
Sequential (Nsamp=256) 1.34 2.10

Parallel (Nsamp=256) 1.15 1.76
Sequential (Nsamp=1024) 5.26 8.21

Parallel (Nsamp=1024) 4.45 8.49

Table 1: Sequential vs. Streamed synthesis kernels,
buffer processing time, milliseconds.

5 Future Work

Most notably, we would wish to benchmark audio
GPGPU latency on modern systems with unified
CPU/GPU memory. This includes embedded system-
on-chip and certain newer consumer PCs/laptops with
custom silicon.

For the waveguide synthesizer, 2D Digital Waveguide
mesh-based elements were explored but are not used
in the current version of the plugin. In terms of GPU
acceleration, we found hundreds of rectangular meshes
of edge dimension 10-20 may be synthesized in parallel
at audio rates, but it was not trivial to grow them in
size across GPU execution blocks; FDTD methods and
research by the NESS project and followup work cover
acceleration strategies for grid methods for investiga-
tion.

Finally, the waveguide fitting method mentioned here
could use additional rigor, or be replaced with either a
closed-form matrix solve, or a Machine Learning-based
approach; while initial experiments were unsuccessful
here, we believe introducing more real data or revisiting
our synthetic data approach would have promise as this
should map well to the domain of neural nets.

AES 153rd Convention, 2022 October
Page 4 of 5

Skare GPGPU Drum Kit Plugin Design

6 Summary

A real-time drum set synthesis plugin was presented
which performs core synthesis on a GPU using two
separate synthesis kernels, and may perform optional
GPU-side bus post-processing effects. Discussions
of development and performance considerations that
drove most of the project were included.

References

[1] Bilbao, S., Desvages, C., Ducceschi, M., Hamilton,
B., Harrison-Harsley, R., Torin, A., and Webb, C.,
“Physical modeling, algorithms, and sound synthe-
sis: The NESS project,” Computer Music Journal,
43(2-3), pp. 15–30, 2019.

[2] Bilbao, S., “Time domain simulation and sound
synthesis for the snare drum,” The Journal of the
Acoustical Society of America, 131(1), pp. 914–
925, 2012.

[3] Mathews, M. and Smith, J. O., “Methods for syn-
thesizing very high Q parametrically well behaved
two pole filters,” in Proceedings of the Stockholm
Musical Acoustics Conference (SMAC 2003)(Stock-
holm), Royal Swedish Academy of Music (August
2003), 2003.

[4] Abel, J. S., Coffin, S., and Spratt, K. S., “A modal
architecture for artificial reverberation,” The Jour-
nal of the Acoustical Society of America, 134(5),
pp. 4220–4220, 2013.

[5] Smith, J. O., “Digital Waveguide Modeling of Mu-
sical Instruments,” 2003.

[6] Cowan, B. and Kapralos, B., “Spatial sound for
video games and virtual environments utilizing
real-time GPU-based convolution,” in Proceedings
of the 2008 Conference on Future Play: Research,
Play, Share, pp. 166–172, 2008.

[7] Skare, T. and Abel, J., “Real-time modal synthesis
of crash cymbals with nonlinear approximations,
using a gpu,” in Proc. 22nd Int. Conf. Dig. Audio
Effects, 2019.

AES 153rd Convention, 2022 October
Page 5 of 5

