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ABSTRACT

Effective communication with multiple conversational partners in cocktail party conditions can be attributed to
successful auditory scene analysis. Talkers unconsciously adjust to adverse settings by introducing both verbal and
non-verbal strategies, such as the Lombard effect. The Lombard effect has traditionally been defined as an increase
in vocal intensity as a response to noise, with the purpose of increasing self-monitoring for the talker and intelli-
gibility for conversational partners. To assess how the Lombard effect is utilized in multimodal communication,
speech and gaze data were collected from four multi-talker groups with pre-established relationships. Each group
had casual conversations in both quiet settings and scenarios with external babble noise. Results show that fifteen
out of sixteen talkers exhibited an average increase in loudness during interruptive speech in all conditions with-
and without external babble noise when compared to unchallenged sections of speech. Comparing gaze behavior
during periods of a talkers own speech to periods of silence showed that the majority of talkers had more active
gaze when speaking.

1 Introduction

The ability to communicate with multiple talkers in a
noisy environment is one of the most powerful skills of
the human auditory system. The capacity to distinguish
between relevant and non-relevant auditory informa-
tion, referred to as auditory scene analysis [1], solves
what is known as the “cocktail-party problem” [2][3].

A typical consequence of this problem is the Lombard
effect, initially conceptualized as an increase in vocal
intensity as a nonspecific response to noise. Studies in

effects of masking have identified speech features that
change with acoustic noise, such as the fundamental
frequency (F0), vocal intensity, an increase in duration
of vowels, a shift in energy frequency bands and for-
mant center frequencies (predominantly F1 and F2),
and spectral tilting [4][5]. This is defined as Lombard
speech. A study by Weber et al. showed that while the
concept of a "full" Lombard effect exists, it is difficult
to determine a significant increase of all parameters for
different talkers reading sentences out loud in anechoic
settings [5].
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However, recent studies have redefined the Lombard
effect as to include the visible speech content, such
as articulatory facial movement and lip reading, and
further extending it to involve gesture kinematics as
well, relabeling it as a multimodal phenomenon [6].

When several talkers are engaged in the same conver-
sation, the main mode of verbal interaction involves
the rapid exchange of turns at talking [7]. When this
happens, a transfer of who has “the floor” occurs, dur-
ing which the acoustic signals produced by the parties
involved might partially overlap or be separated by a
silent gap [7][8][9]. In terms of modality, having access
to visual information from a talker’s face has shown
to enhance intelligibility [10], as well as the ability to
resolve perceptual ambiguity in a noisy environment.
Specifically for conversational turn-taking, both talkers
and listeners produce non-linguistic visual cues indicat-
ing the end of a turn [11][12].

Mehra et al. describe four principal issues required
to computationally solve the cocktail-party problem,
namely: speaker separation, noise suppression, signal
enhancement and intent detection [13]. They propose
using an augmented reality (AR) platform and "mul-
timodal, Ego-centric sensing", in which a network of
sensors, visual data and biofeedback would enhance
natural signals. They present the notion of context-
aware systems that not only assess the surroundings of
the user, but also the users own behavioral state and
engagement within a conversation, in order to adapt
and adjust to different situations.

This paper investigates conversational dynamics in
multi-talker settings, by assessing the role of Lom-
bard speech as a salient conversational cue within this
context. More specifically, a hypothesis is formed as
to whether or not Lombard speech occurs during at-
tempted or successful floor transfers and if these occur-
rences change with increased babble-noise levels. Fur-
thermore, initial steps are taken towards understanding
gaze behavior in multi-talker conversations, with the
purpose of discerning patterns that could relay listener
intent. The motivation behind the research presented
in this paper, is to move towards informing context
aware speaker separation- and signal enhancement sys-
tems, of the relevance of auditory objects within an
augmented environment - real or virtual. To examine
this, 160 minutes of multi-talker conversation across
four different groups and three different levels of exter-
nal noise were recorded. During these sessions, head

orientation and gaze behavior was tracked, and speech
was recorded for each individual talker.

2 Methods

2.1 Participants

A total of sixteen participants were recruited for the ex-
periment. The total sample size was comprised of eight
male and eight female participants, aged between 22
to 61 (M = 31.8, SD = 11.7). All participants reported
having no hearing impairment or diagnosed hearing
loss, nor any visual impairment or uncorrected vision.
All participants were collected in groups of four using
a purposive sampling method, by interviewing one par-
ticipant from each group (totaling four groups) and by
introducing the criteria for participation, after which
three other members would be selected by the afore-
mentioned participant. The criteria for participation
were: 1) Participants must be native Danish speakers.
2) Participants in each group must have engaged in a
group conversation with the other members of their
respective group. 3) Participants must not have diag-
nosed hearing loss, cognitive disability or suffer from
vision-impairing afflictions.

2.2 Questionnaire

A two-part questionnaire was administered to partic-
ipants before and after the experiment. The first half
of the administered questionnaire, which participants
filled out prior to the experiment, related to a "close-
ness" construct adopted from the "Inclusion of the
Other in the Self" (IOS) pictorial task [14] (see Fig.1).
Each participant rated their perceived closeness to each
other individual group member on a scale from one to
seven, for a total of twelve observations per group.

Fig. 1: IOS Pictorial Task.
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The second half introduced two constructs, with the
first including questions relating to the perceived natu-
ralness of the conversations and the second relating to
the dynamics of the conversations.

2.3 Setup

2.3.1 Hardware

Four Tobii Pro Glasses were used to track gaze behav-
ior in addition to recording each wearers view through
the head mounted camera, positioned at the bridge of
the nose. Eight infrared Vicon Vero cameras were po-
sitioned around the inside of an elevated truss-frame.
These were used to track head orientation and posi-
tion via optical tracking of unique passive marker sets
placed on each of the Tobii glasses. Four Genelec
8010A loudspeakers were placed equidistant around a
round table, inside the tracked area. Four DPA 4066
Omnidirectional headset microphones were used to
record the speech from each participant. All loudspeak-
ers and microphones were routed into an RME Fireface
802 audio interface. All audio was played back and
recorded at a sampling rate of 48 kHz.

2.3.2 Software

The Tobii Pro Glasses 3 Controller application, native
to the glasses, was used to label and initiate recordings
from the camera. Vicon Nexus data capture software
was used to collect data from both the Vicon cameras
and the Tobii glasses in the native environment. The
Datastream SDK was used to simultaneously capture
data from Vicon in Matlab. Matlab was used for all
data analysis and post-processing (see 2.6).

2.4 Conditions and Stimuli

A within-subject test design was utilized, with three
determined conditions, namely:

• Quiet - with no external stimuli

• 55 dBA babble noise

• 65 dBA babble noise

Fig. 2: Experimental setup. The eight shapes along
the wall represent the position of each optical
tracking camera.

The babble noise for the two respective conditions
was presented over the four Genelec loudspeakers lo-
cated 1.5 meters from the centre of the table, between
each participant. The noise level was calibrated using
a sound level meter at the centre of the table. Fig-
ure 2 shows the experimental setup with loudspeaker-,
camera- , microphone-, and participant position around
the table. The table had a diameter of 1 meter. The bab-
ble noise employed was created by using a frequency
shaped babble noise generator with a pink-like spec-
trum [15]. Speech shaped noise from Dantale II [16]
was initially tested at levels varying from 50 dBA to
80 dBA as the speech-competing noise for individual
conditions; Similarly, Ambisonics recordings of cafe
environments were tested at the same levels. Speech
shaped babble noise was ultimately deemed the most
ideal for the study as it would reduce the likelihood
of participants being able to discern context or be dis-
tracted by transient occurrences in the soundscape. Fur-
thermore, the noise would allow for "dip listening", i.e.
the advantage gained from momentary improvements
in the signal-to-noise ratio (SNR) of an acoustic scene
[17]. Each of the four channels of noise were uncorre-
lated, as to avoid comb-filtering due to head-movement.

2.5 Procedure

The participants were asked to sit down prior to the
beginning of the trial and were assigned a number, de-
pending on their seat position. After choosing their

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15–17
Page 3 of 10



Dourado et al.

seat, the participants were escorted to different areas
where they were asked to fill out the first half of a
questionnaire. Each participant was re-seated and was
fitted with a microphone and a pair of Tobii glasses,
connected by an HDMI cable to a receiver placed un-
derneath the table. The chairs were placed on markers
denoting the placement of chairs during calibration of
the system. Each participant was seated across another
individual and approximately equidistant to their rela-
tive left- and right conversational partners. They were
allowed to move around the chair, as to the extent al-
lowed by its fixed position, i.e. leaning back, forth
and sideways was possible and allowed. Before initi-
ating the first recording, participants were made aware
that the test conductor would appear multiple times to
change between conditions and use the clapperboard
to time-align the session. Participants were instructed
to simply engage in casual conversation as they saw fit
and were encouraged to continue any ongoing conver-
sation between conditions. Figure 3 shows the seating
arrangement and equipment.

Fig. 3: Seating arrangement and equipment. Clapper-
board (middle of the table), four Tobii glasses,
and DPA microphones (on the chairs).

All participants were subjected to each condition in the
following sequence: Quiet (just four talkers with no ex-
ternal noise) - 55 dBA of external babble noise - 65 dBA
of external babble noise - Quiet(2) (Quiet condition re-
peated), with each condition lasting 10 minutes, for a
total of 40 minutes of recorded data. Every 10 minutes,
a test-conductor would enter the room to change be-
tween conditions and start new recordings. For each
initialization of a new condition and subsequent record-
ings, a clapperboard with tracking markers was used
to create an impulse for alignment of audio, gaze and
motion data. No formal breaks were introduced and

participants were encouraged to keep the conversation
going. However, sometimes a partial re-calibration was
advised by the system and was thus performed between
conditions. Participants remained seated throughout
the recordings, and no equipment was rearranged or
unequipped during the period. After the trial, the par-
ticipants were instructed to fill out the second part of
the questionnaire.

2.6 Post-processing

A normalized least mean squares (NLMS) algorithm
was used to remove crosstalk from the four recorded
microphone signals to obtain the individual speech sig-
nals for each of the four participants [18][19]. The
noise signals played back over the loudspeakers were
provided to the NLMS algorithm to remove the external
babble noise from the recorded microphone signals.

The average of the top peak of the four impulses
recorded from the clapper was labeled as time zero
for the audio recording.

A voice-activation detection (VAD) algorithm was then
used to label segments of active speech from the signal
of each talker, resulting in a binary representation of
speech onset and offset [20]. To validate the VAD, a
signal containing only white Gaussian noise was mul-
tiplied with the VAD envelope and added to a copy
of the respective speech signal, as to allow for visual
inspection by plotting the spectrogram of the summed
signal. This was done for all signals and incorrectly
labeled segments were manually corrected.

Gaze vectors and head positions for each of the partici-
pants were streamed from Nexus to Matlab using the
Datastream SDK provided by Vicon. The sample rate
of the gaze vector and head position data was 200 Hz.
At first, outliers in the gaze vectors were removed using
a Hampel filter with a window of 16 adjacent samples
on either side of the affected sample resulting in a slid-
ing window of 33 samples. Samples deviating more
than three standard deviations from the window me-
dian was replaced with the window’s median. Secondly,
missing samples were replaced by a linear interpolation
using the two adjacent samples. Lastly, the gaze vector
was smoothed using a one pole bi-directional recur-
sive filter with a forgetting factor of 0.9. The outlier
removal, interpolation, and smoothing was done in the
euclidean space for each of the dimensions separately.
The relative gaze angle to the other participants was
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computed from the participant’s processed gaze vector
and the vector from their head position to the other
participants.

The optical markers on the clapper were used to es-
tablish the point in time when the two arms would
meet up and return to their closed positions, in order to
determine time zero for the relative gaze angles.

A classification of who the participants were looking
at was created by truncating the relative gaze angles to
each of the other participants. This truncation threshold
was set to 15 degrees, resulting in a total angle of 30
degrees for each other participant. The head covers
approximately 12 degrees for a person with a head
diameter of 18 cm at a distance of 150 cm.

The speech signals recorded from the microphones
were calibrated using the blocks of speech for each in-
dividual (see section 2.7). The average level difference
of the other microphones to the microphone attached
to the individual of interest was found by using the
speech signals recorded in the quiet condition, before
the NLMS algorithm was applied.

2.7 Measures

The perceived loudness in phons was computed for
each of the individual speech signals using the ISO
532-1 standard (Zwicker method) [21]. The perceived
loudness was computed every 2 ms.

Based on the VADs, two categories of speech segments
were created for each group, condition, and participant.
Firstly, the blocks of speech where only one partici-
pant was talking were identified for each individual.
The perceived loudness was then extracted for each
of these blocks at every 50 ms and labeled as unchal-
lenged speech (US) segments; This was done by taking
the average of 25 consecutive samples of the perceived
loudness. Next, the blocks of speech were located for
each individual, where at least one other participant
was talking for the same duration. Similarly, the per-
ceived loudness was then extracted for these blocks and
labeled as interruptive speech (IS) segments instead. To
reduce incorrect labeling of backchannel responses as
IS, only blocks larger than 600 ms were used.

The number of jumps in the participant’s gaze were
counted in the speech- and silence blocks (i.e. non-
speech blocks). The duration of speech and silence was
also found for each block.

Two measures were then computed, namely: the num-
ber of gaze jumps while talking per minute, and the
number of gaze jumps while not talking per minute.
Based on these two measures, a new measure was com-
puted as the ratio of these. This was named the gaze
jump ratio.

3 Results

3.1 Self-assessment

The closeness scores of all four groups were collected
and are shown in Figure 4.

Fig. 4: Closeness scores of the individuals groups.

Using a Kruskal-Wallis one-way ANOVA, it was found
that the perceived closeness between groups differed
significantly (χ2 = 9.52, p = 0.0232). A post-hoc pair-
wise comparisons test showed that groups 4 and 2 were
found to differ significantly (p< 0.05).
The items from the second half of the questionnaire are
reported below. All responses (n = 16) are included for
these. The scale ranges from 1 (strongly disagree) to 5
(strongly agree).
"I often have conversations with the group as a whole"
(M = 4.56, SD = 0.73). "I was very aware of my sur-
roundings during the conversations" (M = 2.81, SD =
0.98). "I was very aware of the equipment I was wear-
ing during the conversations" (M = 3.31, SD = 1.14).
"I was very aware that the conversations were being
recorded" (M = 2.18, SD = 0.83). "The conversations
felt unnatural" (M = 1.19, SD = 0.40). "I had to ex-
ert myself to take part in the conversation" (M = 1.25,
SD = 0.45). "I was careful not to interrupt the others
when they were talking" (M = 2.87, SD = 1.09). "The
conversations were superficial" (M = 1.25, SD = 0.58).
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Fig. 5: An example of a conversation described by the perceived loudness and participant gaze: Group 3 in the
55 dBA babble condition from 382 seconds to 408 seconds. The top from rows show the four participants
speech segments indicated in green, orange, blue, and pink. The perceived loudness is displayed on top
of the speech segments. The perceived loudness ranges from 65 phons to 100 phons. The bottom four
rows show the participants’ gaze segments indicated in the corresponding colors of their fellow group
participants. The relative gaze angle is displayed on top of the gaze segments. The gaze angle ranges from
0 degrees to 15 degrees.

3.2 Conversational Dynamics

Figure 5 shows speech activity and gaze behaviour and
highlights different behavior and phenomena, such as:

• 382 seconds - 387 seconds: Conversation without
crosstalk and a floor transfer from P1 to P3.

• 387 seconds - 395 seconds: P1 (green) has the
floor. P1 has many gaze jumps while the oth-
ers have few and are looking at the main talker
throughout the duration.

• 395 seconds - 401 seconds: A floor transfer is
attempted by P4 (pink). P1 increases their vocal
intensity and so does P4, resulting in crosstalk
with increased loudness.

• 401 seconds - 406 seconds: P1 yields their turn
and transfers the floor to P4. The vocal intensity of
P4 subsequently decreases along with an increase
in gaze jumps during this duration.

3.3 Lombard Speech

A linear mixed model was used to determine the sta-
tistical significance of noise on loudness, for each par-
ticipant. Results showed a significant main effect of

noise for fifteen out of sixteen participants (p <0.05),
for both 55dBA and 65dBA babble noise, consistent
with the traditional Lombard effect. A participant with
varying significance across conditions was participant
1 in group 3, between Quiet and Quiet(2) [F(3,1911)
= -4.819, p<0.001], 55dBA babble and Quiet(2) [F(3,
1911) = .734, p=.256], 65dBA babble and Quiet(2)
[F(3, 1911) = 2.152, p<0.001].

The perceived loudness between US segments and IS
segments, for each participant and each condition were
compared. Results showed that the majority of com-
parisons (64 total) featured higher average values of
loudness for speech during IS segments than for US seg-
ments (98.44% for mean, 93.75% for median). 84.38%
of US-IS comparisons have significantly different me-
dians, with a 95% confidence interval (CI). For these
comparisons, the difference in phons between the US
CI upper bound (UB) and IS CI lower bound (LB) were
calculated for each condition and participant. The sec-
ond condition (55 dBA babble) had the largest average
difference between US (UB) and IS (LB) (M = 5.07,
SD = 2.66), with Quiet(2)(M = 4.29, SD = 2.80), Quiet
(M = 3.63, SD = 2.17), and 65 dBA babble (M = 2.24,
SD = 1.44), in order of largest to smallest.

A Wilcoxon Signed Rank test comparing US and IS
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Fig. 6: Violin plots showing the perceived loudness
for participant 1 in group 3. The perceived
loudness is shown for the four conditions in
green, orange, blue, and pink. The unchal-
lenged speech segments are shown on the left
and the interruptive speech segments are shown
on the right. The star (*) inside the boxes de-
note the means and the black lines represent the
medians. Notches depict the confidence inter-
val of the median.

segments revealed that loudness scores were signifi-
cantly higher for 89% of comparisons (p<0.05). An
example from one of the comparisons where IS is sig-
nificantly higher than US can be seen for participant
4 in group 4: Quiet (Z=-8.938, p<0.001), for 55dBA
babble (Z=-8.302, p<0.001), 65dBA babble (Z=-7.740,
p<0.001) and Quiet(2) (Z=-4.747, p<0.001).

Figure 6 shows the distribution of US and IS segments,
and their perceived loudness in phons for one partici-
pant and all conditions. Figure 7 shows the distribution
of US and IS for all participants.

3.4 Gaze Behavior

Figure 8 shows gaze jumps while talking per minute
as function of gaze jumps while not talking per minute
for all groups, conditions, and participants. It can be
seen that all participants, except participant 3 in all
groups, and participant 4 in group 1, have more gaze
jumps while talking compared to when they are not
talking. Figure 9 shows the gaze jump ratio as function
of talking time per condition. Similarly, it can be seen
that all participants, except participant 3 in all groups,

and participant 4 in group 1 have a gaze jump ratio
larger than one, meaning they have more gaze jumps
while talking compared to when they are not talking.
Furthermore, it can be seen that some participants (i.e.
participant 4 in group 4) was talking for more than 50 %
of the time (more than 5 minutes of the 10 minutes) and
others less than 10 % of the time (i.e. participant 1 in
group 3). It should be noted that Participant 1 in Group
4 in Condition Quiet(2) had a Gaze Jump Ratio of 2.53
for a talking time of 0.85 minutes.

4 Discussion

The closeness scores between each group very clearly
demonstrated a bias of perceived closeness for some
groups. This is likely due to the method of acquiring
participants and the constellation of specific groups.
Groups 1 and 2 consisted of more than one nominal
category, e.g. group 1 was made up of four friends
with two of them being married. Group 2 included four
friends with two participants being twins. Group 3 in-
cluded four friends who knew each other from college
and group 4 was comprised of four family members. A
future consideration would be to require that all partici-
pants have the same labels within each group.

The main reason behind the purposive sampling was
to assess some of the potential advantages (and disad-
vantages) of more naturalistic conversations and group
dynamics that could occur in a more ecologically valid
context. One assumption was that in order to cultivate
the observed increase in vocal intensity during crosstalk
and conversational turn taking, pre-established and fa-
miliar group dynamics would make participants more
comfortable with interrupting other conversational part-
ners and streams of speech. Another assumption was
that it could reduce the effect that the laboratory setting
and equipment could have on the interaction within
the groups. Nonetheless, the trade off between the ex-
clusion of a conversational task meant that there was
nothing to ensure equal floor time for every speaker.
Had this been the case, the data sets would likely have
been more balanced, but at the potential cost of reduc-
ing external validity or diminishing salient cues that
would be relevant for study. The results are similarly
limited by the ethnographic approach, as it would be
logical to assume that conversational behavior (both
gaze and speech-related) differ from culture to culture,
and between generations of people. Thus, data from dif-
ferent populations would be required to produce more
generalizable results.
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Fig. 7: The perceived loudness for all groups and participants. Groups in rows and participants in columns starting
in the top left corner. The same order of colors is used denote the different conditions, as seen in Fig. 6.

However, for the groups that were represented in this
study, results showed a general trend towards increased
loudness for US segments with increased noise levels,
consistent with the classical Lombard effect. Com-
paring US and IS segments, the majority of talkers
exhibited a general increase in loudness in all condi-
tions. Due to the test design, the unbalanced datasets
meant that a few comparisons should be omitted when
assessing trends, as the lack of speech in one condition
would result in too little data (e.g. figure 7, group 4,
participant 1). This is the results of an active session
with very little uninterrupted speech or a passive ses-
sion with little speech interaction whatsoever. It is also
highly likely that the interaction is speaker dependant
or that longer sessions of conversation would change
the speech and gaze behavior. Lastly, manual labeling,

more complex models and more data are required to
robustly emphasize and validate the occurrence and
categorization of conversational Lombard. While this
study has predominantly focused on intensity as a way
to represent Lombard speech, F0 estimation, harmonic-
to-noise ratio (HNR), and SNR could be included for
a more dynamic categorization. Lower level labeling
of the conversational dynamics, such as categorizing
floor transfer offsets and overlaps, backchannel utter-
ences, and interpausal units (stretches of speech with
silence less than 180ms) would only advance the ability
to assess turn-taking desire or listener intent.

The same can be said for the categorization of gaze
behavior. Most participants were shown to have had
more active gaze when talking than when listening - a
clear example of this was shown for one group in figure

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15–17
Page 8 of 10



Dourado et al.

Fig. 8: Gaze jumps while talking per minute as func-
tion of gaze jumps while not talking per minute.
The symbols are numbered to indicate each of
the participant in the groups. The solid black
line shows an equal amount of gaze jumps
while talking and not talking.

5. More categories for gaze as a function of speech (in
this case, talking or not talking) would likely lead to
more conclusive results. With that said, it also comes
down to the design of the study, as dividing less than
a minute of speech (see figure 9) into several smaller
subdivisions leaves a very small sample size where any
inferences made will be difficult to support.

5 Summary

In this study, four groups of people with pre-established
relationships engaging in casual conversation were stud-
ied. A within-subject design was used and each group
experienced a total of forty minutes of conversation
with ten minutes allocated for each condition, namely:
Two quiet conditions with no external noise and two
noisy conditions featuring babble noise at 55 dBA and
65 dBA, respectively. Gaze-behavior, head orientation,
position, and audio was recorded and collected for each
participant. Audio was processed to reduce crosstalk
from other talkers and a VAD algorithm was used to la-
bel segments of active speech for each individual talker.
The relative gaze was thresholded and time aligned
with the processed audio, resulting in segmented rep-
resentations of speech and gaze for each participant.
Comparing US- and IS segments, results suggest a
trend towards increased loudness during interruptive
speech in both conditions with- and without external

Fig. 9: Gaze jump ratio as function of talking time
per condition. The symbols are numbered to
indicate each of the participant in the groups.
One outlier is omitted from the figure, namely
participant 1 in Group 4 in Condition Quiet(2)
had a Gaze Jump Ratio of 2.53 for a talking
time of 0.85 minutes.

babble noise. Comparing gaze behavior for periods of
own speech and periods of silence for each participant,
a proclivity towards more active gaze behavior for the
person speaking could be seen for most participants,
but not all.
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