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ABSTRACT
PA systems looking to cover a wide audience area with coherent sound are limited by current horn technology.
With conventional single-surface horns, one can achieve either high input impedance or wide directivity but not
both.  Existing wave-shaping  devices try  to  overcome these issues,  but  most  are  unable to  transmit  a  wave
coherently (without reflection, diffraction or resonance).

In this paper, we present a new type of wave-shaping waveguide based on maintaining single-parameter wave
behaviour throughout the waveguide over a wide frequency range. Various examples are included illustrating the
performance benefits of this type of waveguide compared to conventional solutions.

0 Introduction
Acoustical horns provide two essential ingredients of
PA  loudspeaker  systems:  high  efficiency  and
directivity control. As a consequence the vast majority
of PA systems use horns or waveguides of one form or
another.  Nevertheless  horns  do  have  significant
limitations. Kolbrek demonstrates in [1] that so-called
“single-surface” horns are fundamentally limited and a
wide  bandwidth  ratio  horn  must  necessarily  have
narrow directivity. There have been many attempts to
work  around  this  problem,  for  example  by  using
multicell designs, or diffraction slots. More recently,
wave-shapers,  intended  to  produce  a  rectangular
planar wavefront, provide a source for a vertical array
of  cylindrical  waveguides  [2].   These  approaches
introduce  new  compromises  that  must  be  balanced
against  directivity  and  bandwidth,  especially  of
acoustical  resonance,  response  irregularity  and
incoherence.

In this paper we outline an novel approach that allows
new  possibilities  in  horn  design,  allowing  wide
bandwidth ratio and wide directivity simultaneously.

The first  section of  this  paper  is  an  introduction  to
single-parameter  (1P)  waves.  This  starting  point  is
essential  because  if  we  wish  to  design  a  horn
providing  near  constant  directivity  over  a  wide
bandwidth it is logical that the supported waves within
the horn will be close to 1P. A few examples of 1P
waveguides are provided. 

Secondly we review some simple single-walled horns
and discuss them in comparison with the 1P examples
in section 2.

Finally we outline the new approach in section 3.

1 Single parameter (1P) waves
Single parameter waves (1P) waves have the property
that  all  spatial  variation  is  described  by  only  one
spatial coordinate. This spatial coordinate defines the
distance that the wave has travelled, and is sufficient
to characterise the wave completely.

1P waves  have  unique  properties  that  cannot  be
assumed more generally of any other type of wave. 1P
waves are homogenous in the sense that  there is  no
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pressure  gradient  perpendicular  to  the  direction  of
propagation. This property means that at any instant,
on any surface perpendicular to the spatial coordinate,
the  acoustical  pressure  is  perfectly  uniform.  These
surfaces  can  be  thought  of  as  wavefront  surfaces.
Since there is no spatial variation in pressure except
for along the direction of the spatial coordinate, this
determines  that  energy  cannot  be  moved across  the
wavefront surfaces, and as a consequence any change
in  pressure  amplitude  as  the  wave  propagates  is
completely determined by the mean curvature of the
wavefronts (See AI), and this must necessarily also be
uniform  over  every  wavefront  surface.  The
consequence  is  that  all  wavefront  surfaces  have  the
same shape. The speed at which the wave propagates
along the coordinate is constant, and therefore any two
wavefronts must be the same distance apart over the
entire surface.

The  behaviour  is  totally  independent  of  the  signal
carried  by  the  wave,  and  the  behaviour  is  identical
irrespective of frequency.

In  free-space,  there  are  only  three  types  of  single
parameter waves that can possibly occur in nature [3].
These  are  plane  waves,  cylindrical  waves  and
spherical waves.

1.1 1P waves in enclosed spaces
The three types of single parameter wave will readily
propagate in an enclosed space, while retaining all of
the  properties  listed  above,  provided  that  some
conditions are met.  The boundaries of the enclosure
must be a combination of surfaces that are perfectly
perpendicular to the wavefront surfaces and surfaces
that  are  coincident  with  wavefront  surfaces.  The
perpendicular surfaces must be rigid. The coincident
surfaces  may  be  rigid,  or  have a  uniform  finite
impedance,  or  a  uniform uniform prescribed normal
velocity, or a uniform prescribed surface pressure.

Figure  1 shows  an  example  of  a  cylindrical wave
propagating within an enclosed space. Note that both
the  iso-phase  surfaces  and  pressure  amplitude
contours  are  perfectly  cylindrical.  This  behaviour  is
invariant of frequency.

In figure  2, the cylindrical source is replaced with a
planar  source  resulting in  beaming.  In  figure  3,  the
geometry  is  truncated  into  an  infinite  2π baffle
resulting in  mouth reflections.  In  both cases  the  1P
behaviour breaks down.
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Figure 1. 3D FEM simulated phase and SPL contours at 10kHz
generated by cylindrical section (red) moving radially with 1mm/s

harmonic normal velocity bounded by two infinite rigid planes
(black). Source width is 20mm
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Figure 2. 3D FEM simulated phase and SPL contours at 10kHz
generated by planar section (red) moving horizontally with 1mm/s

harmonic normal velocity bounded by two infinite rigid planes
(black). Source width is 20mm
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Figure 3. 3D FEM simulated phase and SPL contours at 10kHz
generated by truncating the geometry from figure 1 into an infinite

2π baffle at x=0.
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1.2 Acoustic impedance of 1P waveguides
The radiation efficiency of a horn is determined by the
real  part  of the throat impedance. An ideal  horn for
use  in  a  PA  loudspeaker  would  have  a  throat
impedance  with  a  high  resistance  over  a  very  wide
bandwidth. This relationship between impedance and
efficiency is extremely well understood [4, p. 468].

Determining  throat  impedance  is  a  critical
consideration in horn design. Webster [5] was the first
to  provide  a  means of  throat  impedance  calculation
when he simplified the wave equation of a horn from
three dimensions into one. In doing so he linked the
propagation of the wave down the length of the horn
to the cross-sectional geometry of the horn as

∂2 p
∂u2 +m(u )

∂ p
∂u +

∂ p
∂ t =0 1.1.

where u is a spatial coordinate along the length of the 
horn, p is the acoustic pressure, and m(u) is the flare-
rate of the horn defined as

m(u)= 1
S (u)

∂ S(u )
∂u

=
∂ ln S (u)

∂u 1.2.

where S (u) describes how the horn area changes along
its length.

Many authors have applied Webster’s horn equation to
different  geometries  in  order  to  calculate  throat
impedance, each choosing different assumptions about
the  geometric  parametrisation.  Kolbrek  gives  a
thorough  explanation  of  this  approach  [4,  p.  747].
However, such analysis is severely limited because an
implicit assumption in Webster’s derivation is that the
wave  in  the  horn  is  1P  and,  as  emphatically
demonstrated  by  Putland  [3],  Webster’s  equation  is
exact  when  applied  to  any  1P  wave  and  always
approximate when applied elsewhere.

Figure  4 shows the FEA computed normalised throat
impedance of the 1P waveguide in figure 1. Note that
the real part of the impedance is significantly less than
unity over most of the bandwidth.

For  a  horn  to  provide  normalised  throat  resistance
close  to  unity,  it  is  necessary  for  the  flare  rate
throughout to be less than twice the wavenumber to be
carried [4, p. 474],

m(u)≤2 k. 1.3.

Expressed in other terms, the horn should double in
area over a distance greater than 0.055 wavelengths.

With the three types of 1P wave there is no flexibility
over  m(u), it is strictly linked to the geometry of the
wavefront.  The flare-rate  of  horns carrying a  plane,
cylindrical and spherical wave is

m=0, m(r )= 2
r  and m(r)= 1

r2 1.4.

respectively,  where  r  is  the radial  distance from the
horn  coordinate  system  origin.  The  plane-wave-
carrying horn provides ideal loading, but can be ruled
out immediately for PA applications as the wavefront
has no divergence. The cylindrical and spherical wave
horns suffer from another  problem – the flare rate at
the throat of the horn is too high. Appreciable acoustic
loading is only provided when

r0> λ
2π  and

r0>√ λ
4 π 1.5.

respectively, where  λ  is the acoustic wavelength and
r0 is the radial coordinate at the horn throat. Achieving
sufficiently high values of r0 to gain appreciable throat
impedance over a useful bandwidth, requires either a
narrow angle between the planar or conical waveguide
walls, or an extremely large horn throat size.

As a result we conclude that, although 1P waveguides
carry  waves  with  attractive  properties  –  frequency
independence,  perfect  homogeneity,  zero  diffraction
and  reflection  –  they  are  not  ideal  for  use  in  PA
applications  because  they  don’t  provide  a  wide
bandwidth ratio.

20 50 100 200 500 1000 2000 5000 10000 20000
frequency - Hz

0

0.2

0.4

0.6

0.8

1

no
rm

al
is

ed
 im

pe
da

nc
e

Figure 4. Normalised throat impedance corresponding to the
extruded cylindrical waveguide shown in figure 1. Real part solid

line, imaginary part dashed.
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2 Analysis of wavefront behaviour in 
non-1P horns

The  orthogonal  trajectories  of  1P  wavefronts  are
straight lines  [3, p. 441]. Horns that carry 1P waves,
therefore, must have walls that are not curved along
the direction of wave propagation. This leads to poor
acoustical loading, as discussed above, and the source
curvature  must  match  the  horn  coverage,  as
demonstrated in figures 1 and 2.

It would be more useful to have a horn that receives a
small shallow-angle acoustical wave at the throat and
transmits  a  large  wide-angle  acoustical  wave  at  the
mouth. This requires a horn with a wall that  curves
and  whose  included  angle  increases  along the  horn
length.  Horns  of  this  type  are  widely  used  in  PA
systems. Such horns don’t carry 1P waves, but they do
have other useful characteristics.
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Figure 5. Thin extruded exponential horn with 500Hz cut-on
frequency formed by two extruded side walls (black), a 20mm width
planar source (red), terminated into a 60deg semi-infinite conical-

wave guide. Contours of constant phase are shown for 50Hz (green,
solid) and 20kHz (blue dash).

Figure 5 shows iso-phase surfaces at 50Hz and 20kHz
in an extruded exponential horn computed using 3D
FEM with PAFEC-FE  [6]. At 50Hz (green lines) the
wave  behaviour  is  close  to  ideal  –  shallow-angle
waves  at  the  throat  slowly  expand  to  large-angle
waves at the mouth. The wave is always perpendicular
to the rigid walls and, because the wavelength is large,
this  boundary  condition effects  the  wave across  the
entire horn width. At every surface plotted, the wave
is almost perfectly cylindrical.

The  20kHz  iso-phase  surfaces  (blue  dash)  have  a
different characteristic. The wave still obeys the same
boundary condition, and remains perpendicular to the
walls, but the central region of the wave propagates
almost as if it is in free space. The wavefront is flatter
and the distance between consecutive waves is more
constant.  The behaviour is not 1P as:

• the  wave  shape  varies  at  different
frequencies,

• the wave curvature is not  constant  over the
wave-front,

• there is no single spatial parameter that could
describe the behaviour.

The  higher  curvature  of  the  20kHz  wave  near  the
walls means that, as the wave propagates, the pressure
level falls faster than at the central region. This has an
important effect on the directivity of the horn. Figure
6 shows the frequency response at three positions at
the horn  mouth.  Above the cut-on frequency of  the
horn  (500Hz)  the  response  curves  progressively
separate indicating severe ‘beaming’.
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Figure 6. Sound pressure level responses at 0deg, 30deg and 60deg
at the mouth of the extruded exponential waveguide shown in figure

5.
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Figure 7. Normalised throat impedance corresponding to the
extruded exponential waveguide shown in figure 5. Real part solid

line, imaginary part dashed.
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However, in terms of throat impedance, this horn has a
big advantage compared to a 1P horn. The flare-rate is
much  slower  near  the  throat.  The  normalised
acoustical  impedance,  shown  in  figure  7,  has  a
resistance  close  to  unity  from  500Hz  upwards.
Compared to figure  4, for the cylindrical waveguide,
this  horn  provides  an  extended  range  of  high
impedance.

3 A new approach to correcting a thin 
waveguide

In this section a new approach is described that allows
approximately 1P waves to propagate in waveguides
with walls that are curved along the direction of wave
propagation. This new approach is applicable to thin
waveguides with two primary walls spaced less than a
wavelength apart and two secondary walls that may be
curved and spaced many wavelengths apart.

The  method  begins  with  a  prototype  waveguide,
constructed  according to  the limitations above,  with
appropriate  throat  and  mouth  shape  and  orientation,
according  to  the  application,  and  with  primary  and
secondary walls that are smooth and perpendicular to
each other.

At  equally  spaced  intervals  between  the  prototype
waveguide  throat  and  mouth,  “notional  1P
wavefronts”  (N1P  wavefronts)  are  constructed  by
deduction or calculation. These N1P wavefronts must
follow strict rules according to our knowledge of 1P
waves:  they must  be perpendicular  to  the walls  and
they  must  have  constant  mean-curvature.  In  most
cases the N1P wavefronts are sections of known 1P
waves (planar, spherical or cylindrical).

The next  step  is  to  assume a  propagation trajectory
that the wave will follow between the N1P wavefronts
and plot these trajectories on a design surface, midway
between the primary surfaces. The trajectories must be
smooth and perpendicular to the N1P wavefronts. At
the edges of the waveguide the trajectories will lie on
the secondary walls.

The length of the each trajectory between each pair of
N1P wavefronts is calculated. For 1P propagation, all
trajectories  between two N1P wavefronts must have
the same length. In the prototype waveguide this will
not be the case. To correct the waveguide, the design
surface is deformed in the normal direction to equalise
the trajectory lengths. This provides a trajectory length
that is constant between N1P wavefronts and results in

corrugations,  aligned  to  the  N1P  wavefronts,  and  a
deformation  which  is  tallest  where  the  N1P
wavefronts  are  closely  spaced.  The  primary  and
secondary  surfaces  are  re-created  by  thickening  the
design surface.

After  correction,  the  trajectory  length  is  constant
between N1P wavefronts over their entire surface, and
the  N1P  wavefronts  satisfy  the  conditions  for  1P
propagation  and  approximately  1P  behaviour  is
observed up to an upper frequency limit  determined
by the first transverse modes between primary walls.

3.1 Example 1, curved duct
The  new  method  is  most  easily  understood  with  a
simple example. Figure  8 shows a suitable prototype
waveguide  which  has  a  rectangular  throat  (red),
rectangular  mouth  (green)  and  turns  a  90deg  bend.
The primary walls are planar and the secondary walls
are cylindrical. The primary walls are parallel, spaced
2mm apart, are perpendicular to the secondary walls,
and both pairs of walls are perpendicular to the mouth
and throat.

Figure 8. Prototype 2mm thick waveguide, with 90deg corner,
leading to semi-infinite straight duct. For clarity, duct illustrated as

5mm thick.
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Figure 9. Sound pressure level response sampled at three points in
the straight terminating section of the prototype waveguide shown

in figure 8.
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Figure  9 shows the response at three locations across
the  width  of  the  prototype  waveguide  straight
terminating  section  when  a  plane  wave  source  is
placed  at  the  throat.  Below  3kHz  the  pressure  is
identical  at  all  three  points,  indicating  1P  wave
behaviour.  Above  3kHz  there  are  very  large
differences between the three curves and 1P behaviour
is not occurring.

The steps of the new method are illustrated in figure
10  with each successive step shown between the five
N1P planar  wavefronts  progressing  in  a  clockwise
direction. The design surface may be thought of as a
2D waveguide where the intersection of the notional
3D wavefronts forms a linear 2D wavefront.

Figure 10. Successive design steps, shown between 5 notional
wavefronts, progressing in a clockwise direction. 

The  sound  pressure  responses  from  the  corrected
waveguide  at  the  same  three  locations  shown
previously for the prototype waveguide (figure 9) are
shown in figure 11. it is clear from the reduction in the
spread of the three responses that the wave emitted by
the corrected waveguide is much more homogenous
and close to 1P.
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Figure 11. Sound pressure level response at points A, B and C of
corrected corner duct using 10 corrugations.

3.2 Example 2, exponential horn
The method may also be applied to the exponential
horn that was described in section  2. In this case the

curvature  of  the  secondary  walls  results  in  a
cylindrical 1PN wavefront. The corrected geometry is
shown  in  figure  12 and  the  sound  pressure  level
responses  plotted in  figure  13 at  the same locations
across the mouth that were previously shown for the
uncorrected  design  (figure  6).  The  three  response
curves now virtually overlap and this indicates that, at
least within the plot bandwidth,  the wave is behaving
as if it were 1P and the N1P wavefronts have become
the true wavefronts.

Figure 12. Corrected exponential horn using corrugated geometry
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Figure 13. Sound pressure level responses at 0deg, 30deg and
60deg at the mouth of the corrected extruded exponential waveguide

shown in figure 12.

Figure 14 shows the normalised acoustical impedance
after  the  correction  is  applied.  The  horn  area
expansion  function,  S (u ),  was  not  changed  by  the
correction  process  and  consequently  the  excellent
acoustic loading properties of the original exponential
horn  are  retained.  The  additional  ripple  when
compared to figure 7 is due to increased reflection at
the transition between the exponential waveguide and
the infinite cylindrical termination.

The corrected waveguide has the acoustic impedance
of  an  exponential  horn,  and  corresponding  loading
benefits,  while  providing  the  dispersion  of  a
cylindrical waveguide.

AES 153rd Convention, 2022 October
Page 6 of 9



Dodd and Oclee-Brown Wave-shaping single-parameter waveguides

20 50 100 200 500 1000 2000 5000 10000 20000
frequency - Hz

0

0.2

0.4

0.6

0.8

1

no
rm

al
is

ed
 im

pe
da

nc
e

Figure 14. Normalised throat impedance corresponding to the
corrected exponential waveguide shown in figure 12. Real part solid

line, imaginary part dashed.

3.3 Example 3, aperture and wave-shape 
adapting waveguide

Several  manufacturers  have  developed  acoustical
devices that receive a  plane  wave  into  an annular
throat aperture and emit a plane wave at a rectangular
mouth aperture. These devices are mostly  for use  at
high-frequencies in line array systems, and work with
varying degrees of success.

In this section we shall consider a similar device that
changes from an annular throat to a rectangular mouth
and also converts from a plane wave to a cylindrical
wave. Figure 15 shows the prototype waveguide with
leading  dimensions.  Figure  16 shows  the  pressure
response  of  the  prototype  waveguide  at  three
equispaced points ‘A’, ‘B’, and ‘C’ at the waveguide
mouth. The response curves diverge above 2kHz, and
from 4 kHz upwards the pressure at the outer edge of
the waveguide  is  12dB lower than  at the centre.  it is
clear  that  a  1P wave  is  not  being  transmitted.  The
relatively smooth response is due to the modes being
well  damped  by  radiation,  a  characteristic  that  was
already  seen  in  the  conventional  exponential  horn
(figure 6).

Figure 15. Prototype aperture and wave-shape adapting waveguide
and conical waveguide termination.
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Figure 16. Sound pressure level responses at points A, B and C for
the prototype aperture and wave-shape adapting waveguide shown

in figure 15

The correction method is now applied and in this case
the N1P wavefronts  have  3D geometry  and  are  not
obvious  to  deduce.  To sidestep  this  issue,  iso-phase
surfaces  were  calculated  at  100Hz  in  the  prototype
waveguide.  This  frequency  is  low  enough  that
wavelength  is  much  greater  than  the  adaptor
dimensions and wavefront curvature is determined by
the boundary conditions. Consequently the iso-phase
surfaces are suitable for use as N1P wavefronts. The
corrected geometry is illustrated in figure 17.

Figure 17. Corrected aperture and wave-shape adapting horn
omitting conical termination.

The  corresponding  sound  pressure  level  responses,
plotted for  the same positions as  in the uncorrected
design  (figure  16),  are  shown  in  figure  18.  Below
8kHz  the  responses  overlay,  while  above  this
frequency  the  mean  response  separation  is
approximately 3dB up to 20kHz. This indicates that, at
least within the plot bandwidth, the wave is behaving
approximately as if it were 1P.
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Figure 18. Sound pressure level responses in the corrected aperture
and wave-shape adapting waveguide at the same positions as

plotted for the prototype waveguide in figure 16.

4 Discussion
Three  examples  of  possible  applications  have  been
used to illustrate the horn correction method, firstly a
non flaring planar thin duct, secondly a planar horn,
and thirdly 3D curved surfaces. Other possibilities are
given  in  [7] and  it  seems  likely  other  useful
applications will be found in due course.

The alteration of wavefront shape or aperture occurs
progressively  throughout  the  corrected  horn  and
because of the horn walls. While the behaviour may
seem similar to that of a lens, it is quite different, as in
a lens  the wave is  bent  due  to  the  change of  wave
speed at an interface. 

In practice the path-length corrections may result  in
undesirable  local  changes  of  wavefront  area.  For
example, the peak of a corrugation is inclined so the
wavefront  area  will  be  slightly increased.  Similarly,
errors in path-length may be produced by the path of
the wave ‘cutting the corner’ making the actual path-
length smaller than the assumed path. It is also evident
that  sharply  curved  horn  walls  result  in  tall
corrugations with excessive geometric  distortion.

Using  a  thinner  waveguide  with  more  corrugations
reduces  these  geometric  errors,  however,  other
improvements require an understanding of the location
and  magnitude  of  errors  throughout  the  waveguide.
One way to do this is to consider the local flare and
path-lengths throughout the waveguide.

Once a horn  has  been  corrected  it  behaves  as  a  1P
waveguide and 1D design processes may be applied to
refine the global flare rate. This may be  achieved by
adjusting the thickness and thus vary the global flare. 

The manual design process used for these examples is
time-consuming  and  intricate.  A  numerical  design
approach  using  calculated  flare  and  path-length  is
being investigated to allow new designs to be explored
in an expedient manner.

A non-homogeneous source will result in non-zeroth
modes propagating along the waveguide with both the
corresponding variations of pressure across the mouth
and the additional  group delay. In PA applications a
coherent output is required and it is highly desirable to
have a homogenous source.

Where  a  large  wavefront  is  required,  arrays  of
corrected  horns  may  be  used.  In  this  instance  the
thickness  and  depth  of  corrugations  becomes
important  and  combining  the  output  of  individual
waveguides must be done respecting both flare laws
and path-length errors.  Since the array elements  are
identical  the  risk of  exciting circulating ‘phaseplug’
type modes is greatly reduced. A further advantage is
the reduction in the number of individual paths and
corresponding mechanical simplicity.

Having  produced a  large  1P wavefront  the  aperture
diffraction  must  be  considered.  Keele  showed  how
adding  a  section  with  higher  global  flare  rate  can
greatly reduce midrange narrowing and the associated
‘lobing’ while  retaining  the  wide  dispersion  at  high
frequencies [8]. 

5 Conclusion
By  simply  assuming  1P  wavefront  shape  and  then
correcting the path-length between several notional 1P
wavefronts a new type of waveguide has been created.
The  corrected  horn  waveguide  has  corrugations
following the shape of  1P wavefronts with a  height
that results in equal path-lengths. This geometry result
in  the  wavefront  propagating  so that it  maintains
constant curvature across each wavefront even at high
frequencies,  due  to  the  equalised  path-lengths.  This
allows the wave to be described simply in terms of
distance propagated through the waveguide.

Further work will involve reducing the time to derive
the corrected waveguide and improving it’s efficacy.
The  results  may  be  further  improved  by  geometry
corrections to local  flare and path-length throughout
the waveguide. These tools may then be applied the
produce  corrected  horns  to  allowing  improved
coherency and homogeneity of acoustic output to be
produced in horn-loaded PA systems.
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AI Flare-rate is wavefront  curvature
Webster’s horn equation is fundamentally based on the
expression  for  the  Laplacian  operator  given  in  his
equation 19 [5]

∇2a=
1

S(u )
∂
∂u (S(u )

∂ a
∂u ). I.1.

Applying this expression directly on the coordinate u,
the right-most differential term becomes unity and the
result is the flare-rate of the horn

∇2u= 1
S (u)

∂ S(u )
∂u

=m(u )
. I.2.

Dividing ∇2u by |∇ u| results in

∇2 u
|∇ u|=∇ . ∇ u

|∇ u|=∇ .eu I.3.

where e u is the unit vector pointing in positive u. This
vector  has  another  interpretation;  it  is  the  normal
vector of surfaces of constant  u. In other words,  e u is
the  unit  normal  of  the  wavefront  surfaces.  The
expression  ∇ .eu also has another interpretation; it is
equal to the negative total curvature (twice the mean
curvature, H) of the wavefront surfaces [9],

∇ . eu=−2H (u) I.4.

Putting equations I.2, I.3 and I.4 together 
demonstrates that flare-rate is a measure of wave-front
curvature,

m (u)
|∇ u|

=−2 H (u )
. I.5.

If the coordinate u measures arc length (as is the case 
for the radial coordinate in a conventional spherical 
coordinate system, the radial or axial coordinate in a 
conventional cylindrical coordinate system, or any of 
the coordinates in a conventional Cartesian coordinate
system) then |∇ u| is unity everywhere and

m (u)=−2 H (u). I.6.
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