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ABSTRACT

Understanding perceived room acoustical similarity is crucial to generating perceptually optimized audio rendering
algorithms that maximize the perceived quality while minimizing the computational cost. In this paper we present
a perceptual study in which listeners compare dynamic binaural renderings generated from spatial room impulse
responses (SRIRs) obtained in several rooms and positions and are asked to identify whether they belong to the
same space. The perceptual results, together with monaural room acoustical parameters, are used to generate a

prediction model that estimates the perceived similarity of two SRIRs.

1 Introduction

Robust externalization of virtual sounds is crucial in
augmented reality (AR) applications, as it allows a
seamless blending between sounds from the real world
with those binaurally reproduced by wearable devices.
Multiple factors such as the quality of the direct sound
cues, reverberation, and head movements can all con-
tribute to the achievement or collapse of an externalized
sound image [1]. In particular, in AR applications, it
is important to ensure that the reverberation properties
of the virtually generated sounds match the acoustics
of the listening space, in order to prevent an external-
ization collapse due to acoustic room divergence [2].
While it is known that a pronounced mismatch between
the reverberation time of real and virtual sounds results
in externalization collapse [3], it is possible to signifi-
cantly reduce the spatial resolution of salient reflections
and reverberation without affecting the perceived plau-
sibility of virtual sounds, even when compared against
real sources [4]. Additionally, room divergence can be

overcome partially by continued exposure [5]. Thus, a
better understanding of the perceived acoustical sim-
ilarity between rooms is necessary in order to guide
perceptually optimized AR simulations with the goal of
generating transfer-plausible acoustical percepts [6, 7].

The problem of perceived room acoustical similarity
has been addressed in the past in various studies. For
concert hall acoustics, the perceptual fingerprint of a
room is determined by the early response [8], while
using different musical passages renders such compar-
isons difficult [9]. With regard to small rooms, stud-
ies in variable acoustic rooms suggest that it is rela-
tively easy for listeners to identify various room condi-
tions [10, 11]. Additionally, in an attempt to quantify
listener expertise, von Berg et al. [12] conducted a bi-
naural room impulse response (BRIR) identification
test with manipulated responses compared against a
reference. However, to our knowledge, no studies have
been conducted in which multiple rooms have been
compared and it is thus unknown what the acousti-
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cal phenomena are that govern the similarity of small
rooms.

The goal of the present work is to lay the foundations to-
wards a perceptually inspired prediction model of room
acoustical similarity. While other works attempted to
identify rooms based on audio features [13, 14], these
approaches solve a classification problem, and thus
assume that there is an exact match for the evaluated
room within a dataset. Our goal is different, in the
sense that we aim to predict the perceived acoustical
similarity between two arbitrary rooms that are not nec-
essarily part of a common dataset before nor the system
has seen before. This would result in multiple appli-
cations in the broader extended reality (XR) domain,
as the simulation and rendering process of new spaces
could be greatly simplified by using the renderings of
perceptually equivalent rooms.

In Section 2 of this paper, we present a user
study in which we evaluate the perceived similar-
ity between 11 different spatial room impulse re-
sponses (SRIRs) extracted from a large-scale database,
presented binaurally over headphones with two degrees-
of-freedom (2DoF) rendering. In Section 3, the percep-
tual results, together with monaural room acoustical
parameters estimated from the entire dataset, are used
to generate a small-scale non-linear model that is able
to predict the probability that two SRIRs are perceived
as belonging to the same room.

2 Methods

In this section we present a perceptual experiment that
evaluates the perceived similarity between different
measured rooms (cf. Section 2.4) presented with dy-
namic binaural rendering (cf. Section 2.3). The goal of
the experiment is two-fold: first, to determine whether
listeners are consistently able to discriminate between
different rooms and / or form cohesive perceptual room
mappings (cf. Section 3.1); and second, to utilize this
data to implement data-driven perceptual similarity pre-
diction models for room acoustics (cf. Section 3.4),
applicable to XR scenarios.

In order to carry out the perceptual experiment we uti-
lize a portion of a large-scale room acoustical dataset
(cf. Section 2.1). The dataset’s room acoustical param-
eters (cf. Section 2.2) are used to perform a dimension-
ality reduction of the parameter space (cf. Section 3.2),
in order to identify meaningful relationships between
standard parameters and overall perceived similarity
(cf. Section 3.3).

Table 1: Room categories and distribution of the uti-
lized internal measurement dataset.

Category Rooms SRIRs

# % # %
Bathroom 1 1.1 6 0.3
Cafeteria 3 33 272 114
Classroom 1 1.1 16 0.7
Cozy room 13 14.3 108 4.5
Game room 1 1.1 54 2.3
Hall 2 22 76 32
Kitchen 1 1.1 14 0.6
Living room 13 14.3 196 8.2
Lounge 1 1.1 70 2.9
Meeting room 32 35.2 907 38.1
Office 13 14.3 128 54
Open office 8 8.8 355 14.9
Shop 2 2.2 176 7.4

2.1 Room measurement dataset

An internal room acoustical dataset composed of
2378 multichannel SRIRs, measured in 91 different
rooms, is utilized in the study. Multiple source and / or
receiver configurations are present in each room. A
summary regarding the categories of the measured
rooms and their distribution are provided in Table 1.

Measurements were done with a seven-channel open
microphone array of 10 cm diameter, with a center om-
nidirectional microphone and six omnidirectional mi-
crophones arranged in orthogonal pairs, as in [4]. The
central microphone is a Earthworks M30, while the
rest are DPA 4060s. This array configuration is well
suited for auralization using the Spatial Decomposition
Method (SDM) [15].

The source is an omnidirectional Briiel & Kjcer
Type 4295 which exhibits an increasing on-axis directiv-
ity above 1 kHz. Compared to a directional loudspeaker
oriented towards the receiver, the used source presents
slightly more pronounced excitation of ceiling reflec-
tions and attenuated direct sound at high frequencies.

2.2 Room acoustic parameters

For the entire dataset we computed a set of standard
monaural parameters in octave bands up to 4 kHz and
below as described in ISO 3382:2009 [16] from the
central microphone of the utilized measurement array.
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Fig. 1: Distribution of monaural room acoustic parameters T30 (top left), EDT (top right), C80 (bottom left) and
DRR (bottom right) showing average (black lines) and median (white circles) values, evaluated in six octave
bands of all individual measurement points (dark gray) and averaged within each room (light gray).

The parameters are reverberation time (T30), early de-
cay time (EDT), clarity (C80), and definition (D50).
Additionally, we computed direct-to-reverberant ra-
tio (DRR), which, although not included in the ISO
standard, is a highly relevant parameter for distance
perception in reverberant environments [17].

The distributions of standard monaural room acoustical
parameters for all the measurement points and aver-
aged across rooms are presented in Figure 1. The vast
majority of rooms in the dataset correspond to small
rooms, with T30 generally between O and 1 s, and an
average of 0.4 s at mid frequencies. Note as well that
the distributions of the parameters differ slightly when
grouping RIRs into rooms, due to the different number
of measurements in each space and some parameters
being highly position dependent, i.e., DRR.

In this study we decided to restrict our investigations
to the relationship of standard monaural parameters
and perceived similarity, although it is well known that
ISO 3382 parameters are often insufficient to fully de-
scribe the acoustics of small rooms [17, 18]. In follow
up investigations we plan on including other monaural,
binaural, and spatial parameters.

2.3 Binaural rendering

The generation of the BRIRs used for auralization in the
listening test was performed using the BinauralSDM
method [4, 15]. The SRIR analysis is performed us-
ing the Spatial Decomposition Method Toolbox' [15],
while the rendering portion is achieved using an opti-
mized version for binaural reproduction in the Binau-
ralSDM toolbox? [4]. In the present study we utilized
RTMod+AP equalization to address the known prob-
lems of SDM rendering related to reverberation whiten-
ing and late reverberation artifacts’. Furthermore, the
spatial information related to the early reflections and
reverberation was quantized to 50 points corresponding
to a Lebedev grid, as in [4].

"https://www.mathworks.com/matlabcentral/
fileexchange/56663-sdm-toolbox

Zhttps://github.com/facebookresearch/
BinauralSDM

3Note that the quality of the RTMod+AP equalization is highly
dependent on the quality of the reverberation time estimation, which
tends to be less accurate in settings with very low reverberation. In
some extreme cases, we decided to bypass the equalization.
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The head-related impulse responses utilized for the ren-
dering correspond to a Neumann KUI100* [19] dummy
head. The range and resolution of each BRIR set were
—90° to +90° and 2° for the horizontal plane, and —50°
to +50° and 5° for the vertical plane, rendered in a reg-
ular grid. The orientation (0°, 0°) is thereby aligned to
the estimated direction-of-arrival of the direct sound
from the source. For brevity, we address a single BRIR
in the remainder of the paper when referring to the
whole set of related BRIRs generated from a SRIR.

The late reverberation was rendered statically, corre-
sponding to the head orientation (0°,0°) and using a
mixing time of 80 ms in all cases. Considering that all
the rooms used in the experiment correspond to envi-
ronments with relatively short reverberation times, the
chosen mixing time is expected to be well above the
perceived mixing time [20].

The real-time rendering for dynamic binaural playback
was implemented in Max/MSP, using the same ren-
dering engine described in [4]. Head-tracking was
implemented using a Supperware® head tracker. The
dynamic rendering was done in 2DoF, i.e., the tracking
of yaw and pitch head movements. Informal evalu-
ation revealed that the motion-to-sound latency was
not perceivable. The headphones used for playback
were Beyerdynamic DT-990 Pro equalized using FIR
minimum phase filters® [19] matching the headphone’s
model.

Given that all of the BRIRs used in the study corre-
sponded to different positions and/or rooms and thus
presented different time-energy profiles, it was nec-
essary to equalize for the perceived loudness of the
stimuli. We equalized all the responses by matching
the A-weighted RMS level of the direct sound and early
reflections for the frontal head orientation.

2.4 Perceptual experiment

The main objective of the listening test was to inves-
tigate the perceptual similarity of various rooms in
an attempt to understand what parameters contribute
the most to creating a perceptual mapping or internal
representation of an acoustic space. To this end, we

“https://zenodo.org/record/3928297/files/
HRIR_FULL2DEG.sofa

Shttps://supperware.co.uk/

Shttps://zenodo.org/record/3928297/files/
HPCF.zip

Table 2: Description of rooms / positions utilized in
the perceptual evaluation. The selection was
based on acoustical and room size variety, as
well as similar source-receiver-distances. The
decisive criteria for each room are marked in

bold font.

Room Room arezzi Source .dist. T30500HZ,2}(HZ

inm in m ins
Bathrooml 7.6 1.04 0.96
Cafeterial 126.5 1.22 0.72
Cozyl 6.6 1.24 0.22
Meetingl 28.6 1.38 0.42
Meeting2 36.9 1.00 0.72
Meeting3_a 24.6 4.31 0.39
Meeting3_b 24.6 1.13 0.40
Meeting3_c 24.6 1.38 0.39
Meeting3_d 24.6 1.60 0.39
Officel 4.4 1.22 0.31
Office2 20.9 1.09 0.51

evaluated 11 different measurements, for which the
dataset SRIRs, the utilized rendering scripts as well as
the generated BRIRs are made publicly available’.

As shown in Table 2, four BRIRs corresponded to the
same room Meeting3, although measured at different
distances, positions and orientations. This room repre-
sents an average-sized meeting / living space with rep-
resentative sound absorption and diffusion. The other
conditions were chosen at a similar source-receiver-
distance in rooms based on their similarity (Meet-
ingl) and small differences (Meeting2, Office2) towards
Meeting3; as well as to represent extreme cases of the
entire measurement dataset for the lowest / highest
room size (Officel, Cafeterial) and average reverbera-
tion time (Cozyl, Bathrooml), respectively.

A number of 22 subjects (mean age 35 years) partic-
ipated in the experiment i.e., after the results of two
subjects were excluded (cf. Section 3.1). The experi-
mental setup was identical for all participants, whereby
three subjects completed the test remotely, while the
rest participated on site. The participants were allowed
to adjust the reproduction level to a comfortable level
during the training phase. Around 60% of the subjects
reported to have at least some experience with similar
listening experiments in the context of spatial audio.

"https://github.com/facebookresearch/AVAR_
2022_RA_Similarity
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Fig. 2: Screen capture of the graphical user interface
used in the perceptual evaluation.

Prior to the experiment, listeners were introduced to
the test by completing a variable number of trials with
the presence and assistance of the experimenter. Once
listeners reported that they were comfortable with the
setup and had an appropriate understanding of the task,
the actual test would begin. Additionally, listeners
were instructed to perform natural head movements
during the test in order to explore the direction depen-
dent aspects of the reproduced spaces and to enhance
externalization.

The experimental task was implemented as a two al-
ternative forced choice (2AFC), in which participants
were presented with a source signal convolved dynam-
ically with two different BRIRs and were asked to re-
spond “Yes” or “No” to the question “Are both sources
located in the same room?”. Further clarification was
provided for the task, specifying that sounds did not
need to be identical nor located at the same positions,
but they should reply if they thought both sources had
been recorded in the same room. The listeners could
freely switch between the two presented room condi-
tions with the source signal being continuously aural-
ized and repeated. Both stimuli needed to be heard
before the buttons to select a response would be en-
abled. Once a response had been entered, it could not
be edited. A screenshot of the experiment interface is
presented in Figure 2.

Two different source signals were investigated: a loop
of drums and an excerpt of male speech. Combined
with all the possible stimuli comparisons, this resulted
in a total of 110 trials without repetitions (55 room com-
parisons x 2 source signals). The average completion
time was 24 minutes, with the shortest and longest com-
pletion times being 10 and 37 minutes, respectively.

3 Results

3.1 Perceptual evaluation

For every unique condition (the combination of BRIR
pairs and one of the two source signals), we average
the binary responses from all included participants to
obtain a similarity score p; € [0, 1], which we also re-
fer to as mean perceptual ratings. The results of the
perceptual experiment are displayed as similarity ma-
trices in Figure 3. The general trends regarding the
similarity scores seem largely independent from the
kind of source signal, except in some specific cases,
and suggest that listeners are consistently able to iden-
tify similar spaces. Upon a preliminary data analysis
we discarded the data from two subjects, as their re-
sults showed no significant performance to distinguish
BRIRs from the same vs. different rooms.

The four BRIRs corresponding to the same room (Meet-
ing3) report high perceived similarity values (mean
score .75, min score 0.50, max score 0.88), which
suggests that, despite differences in source and receiver
positions, listeners are consistently able to separate po-
sition and room dependent acoustical phenomena. The
room Meetingl was included for its similar acoustic
properties (cf. Table 2) and was consistently identi-
fied as the same as Meeting3 (mean score 0.73, min
score 0.39, max score 0.96). Rooms with minor devi-
ations in terms of room dimensions and/or frequency-
dependent T30 values, e.g. Officel, Office2 and Meet-
ing2, were still rated as similar in some cases but with
much less consistency.

The room Cafeterial was consistently perceived as
highly similar to Office2 (mean score 0.69) and Meet-
ing2 (mean score 0.73) due to their similarities in ap-
parent reverberation at the listening position, seemingly
rendering large differences in room size as perceptually
irrelevant. Finally, the rooms Cozyl and Bathrooml
were consistently perceived as being very different
from each other and the rest of the rooms, due to their
unique reverberation signatures (smallest and largest
T30 values, respectively. A specific case that seems
dependent on the played content is the comparison of
Cozyl and Officel, with these rooms being rated as
highly similar for the drums signal (mean score 0.83),
but highly dissimilar for speech (mean score 0.25).

Although initial exploration of the relationships be-
tween the perceptual ratings and the room acoustical
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Fig. 3: Mean perceptual ratings (similarity scores) expressed as percentages for the source signals speech (left) and
drums (right). Comparisons between different measured positions in the same room (marked with blue
squares) and some selected combinations in different rooms present high similarity scores.
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Fig. 4: All measurement points in our SRIR dataset plotted by their factor values, colored by the type of room.
2D projections of the 3D are added for demonstration of possible separability between room types.
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parameters revealed clear relationships, it is not prac-
tical to explore all room and parameter relationships
without reducing the dimensionality of the data.

3.2 Factor analysis

In order to reduce the dimensionality of the room acous-
tical data we performed a factor analysis (FA) with
three factors and used a VariMax rotation to subse-
quently compute the factor loadings, as shown in Ta-
ble 3. The total explained variance of the three factors
is approximately 80%. Factor 1 (explained variance
around 44%) is mostly composed of contributions from
all parameters at mid frequencies except DRR. The con-
tributions to Factor 2 (explained variance around 22%)
are mostly from DRR at all frequencies. It is reason-
able to assume that in the evaluated dataset the varia-
tions in DRR are quasi orthogonal to those of all the
other parameters, since within the same room DRR can
vastly vary depending on the position, while other en-
ergetic parameters are generally more uniform across
the space. Finally, contributors to Factor 3 (explained
variance around 14%) are C80, D50, and EDT at low
frequencies. Note as well that in the case of Factor 1
and Factor 3, the contributions of C80 and D50 are
positive, while EDT and T30 present negative load-
ings. This is explained due to the generally inverse
correlation of these two parameter groups.

A similar analysis was conducted by Cerd4 et al. [21].
Although in their study the room acoustical parame-
ters are different, some important similarities can be
observed. Factor 1 — the one reporting the highest ex-
plained variance — is mostly composed of monaural
mid frequency parameters (including T30, EDT, and
C80, among others), as in our case. The main differ-
ence are Factor 2 and Factor 3, which are composed
of parameters that we did not include in our analysis
i.e., spatial parameters as well as bass ratio (BR) and
strength (G), respectively. Additionally, in our case
we included parameters in individual frequency bands,
while only averaged single values were used in [21].

Figure 4 shows all SRIRs in the dataset against the three
resulting factors from our analysis, colored by their as-
sociated room type (cf. Table 1). Visual inspection
suggests that categories of rooms are likely separable
by non-linear methods that operate on the factor data
and suggests scope for important future work involv-
ing automatic estimation of room properties based on
selected impulse response measurements. We propose
to investigate this idea in the future.

Table 3: Explained variance and factor loadings for
each of the acoustical parameters. Factor load-
ings > |0.7| are marked in bold font.

Parameter Factor 1  Factor 2  Factor 3
Explained variance 0.44 0.22 0.14
C801251, 0.22 0.23 0.84
C80r50 1 0.41 0.36 0.65
C80500H2 0.78 0.29 0.38
C801kHz 0.84 0.27 0.27
C80rxH; 0.86 0.23 0.21
C804kHz 0.87 0.23 0.21
C80500Hz—2kHz 0.88 0.26 0.28
D501251, 0.13 0.34 0.72
D502501, 0.31 0.43 0.55
D50500Hz 0.71 0.41 0.28
D50 k2 0.79 0.41 0.23
D50;xH, 0.82 0.39 0.20
D504 k11, 0.84 0.38 0.17
D50500Hz—2kHz 0.83 0.41 0.23
DRR 251, 0.10 0.78 0.22
DRRys50H; 0.16 0.83 0.22
DRR5p0Hz 0.18 0.90 0.20
DRRy, 0.26 0.91 0.18
DRRyyH, 0.31 0.90 0.19
DRRyyn, 0.30 0.89 0.18
DRR500Hz-2kHzZ 0.27 0.93 0.19
EDT754, —0.17 —-0.24 —0.78
EDTys0n, —-0.36 —-0.32 —-0.59
EDTs5001; —0.75 —0.28 —0.29
EDTu, —0.84 —0.28 —0.24
EDT)xu, —0.87 —0.24 —-0.19
EDTykn, —0.89 —0.25 —0.18
EDT500H2—2kHz —-0.90 —0.25 —0.24
T30125H, —-0.26 0.02 —0.48
T30250H: —0.52 —0.05 —0.44
T30500Hz —0.80 —0.06 —0.33
T30 kHz —-0.89 —0.08 —-0.22
T302kH; —0.89 —0.06 —0.14
T304xH, —0.85 —0.07 —0.14
T30500Hz—2KkHz —-0.92 —0.06 —0.17

3.3 Combination of FA and perceptual results

We next attempt to quantify the contribution of our
individual factor loadings (cf. Table 3) to the percep-
tual ratings provided by the participants in our user
study (cf. Figure 3). Figure 5 shows the absolute
value of difference between the factors corresponding
to each evaluated condition against the correspond-
ing mean perceptual ratings p;, and compute a linear

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15—-17
Page 7 of 11



Helmholz, Ananthabhotla, Calamia and Amengual

Prediction of perceived room acoustical similarity

R=-0.78, p-val=2.8e-23

R=-0.22, p-val=2.1e-02

R=-0.33, p-val=3.9e-04

=
o

1.0 1.0
Different Room
2 o8 2 oo , g 200l 0,826 same R
5 = 0.8 o o = 0.8 0% a o Same Room
< 06 < ¢} o o < o o«
El T 0.6 T 0.6
§ os H ° =<
o © 04 0 0.4
& 02 & L
c f=4 c
3 00 502 ; § 02
= = =
-0.2 0.0 0.0 1
0 1 2 3 4 5 0.0 0.5 1.0 2.0 2.5 3.0 35 0.0 0.5 1.0 15 2.0 2.5 3.0

Magnitude Difference, Factor 1

Magnitude Difference, Factor 2

Magnitude Difference, Factor 3

Fig. 5: Relationship between magnitude differences for individual SRIR factors and mean perceptual ratings per
evaluated BRIR condition provided by participants. Conditions where the measurements belong to the
same room are marked in blue. Observations are reported separately for each source signal.

best fit line and Spearman coefficient between the two.
The blue / gray circles indicate perceptual ratings pro-
vided for comparisons belonging to the same / different
room, respectively. From the figure, we see that mag-
nitude differences in Factor 1 contribute significantly
to changes in the mean perceptual rating, with addi-
tional contributions from Factor 2 and Factor 3. This
suggests that a simple linear mixed model based on our
factor loadings could be an effective predictor of the
perceptual task. However, we use this information to
go one step further and develop a simple probabilistic,
non-linear model.

3.4 A model to predict perceptual distance

Using the data from our measurement dataset and the
perceptual experiment, we attempt to build a model
that suggests the probability that sources rendered from
two given SRIRs are perceived as situated in a common
room. While a range of non-linear modeling methods
are available for use, we are interested in developing a
model that is reflective of the sources of user response
noise that is likely present within the data, expresses
knowledge of this noise as distributions of uncertainty
that can be sampled for new test cases in future ex-
perimental settings, and that reflects strong domain
intuition which allows for generalizing to new mea-
surements and testing scenarios that are significantly
different from the conditions under which the data was
collected for this work. To this end, we do not assume
that our observations exhibit uniform noise, but rather
as a function of the input space, considering that our
chosen input representation may not be sufficiently ex-
pressive. In other words, we construct a model that
incorporates epistemological uncertainty.

First, as input to our model, we compute a one-
dimensional distance measure that is a function of our
factors. Specifically:

6]

which represents a weighted ¢, distance between the
factors. Here, f{ is the i-th factor value for stimulus “A”
of the two being compared, and A, is a weighting term
that is the normalized value of the explained variance
corresponding to the i-th factor. We compute this mea-
sure for all m = 110 observations in our perceptual
dataset, called X = {d;}"" . The mean perceptual rat-
ings are labeled Y = {y;}7",. We design a model such
that:

y=f(x)+e, 2)

wherein we assume that f is the underlying function
mapping X to Y and is drawn from a Gaussian distri-
bution, and that € models the non-uniform noise in
the data. We introduce a Gaussian Process Regres-
sion (GPR) to model this mapping:

y~ GP (u(x), Ko(x,x)) . 3)

We assume the observations y € Y are generated by
sampling from a Gaussian process with mean function
L (x), and the composite covariance matrix function:

[ — |
212

mean

Ko (x,x') = C+exp <— > +6(x)I. @)
The kernel matrix is a sum of a constant bias term, a
radial basis function, and a heteroscedastic noise kernel
which attempts to learn explicit noise levels for input
points X. This kernel uses a set of inducing points
X, € X to learn a noise model, and then generalizes
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Fig. 6: Mean function and input-varying noise learned
by our heteroscedastic GPR model, plotted
against our randomly split train and test ob-
servations.

it to the rest of the input space via kernel regression,
following [22, 23]. A single entry x; in the final kernel
term can be computed as:

O(x;) = Z {exp (—W)-prpxi}. 5)
Xp; €Xp

noise

The set X, is chosen via a 10-point KMeans cluster-
ing analysis on X [24]. The kernel parameters 60 =
{C 7lmmn,l,,(,,-xe,0')5171,_%.} are learned and optimized to
maximize the log marginal likelihood log(p(Y|X, 0))
using the standard L-BFGS-B algorithm via the SciPy
GPR implementation®.

To evaluate our model, we randomly split our observa-
tions into a train and a test set, consisting of 75% and
25% of the data respectively, and standardize X to have
a mean of zero and standard deviation of one. The ker-
nel parameters are optimized over the train set, and our
test set is compared against the values predicted by the
mean function (x) of the model. Figure 6 shows the
train and test observations against the mean function
and the learned variance. As reported in Table 4, when
the mean function of the GPR is used for prediction, the
model achieves a mean absolute error (MAE) of 0.12,
and a root mean squared error (RMSE) of 0.17. Exam-
ining the variance learned by the model, we note that
the model learns to predict a greater spread in the mean
perceptual rating probabilities for smaller factor dis-
tances than for larger ones; in other words, the model is
less certain about its predictions for SRIRs with highly

8nttps://scikit-learn.org/stable/modules/
gaussian_process.html

Table 4: Benchmark of our model with several other
linear and non-linear models, which operate
directly on the two sets of factor values from
the SRIRs being compared. We report mean
absolute error and root mean squared error
using the models’ predictions on the test set.

Model type MAE RMSE
Baseline 0.22 0.26
ElasticNet Regression 0.23 0.27
Linear Regression 0.16 0.21
Extra Trees 0.13 0.16
Random Forest 0.12 0.15
SVM 0.12 0.14
Gaussian Process Reg. 0.12 0.17

similar room acoustic parameter values, reflecting the
nature of the experimental data.

As a benchmark and a validation for our hand-tuned
input function d, we train several other standard linear
and non-linear machine learning methods on the same
data partition. These models operate directly on the
two sets of factor values as input, instead of using the
input function d. We also include a comparison against
an uninformed baseline predictor that outputs only the
median values of Y. We provide the resulting MAE
and RMSE values for comparison in Table 4. We find
that our model performs comparably to the other bench-
marks, with the added benefit that sampling the model
at a particular value d; provides a probabilistic estimate
of the epistemological noise. In the future, we intend
to use this model to design specific perceptual cases
using selected measurement points that correspond to
the regions of the greatest uncertainty, and update the
model with additional perceptual data as it is acquired.

4 Summary and conclusions

In this paper we presented a perceptual study in which
we investigated the perceived acoustical similarity of
several rooms reproduced with dynamic head-tracked
binaural audio (BRIRs available for reference’). More-
over, we conducted a factor analysis on the acoustical
parameters computed from a large-scale room acous-
tical dataset to reduce the dimensionality of the data.
Finally, we used the perceptual ratings together with
the results of the FA to implement a Gaussian Process
Regression model for the prediction of perceived room
acoustical similarity.
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While we are not releasing the full room acoustical
dataset at the moment, we conclude from our inves-
tigations that such data may allow for the following:

e Listeners are consistently able to identify that
played stimuli correspond to the same room, even
if measured positions are not the same. Moreover,
certain rooms present consistently high perceived
similarity. The results are largely independent
from the used source signal (speech or drums).

e The FA conducted on the room-acoustic dataset
reveal that three factors account for 80% of the
variance in the data. The main contributors to
these factors are mid frequency parameters (T30,
EDT, C80, D50), DRR, and low frequency param-
eters (C80, D50, EDT), respectively. This partially
confirms previous results from the literature [21].

e Factor 1, accounting for 44% of the explained vari-
ance in the room parameters, is strongly correlated
with the perceptual ratings.

e Our proposed GPR model is able to predict percep-
tual ratings with a mean absolute error of 0.12 (rel-
ative to our mean perceptual observations which
lie in the range O to 1).

In future work we plan to continue with further data
collection for room conditions with small differences
in their acoustical parameters, in order to provide our
model with more information in the more ambiguous
region and to increase the potentially limited gener-
alization arising from using a reduced room dataset
in the tests. Additionally, we plan on incorporating
other room-acoustical parameters, including monau-
ral parameters such as strength (G), bass ratio (BR),
brilliance (Br), spectral centroid (f;) or echo density
profile [25, 20]; as well as spatial parameters such
as lateral energy fraction (JLp), late lateral sound
level (L;); or binaural parameters such as interaural
cross-correlation (IACC) or predicted binaural col-
oration (PBC) [26], for early and late parts of the
SRIRs / BRIRs respectively. Additionally, since the
dataset contains SRIRs, we will have the possibility
of exploring more complex spatial parameters, such as
the (an)isotropy of the late reverberation [27] or front /
back / lateral relative energy [28].

Finally, we plan on implementing multiple versions of
our model, suitable for different sets of measurement
data and analysis, e.g. monaural RIRs, BRIRs or other
forms of SRIRs.
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