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ABSTRACT 
In room acoustic modeling, digital geometric room models are commonly created to aid acousticians in auditioning 
different possible changes that could be made to a room. It is critically important to have the mathematical 
parameters and final auralization of the space match, so acousticians can know with confidence changes made in the 
simulation will translate to the room itself. Traditionally, acousticians have been required to laboriously adjust 
acoustic and scattering coefficients of planes in the room model in order to align various measured metrics like 
reverb time (T30) and speech clarity (C50) to predicted ones. This express paper presents an alternative procedure 
where a heuristic algorithm is used to automate the acoustic calibration process. In addition, this paper showcases 
how a statistical database that includes mean and standard deviation measurements for acoustic coefficients can be 
implemented to account for material density deviation.

1 Introduction 

In room acoustic modeling, geometric acoustic (GA) 
room models are commonly used to aid acousticians. 
GA models do not account for the full acoustic wave 
equation but allow fast computational simulations of 
sound in large rooms and performance spaces within 
certain assumptions [1]. It is critically important to 
have the parameters of the room and simulation match 
to assure physical realism within the model, as such 
models can easily deviate from the measured sound 
field in a space. Traditionally, acousticians manually 
adjust absorption coefficients of planes in the model to 
align simulated parameters, such as reverberation time 
(T30) or speech clarity (C50), with values measured 
from the real room. One of the largest setbacks to this 
method of manual calibration is the time-consuming 
process of adjusting the absorption coefficients of 
planes in the model. The acoustician has to ensure 
absorption coefficients stay within a reasonable range 
while simultaneously deciding which planes to adjust, 
depending on their size and proximity to relevant 
source and receiver positions. Some background on 
calibration techniques is provided, as well as a new 
software-based approach to automate the heuristic 
modeling process, which can aid an acoustician in the 
calibration process.  

2 Background 

2.1 Calibration of GA Models 

GA simulations, including the Image-Source Method 
[2] and Ray Tracing [3], model sound as a specular
reflective wavefront whose wavelength is small
compared to interacting materials [4]. Though these
models are theoretically sound within their
assumptions, models alone can lead to deviations from
real-world acoustic environments [5].

As a result of these possible errors, many studies have 
focused on the need for empirical calibration for 
increased accuracy in GA models of real-world acoustic 
spaces [6-8]. Early work in this area stressed the 
calibration of global parameters (like T30) followed by 
more directional acoustical energy ratios (like C50), in 
an iterative loop to continue improving the simulation 
within realistic physical constraints. Since then, work 
by Postma, Dubouilh, and Katz [9, 10] has established a 
more rigorous 6-step heuristic process to account for 
specular vs. scattered reflections and minimize potential 
sources of error within a GA calibration. For large 
spaces with many surfaces, the iterative calibration 
requires many rounds to achieve acoustic parameters  



Deetz & Boren Algorithmic Calibration of Acoustic Models 

AES 153rd Convention, 2022 October 
Page 2 of 5 

 
 

 

 
 
 
with 1-2 Just-Noticeable Differences (JNDs) of 
measured values [11, 12].  
 
2.2 Existing Auto-Calibration Techniques 
 
The time-consuming nature of such hand-calibration 
has motivated the search for software tools to 
automate this process. The most developed such tool 
uses a Genetic Algorithm machine learning approach 
to map a solution space to the complex 
interdimensional problem posed by large spaces with 
many different acoustic materials. This work, by 
Christiansen et al. [13] has been developed into a 
calibration tool within the popular GA software Odeon 
and has already been used in major acoustic 
simulation projects [14]. Other work by Pilch similarly 
maps the solution space and applies other optimization 
algorithms to improve computational runtime [15].  
 
Though such machine learning approaches 
undoubtedly have much promise for future 
simulations, they suffer (as many ML applications do) 
from the “black-box” nature of their solution: if GA 
models ran the risk of acousticians just plugging in 
values and hoping for the best, attaching ML 
calibration to such models exacerbates this risk even 
further. If such a model were to violate physical 
realism (by overfitting to measured data or going 
beyond reasonable acoustic values for a specific 
surface) the acoustician would likely never notice, as 
the human element has been largely removed from the 
loop. Given this danger it is worth considering 
whether alternative software approaches to auto-
calibration could include the human in calibration 
process while handling some of the “busy work” 
inherent in multiple iterations of the simulation. 
 
3 Methods 
 
3.1 Toolchain 
 
The heuristic auto-calibration procedure is being 
implemented in Python 3.10.2 via the 
Pyroomacoustics library [17]. This package contains a 
computationally efficient C++ implementation of the 
Image-Source Method, which provides the speed 
necessary to efficiently generate and compare room 
impulse responses. The current implementation of the 
calibration runs in linear time complexity and is 
dependent on the distance between the measured and 
expected JND’s. The Pyroomacoustics ISM model is 
being implemented using a maximum order of five 
first reflections at a sample rate of 8000Hz on an M1 
Max MacBook Pro with 32 gigabytes of RAM. The 
implementation uses NumPy and Matplotlib  
 

 
 
 
respectively for numerical calculation and visualization 
of the 3D room model [20-21]. 
 
3.2 Procedure 
 
In order to recursively calibrate the room’s predicted 
metrics to measured ones, two composite JND 
parameters are created representing the Just- 
Noticeable Difference between measured and expected 
T30 and C50 values. The base cases for T30  
and C50 measurements used in the algorithm’s control 
flow are in alignment with perceptual benchmarks 
discussed by Christensen, Koutsouris and Rindel (5% 
for T30, 1 dB for C50) [13]. Initially, 2D wall positions 
are defined as a list of Cartesian coordinate pairs 
representing plane dimensions for the room which 
undergo a linear extrusion process similar to CAD 
software [16]. Source and receiver positions are defined 
in 3D space once the model has been extruded. 
 
 

 
Fig. 1: Geometric model of an example room used for 

algorithm testing. 
 

Once extrusion has been performed, initial multiband 
absorption coefficients are assigned per wall ID for 
every plane in the model. Unlike previous auto-
calibration algorithms that have used percentages to 
limit their search spaces [13], this heuristic algorithm is 
proposed to be used in conjunction with an aggregated 
material database that includes mean and standard 
deviation measurements for each octave frequency 
band. Instead of the acoustician having to determine the 
bounds of the algorithm, a dataset with measured 
variance could be used, allowing for absorption 
coefficient deviation to be empirically derived as 
opposed to being estimated by the acoustician. 
Currently, a prototype database that includes variance 
for a single material is being implemented in the current 
algorithm. 
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Fig. 2: Diagram showing the heuristic algorithm’s 

control flow. 
 
 
Since speech clarity and reverberation time are 
inversely correlated, global T30 calibration is 
computed first in the calibration procedure, and then 
C50 is optimized for a single source-receiver 
combination. Acoustic coefficients of all planes are 
either incremented or decremented until the JND 
target is reached. For C50, a plane prioritization 
algorithm is used which calculates the relative 
importance of planes in the model based on 
source/receiver distance and the area of the plane. This 
process is accomplished by calculating the 
perpendicular distances to each wall for every 
source/receiver and then setting them proportionally to 
the area of the current wall index. 
 
For a given surface n the priority score relative to a 
position in the room is given by: 
 

𝑷𝒏 = 𝑺𝒏
𝒓𝒏

                                        (1) 
 
where Sn is the surface area for surface n and rn is its 
perpendicular distance to the source or receiver 
position being considered. As surfaces close to either 
the point or receiver tend to be important for local 
acoustic parameters like C50, two rankings are  
 
 

 
 
 
computed for each source-receiver combination: one 
ranking of near/large surfaces to the source, and another 
for near/large surfaces to the receiver.  
 
4 Results 
 
In order to test the control flow of the algorithm, test 
scenarios were generated that forced different 
calibration tasks (e.g. recursively edit T30 once C50 
had been calibrated). For testing, a room with the 
geometry of Fig. 1 was generated and acoustic 
coefficients were assigned based on the JCW 
Absorption Coefficient table [19], representing a room 
with a plasterboard ceiling, concrete floor, and plaster 
walls. Initially when calibrating, material variance was 
disabled. 
 

Material 125 250 500 100 2000 4000 
Walls 0.01 0.02 0.02 0.03 0.04 0.05 
Floor 0.01 0.01 0.02 0.02 0.02 0.02 
Ceiling 0.15 0.11 0.04 0.04 0.07 0.08 

Fig. 3: Initial absorption coefficients of the room. 
 
The robustness of the algorithm was tested with target 
T30 and C50 values of 0.18 and 0.6. It is important to 
note that these initial parameters do not reflect realistic 
amounts of material density deviation. During 
calibration, 81 total adjustments were executed until the 
JND thresholds were reached. The total calibration 
process was executed in just under 9.5 seconds. 
 
 

 
Fig. 4: JNDRT and JNDC50 values with respect to 

calibration round number  
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After calibration, the following absorption coefficients 
were recorded: 
 

Material 125 250 500 100 2000 4000 
Walls 0.27 0.28 0.28 0.29 0.4 0.31 
Floor 0.81 0.81 0.82 0.82 0.82 0.82 
Ceiling 0.95 0.91 0.84 0.84 0.87 0.88 

Fig. 3: Absorption coefficients of the room after 
autocalibration. 

 
It is clearly seen that the algorithm provides a 
satisfactory solution that aligns to perceptual JND 
metrics, however the material density deviation 
expressed in Fig. 3 is unrealistic. Successful 
implementation of the programmatic concepts behind 
the material deviation management have been tested, 
however the values themselves are arbitrary. To fully 
test the extent to which this heuristic process can 
calibrate including material density, more research 
needs to be performed to reach non-arbitrary material 
deviation measurements that can be applied to the 
testing scenario. 
 
5 Conclusions 
 
Overall, this express paper presents a different 
methodology and procedure to calibrate GA models 
based on algorithmically simulating plane 
prioritization and global RT adjustment steps done by 
an acoustician. Its intended use is to replace the 
traditionally laborious process of manual acoustic 
calibration through aligning reverb time (T30) and 
speech clarity (C50). In addition, this paper describes 
how a statistical database that includes mean and 
standard deviation measurements for acoustic 
coefficients is implemented to act as lower and upper 
limits for material density deviation within the model. 
 
5 Future Work 
 
Significant work needs to be done to further 
parameterize the relationship between area, distance 
and other highly significant parameters that further 
help isolate the highly correlated T30 and C50 
measurements. As expressed in other auto-calibration 
projects [13], it is crucially important to manage the 
range of coefficient possibilities that each material can 
deviate from during calibration in order to present 
realistic solutions. Although it is more time 
consuming, more scenario testing using real spaces is 
needed to test the limitations of the program. Included 
in more real-world testing is the development of the 
materials database which could be used during testing 
to ensure physically realistic solution generation. 
 

 
 
 
Furthermore, the example database structure can be 
developed to not only be used as a calibration reference 
for this algorithm, but for others, including the 
aforementioned genetic and other meta-heuristic 
algorithms [13, 15]. This would allow absorption 
coefficient deviation to be empirically derived as 
opposed to being estimated by the acoustician. 
 
Algorithm optimization should also be done to improve 
the increment/decrement step. Currently a linear step 
algorithm is being used however a predictive algorithm 
or more advanced control flow algorithm like a PID 
algorithm would be more optimal for runtime [18]. 
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