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ABSTRACT

This paper examines how perceptually driven objective metrics found in the speech enhancement and separation
literature react when adding handling noise to speech corrupted with environmental noise. Identifying sensitive
metrics will inform us which metrics are appropriate for the development or evaluation of speech enhancement
techniques when dealing with handling noise. Using an in-house synthetic dataset and paired sample tests, we
examine how nine different perceptual metrics behave on audio mixtures containing both handling and background
noise. We show that eight of them react to handling noise but only when the handling to background noise power
ratio is over a specific threshold which we identify using logistic regression.

1 Introduction

As its name suggests, handling noise is extraneous
sound introduced to a microphone recording due to
inappropriate microphone handling. Examples of han-
dling noise include unintentionally tapping on the mi-
crophone mesh or rubbing on the user’s clothes in the
case of lapel microphones. In various ways, it differs
from sound caused by the user’s environment, referred
to as background or environmental noise. Handling
noise tends to be very short in duration, spanning a
couple of milliseconds. Environmental noise will have
a more varied duration, from a couple of milliseconds
if caused by individual events in the user’s surround-
ings to spanning the whole recording. Additionally, it
might be desirable to keep environmental sound in the
recording as ambience while handling noise is usually
undesired and should be removed.

Speech Enhancement and Separation methods exist to
improve the quality of a speech recorded in a noisy en-

vironment. Those usually are developed by minimizing
or maximizing an objective measure, called a metric,
assuming that a significant change in this metric cor-
responds to a significant change in the perception of
the quality of the enhanced speech. As humans, we
consider handling noise to degrade the audio quality
more than environmental noise when listening to pod-
casts [1]. Therefore, we would like metrics used in
speech enhancement to reflect that perceptual observa-
tion. This paper assesses the ability of various metrics
found in the speech enhancement and separation lit-
erature to react to the addition of handling noise and
quantify the extent of this ability. The findings will tell
us whether the currently used metrics are good enough
for evaluating enhancement methods that consider han-
dling noise, which is a first step towards developing
new, more appropriate metrics and methods for speech
enhancement. For this reason, we use paired sample
tests to examine several well-known metrics on a syn-
thetic dataset. For the metrics that show differences in
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Metric Val. Eval. Optim.

PEAQ [2] [−4,0] ↑ [3] -
SDR [4] (−∞,∞) ↑ [5, 6] -
WB-PESQ [7] [0,5] ↑ [5, 6]

[8–12]
[6, 10]
[13]

CSIG [14] [1,5] ↑ [11] -
CBAK [14] [1,5] ↑ [11] -
COVL [14] [1,5] ↑ [11] -
STOI [15] [0,100] ↑ [8–10]

[16]
[10, 13]

VISQOL [17] [1,5] ↑ [12] -
MOSNET [18] [1,5] ↑ [19] -
CDPAM [20] [0,1] ↓ [20] [20]

Table 1: Table of metrics and information about them.
The Val. column indicates the range of the
metric, and the arrow next to them indicates
whether a higher (↑) or a lower (↓) value indi-
cates better quality. Eval. shows works where
the metric has been used for evaluation and
Optim. shows works where the metric has
been used in the optimization process.

the presence of handling noise, we calculate the thresh-
old the handling to background noise power ratio must
surpass for handling noise to be detectable.

The rest of the paper is structured as follows: Section 2
introduces the metrics examined in this work. Section 3
gives a summary of existing work. Section 4 describes
the method followed for assessing the metrics. Section
5 discusses results. Sections 6 and 7 discuss the find-
ings and limitations of this study and provide directions
for future work. Finally, Section 8 concludes the paper
with a summary.

2 Objective metrics for speech
enhancement and separation

Speech separation and enhancement methods use met-
rics for two purposes: to evaluate the quality of an
algorithm or to integrate them into the optimization
process when training a machine learning model. Ta-
ble 1 presents the metrics employed in separation and
enhancement tasks and which are designed to correlate
to human perception. Perceptual Evaluation of Audio
Quality (PEAQ) [2] was introduced as a standard for
the rapid evaluation of codecs. It tries to predict the
difference in quality according to the ITU-R five-grade

impairment scale between the degraded speech signal
and a clean reference. Since the impairment scale takes
values between 1 and 5, PEAQ gives values between
0 and -4. It is also suitable for 48KHz sampled audio.
Signal-to-Distortion Ratio (SDR) [4] was introduced in
the Blind Source Separation Evaluation (BSS_EVAL)
package of speech quality metrics for source separation
and measures the energy of the clean signal versus the
energy of the introduced distortions. While it has a
low correlation with perception [21], it is still useful
as a baseline. In this work, the only distortions intro-
duced come from the addition of noise, and therefore
its definition is equal to Signal-to-Noise Ratio (SNR).
Sometimes, variants of SNR (SSNR, SI-SNR) [12] are
also reported. Perceptual Evaluation of Speech Qual-
ity (PESQ) [22] is a perception-driven metric initially
developed for assessing speech quality in telephone
systems. However, it has also been used to evaluate
denoising [5, 8, 10, 11]. Here, Wide-Band PESQ (WB-
PESQ) [7], an extension of PESQ to 16KHz, is used
instead. CSIG, CBAK, and COVL [14] are composite
metrics created by predicting a value for signal dis-
tortion (SIG), background intrusiveness (BAK), and
overall quality and weighting each by the value given
by PESQ. Short-Time Objective Intelligibility (STOI)
[15] is a metric predicting intelligibility in audio record-
ings. The Virtual Speech Quality Objective Listener
(VISQOL) [17] is a metric designed to assess qual-
ity in Voice-over-IP communication. MOSNET [18]
is a neural-network architecture for predicting speech
quality on a Mean-Opinion-Score (MOS) rating scale.
Finally, CDPAM [20] improves upon DPAM [23], a
neural network trained on just noticeable differences
which can be used as a loss function when optimizing
a neural network.

3 Related Work

In this section, we list previous studies connecting han-
dling noise to perception. In [24], the authors use mul-
tiple linear regression to model perceived audio quality
scores from listening tests, using a number of factors.
They found that handling noise is the third most impor-
tant factor for perceiving changes in audio quality after
the presence of environmental and wind noise. The au-
thors in [12] calculate Pearson’s correlation coefficient
between MOS scores and various metrics, including
PESQ, POLQA [25], VISQOL, and SNR. They find
that SNR has the lowest correlation (0.56) and POLQA
has the highest (0.78). They also specify that these
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correlation values are too low to consider that these
metrics are a good representation of the perceptual
impression. In [1], the authors added rubbing and tap-
ping handling noise to three different podcasts and con-
ducted an internet-based psychoacoustic experiment
to quantify how such noise affects the perception of
audio quality. They found that an A-weighted SNR,
with the signal level calculated across the whole signal,
correlated best with perceived changes in audio qual-
ity. They also calculated the threshold where 50% of
the experiment’s subjects could perceive a change in
audio quality at 4.2±0.2dBA. Handling noise has also
been the objective of event detection and denoising
work. In [26], the authors train a decision tree clas-
sifier with MFCC features to identify handling noise.
However, their target classes are handling noise levels,
and their evaluation was done solely on classification
performance with no reported audio quality metrics. In
[16], the authors develop methods based on Recurrent
Neural Networks for removing microphone rustle noise
from recordings, and they evaluate those methods using
SDR and STOI.

4 Method

We aim at evaluating the addition of handling noise
on the scores of the audio quality metrics in Table 1.
Therefore, we calculated these scores for clean speech
corrupted with background noise and clean speech cor-
rupted with both background noise and handling noise.
Then, we compared the scores between the two cases
to see whether they were statistically different under
various conditions and precisely determined those con-
ditions.

Using AUDIOMENTATIONS[27], 1536 noisy mixtures
were created by adding handling and background noise
to clean speech at various SNRs. Half of these mixtures
are speech corrupted with background noise, and the
other half are the same files with handling noise added.
We used 1280 mixtures for the analysis and held out
256 for validation. Each mixture has a sampling rate of
48KHz, which is the standard for broadcasting. The pa-
rameters sampled when generating the mixtures are the
background and handling noise categories, the clean
speech-to-background noise ratio SNR(s,bn), and the
ratio SNR(s+bn,hn), which measures the level of the
background noise added to the clean speech, over the
level of the handling noise. Those parameters can be
seen in Table 2. SNR(s,bn) ranges from -6 to 35 dB.

Parameter Domain

Background noise category {cafe, fan}
Handling noise category {tapping, rustle}
SNR(s,bn) (dB) [−6,35]
SNR(s+bn,hn) (dB) [−6,12]

Table 2: Parameters used to generate the dataset. Each
mixture in the dataset has been generated by
sampling uniformly from the domain of those
parameters. The handling noise category pa-
rameter is sampled only when handling noise
exists in that mixture.

An SNR(s,bn) of −6 dB corresponds to a recording
in a very noisy environment, and 35 dB is typical for
a recording studio. SNR(s+ bn,hn) of -6 and 12 dB
represent respectively very loud and almost inaudible
handling noise. Clean speech was taken from the DNS
Challenge 2021 full band dataset [28]. We only picked
files that did not contain too much silence, to reflect
realistic conditions and because the metric scores can-
not be computed if the target audio is silent. Back-
ground noise was sourced from DEMAND [29] and
FREESOUND1. The majority of handling noise files
were sourced from the dataset in [1]. We discarded four
of them because of the presence of background noise.
The rest of the files came from in-house recordings of
handling noise. Handling noise can be very diverse in
terms of duration and spectral content. We aimed to
cover this diversity as much as possible by selecting
handling noise using different microphones and cloth
types. We added handling noise every 1 to 2 seconds
in the noisy mixtures. We selected 7 female and 10
male clean speech extracts as well as 5 cafe and 4 fan
background noise files. For handling noise, we used
96 tapping and 170 rustle noise files. Among them,
5 tapping and 72 rustle extracts come from in-house
recordings.

To compute SDR, STOI, WBPESQ, and MOSNET,
we use the SPEECHMETRICS library for PYTHON2.
For CSIG, CBAK and COVL, we use the SEMETRICS
PYTHON library 3. For VISQOL4 and CDPAM5, we

1https://www.freesound.org
2https://github.com/aliutkus/speechmetrics
3https://github.com/usimarit/semetrics
4https://github.com/google/visqol
5https://github.com/pranaymanocha/

PerceptualAudio
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use the official implementations. For PEAQ, we use the
implementation of GSTPEAQ [30]. Although the latter
does not pass conformance testing, it is sufficiently
close to the official implementation.

5 Results

We computed the metrics from Section 4 for files con-
taining speech and background noise and the same files
with added handling noise. Figure 1 shows violin plots
of the distribution of PESQ and CDPAM scores for
two ranges of SNR(s,bn) and SNR(s+bn,hn). We ob-
serve that PESQ and CDPAM display very different
behavior. As seen in Figure 1a, the PESQ scores are
affected by the presence of handling noise, especially
for low background noise levels, corresponding to a
high SNR(s,bn). We also observe that for the higher
SNR(s,bn) range, the quartiles of the PESQ scores dis-
tributions are more disjointed when SNR(s+ bn,hn)
values are low. That suggests that PESQ is more sen-
sitive to louder handling noise. However, this obser-
vation does not apply to the lower SNR(s,bn) range.
These findings also stand for all the other metrics, ex-
cept CDPAM. Figure 1b indeed shows that the distri-
bution of the CDPAM scores seems similar indepen-
dent of the presence of handling noise for any range of
SNR(s+bn,hn) or SNR(s,bn). This suggests that this
metric is not very sensitive to the addition of handling
noise. A Z-test, as well as a Wilcox Rank Sum test,
verify that the difference in CDPAM is indeed zero in
both cases (p < α = 0.05). We observe that, for STOI,
CSIG, CBAK, COVL, PESQ, PEAQ, VISQOL, and
MOSNET, the differences increase with the increase
of the Signal-to-Background noise ratio. We refer to
those differences by ∆M, where M is one of the above
metric names. Such an increase is not surprising; if we
take SDR as an example, its difference is given by:

∆SDR = ∆SNR

= log
Ps

Pbn
− log

Ps

Pbn+hn

= logPs− logPbn− logPs + logPbn+hn

= log
Pbn+hn

Pbn
(1)

where Ps, Pbn, and Pbn+hn are the powers of speech,
background noise, and the combination of background
noise with handling noise, respectively. We observe

(a) PESQ

(b) CDPAM

Fig. 1: Split violin plots representing respectively
the distribution of PESQ and CDPAM scores
with and without handling noise for different
SNR(s,bn) and SNR(s+ bn,hn) ranges. Both
SNRs are in dB. The dashed lines in the violin
plots represent the quartiles of the underlying
distribution.

that the difference ∆SDR depends on the power of the
background noise and the power of the combination
of background noise and handling noise. When we in-
crease SNR(s,bn), we either increase the speech power
or decrease the background noise power. The first case
does not affect ∆SDR, as seen from Eq. 1. When
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the background noise power decreases, the ratio in Eq.
1 increases, asymptotically diverging to infinity near
zero. We have found that most of the perceptual met-
ric differences correlate with ∆SDR (Pearson’s correla-
tion coefficient with ∆PEAQ : 0.77, ∆WB-PESQ : 0.86,
∆CSIG : 0.78, ∆CBAK : 0.90, ∆COVL : 0.84, ∆STOI :
0.54, ∆VISQOL : 0.68, ∆MOSNET : 0.57) and there-
fore expect this phenomenon to appear to a degree for
those as well. Given the above observation and Eq. 1,
it makes sense to figure out a relation between Pbn and
Phn where, for each metric, we detect an observable
difference.

We arbitrarily define observable to mean a score dif-
ference of more than 5%. While this threshold should
be more clearly chosen to reflect perception using lis-
tening tests, we leave this for future work. We use the
constant thrM,5% for each of the thresholds, where M
is a metric name. The exact values are presented in
Table 3. We calculate the power ratio of the handling
noise over the background noise that we would need
to have an observable difference for each metric as a
Noise-to-Noise (NNR) ratio NNRM,type = log Phn

Pbn
for

metric M and noise type type. To find NNR, we fit a
logistic regression model for each metric:

log
(

p
1− p

)
= c0 + c1 ·NNRM,type (2)

where c0 and c1 are model coefficients, and p is the
probability of detecting a 5% increase. If we set p= 0.5
(the probability of detecting a 5% increase, half of the
time), we get a threshold for NNR:

NNRM,type =−
c0

c1
(3)

The coefficients and thresholds can be seen in Tables
4 and 5 for tapping and rustle noise. We also validate
our results by showing the accuracy of detecting a 5%
increase in each metric for a held-out dataset of 128
mixture pairs in Table 6. The handling noise dataset
and the data used to calculate the NNR thresholds are
provided in [31].

6 Discussion

Our experiment found that eight out of the nine met-
rics under consideration showed sensitivity to handling
noise addition to various degrees. The ones that exhib-
ited such a sensitivity displayed it only when the power
ratio of the handling noise over the background noise

Metric diff. thrM,5%

∆SDR 1

∆PEAQ 0.2
∆WB-PESQ 0.25
∆C{SIG, BAK, OVL} 0.2
∆STOI 5
∆VISQOL 0.2
∆MOSNET 0.2

Table 3: Thresholds for a 5% value difference for all
metrics except ∆SDR. For ∆SDR, since it can
take any value from (−∞,∞), we arbitrarily
set that threshold to 1 dB.

Metric diff. c0 c1 NNRM,tap

∆SDR −2.2304 0.7593 2.94

∆PEAQ −4.3046 0.2153 20.00
∆WB-PESQ −4.7410 0.2710 17.49
∆CSIG −4.2157 0.2550 16.53
∆CBAK −5.8651 0.3409 17.21
∆COVL −4.0746 0.2715 15.01
∆STOI −3.8453 0.0847 45.39
∆VISQOL −5.6277 0.1625 34.63
∆MOSNET −2.4630 0.0872 28.23

Table 4: Background-to-Tapping noise ratios
NNRM,tap in dB needed for the perceptually-
derived metrics to show a difference. c0
and c1 are the coefficients for the intercept
and variable of the linear regression model.
∆SDR is included for comparison.

exceeded the thresholds calculated in Section 5. We
can also examine this finding in a denoising context:
calculating the score of each metric as we did in Sec-
tion 4 is equivalent to evaluating a very naive denoiser
that does not remove any noise. If we use a metric not
sensitive to handling noise, this hypothetical denoiser
will be rated similarly irrespective of the presence or ab-
sence of handling noise. Since it lets more interference
pass through when handling noise is present, we would
want it to be rated worse. This indifference to handling
noise hinders a correct evaluation of this denoiser’s
performance. We expect to observe the same behavior
for more practical denoisers as well. However, this
requires a study that focuses on denoising. In addition,
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Metric diff. c0 c1 NNRM,rustle

∆SDR - - -

∆PEAQ −4.6376 0.2821 16.44
∆WB-PESQ −2.5935 0.2106 12.32
∆CSIG −0.1802 0.2201 0.82
∆CBAK −2.8434 0.4072 6.98
∆COVL −0.9172 0.2567 3.57
∆STOI −1.8389 0.0921 19.97
∆VISQOL −1.4927 0.1610 9.27
∆MOSNET −1.4147 0.1276 11.08

Table 5: Background-to-Rustle noise ratios
NNRM,rustle in dB needed for the
perceptually-derived metrics to show a
difference. c0 and c1 are the coefficients
for the intercept and variable of the linear
regression model. SDR shows a 5% increase
for rustle noise irrespective of the NNR
value.

Metric diff. Tapping Noise Rustle Noise

∆PEAQ 0.81 0.91
∆WB-PESQ 0.91 0.92
∆CSIG 0.94 0.89
∆CBAK 0.94 0.98
∆COVL 0.97 0.88
∆STOI 0.97 0.69
∆VISQOL 0.92 0.88
∆MOSNET 0.73 0.78

Table 6: Accuracies of chosen thresholds in detecting
a 5% difference in each respective metric for
each noise type.

this sensitivity could be due either to the slight increase
in noise power as a result of handling noise addition
or to the presence of handling noise itself. We did not
quantify the influence of each of these observations on
the metrics scores in our article and leave it for future
work.

We saw that CDPAM did not display a significant dif-
ference which may happen because it has been trained
to detect just noticeable differences and then fails to
evaluate files that are too noisy. The NNR thresholds
we derived for the other metrics are lower for rustle
noise than for tapping noise. We attribute this to the
fact that rustle noise events last longer than tapping

noise events, so they disturb the audio more and give
worse results. We also observed that these thresholds
are similar for the two background noise categories,
suggesting that the background noise category does
not have a significant influence. However, this finding
needs further investigation as only two categories have
been considered. Finally, Figure 1 hints that the metrics
are more sensitive to handling noise addition for a high
speech to background noise ratio.

7 Future work

In [32], the authors examine correlations between
STOI, PEAQ, speech intelligibility, and perceived qual-
ity of speech enhancement, using a listening test fo-
cused on speech recognition. They found that neither
STOI nor PEAQ correlate with the listening test results.
Similarly, [33] tested correlations between listening test
scores and a large number of state-of-the-art objective
metrics in the context of musical signal source separa-
tion. They also did not find correlations with listening
scores, except for a new metric derived from PEAQ
output variables. Possible future work could include
replicating such procedures for the findings in Section
5 in order for them to be validated perceptually. Such a
study will allow us to confirm the NNR thresholds we
found using logistic regression, and evaluate whether
the background noise category influences this threshold
and the degree of that influence. It would also be help-
ful to examine how our thresholds correlate with the
signal-to-handling noise ratio threshold of 4.2dB found
in [1]. A listening test will also determine if rustle noise
is perceptually worse than tapping noise, as hinted in
our experiment, and if handling noise is indeed more
detectable for high speech-to-background noise ratio.
Furthermore, future work could vary the total duration
of handling noise to investigate its influence on the
results and could also include extra background noise
categories.

8 Summary

This work examined the suspicion that metrics devel-
oped to emulate perception can be overwhelmed by
background noise in speech recordings and cannot reg-
ister the presence of handling noise. We examined nine
different perceptually-driven metrics whether that was
the case: PEAQ, WB-PESQ, CSIG, CBAK, COVL,
CSTOI, VISQOL, MOSNET, and CDPAM. We found
that, apart from CDPAM, the rest could register the
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presence of handling noise. However, this ability de-
pends on the power ratio of the handling noise over the
background noise. Logistic regression found the thresh-
olds of the ratios over which handling noise leads to an
observable difference in the metrics, which is different
between Tapping and Rustle noise. We observe that the
ratios for tapping noise are much higher than the ratios
for rustle noise.
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