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ABSTRACT

MP3 audio compression can be undesirable in circumstances where high-quality music presentation is required
and there is a lack of automated, evidenced, and open-source methods to determine this. This study introduced
a new and accessible approach to discriminate between compression levels and identify lossy audio transcoding.
Machine learning classifiers were trained on feature sets of audio analysis statistics, derived from multiple step-wise
re-encodings of compressed audio samples. Two classifiers, a stacked model and a XGBoost-based model, had
comparable accuracies to previous examples in the literature and marketplace (Stacked: 0.947, XGBoost: 0.970,
Literature reference: 0.965, Commercial reference: 0.980). For transcoded samples, which hide compression levels
with post-processing, the new classifiers were less accurate than existing methods. However, all methods were
inaccurate in identifying transcodes where artificial noise was added via the µ-law encoder. A command-line
implementation is available at gitlab.com/jammcfar/kbps_detect_proto.

1 Introduction

MPEG Layer III (MP3) encoding is a widespread
method of lossy audio compression which balances
file size and audio quality. A bitrate of 128 kilobits per
second (kBps) is considered sufficient for many presen-
tation modes. This will have data strategically removed
throughout the audio sample, with a strong emphasis
on removing very high frequencies above 16kHz. How-
ever, there is a demand for less compressed audio with
higher bitrates, especially in circumstances where pre-
sentation on high-end equipment is valued [1, 2, 3].

For any given MP3 file, the MP3 encoding bitrate is
indicated on the file metadata. However, if the MP3

encoding is repeated at a higher bitrate than the current
bitrate of the sample, this will increase the bitrate on the
metadata while retaining the prior compression artifacts
of the lower bitrate (e.g. a 128kBps MP3 transcoded
to 320kBps). This is an example of transcoding, and
this can not only further reduce sample quality though
generation loss, but also disguise the actual quality
to the consumer. This problem has created a demand
for software which can detect lossy audio transcoding.
The challenge here has also been complicated by the
possible application of methods which could reduce
the accuracy of transcoding detection. For instance, µ-
law transcoding can be used to introduce noise into the
upper regions of the frequency spectrum which would
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have been previously cleared by MP3 compression.
Bandwidth extension methods, found in some more
modern encoders, can also replicate elements of lower
frequencies into the upper audible range and confuse
detection methods [4].

1.1 Prior work

An important step in performing audio compression
discrimination has been through applying mathemati-
cal transformations such as the Fast Fourier transfor-
mation (FFT) [5]. Useful products of this approach
are spectrograms and frequency spectrums, that map
time, frequency and signal intensity on to separate di-
mensions. These data types are suitable for training
machine learning classifiers which can discriminate
between compression levels and identify transcoding.
For example, an approach using a Polynomial Support
Vectors Machines (PSVM) model has been used to clas-
sify MP3 compression using frequency spectrum data
above 16kHz [6]. Another approach trained a Convo-
lutional Neural Network (CNN) on MP3 spectrograms
and was also reportedly successful [7]. However, a
challenge in following up an approach employing neu-
ral networks is the requirement for a large dataset of
lossless audio. Despite previous examples in the litera-
ture and on the market, consumers are still limited in
their ability to automatically verify compression levels
in formats such as MP3. Available methods are ei-
ther closed-source, unevidenced or are simply unavail-
able [6, 7, 8, 9]. Challenging these detection methods
by modifying the audio signal to evade detection has
also not been explored.

In this study, a new approach for determining compres-
sion levels was explored which was not dependent on
acquiring a large training dataset. A novel feature gen-
eration process was used to generate training data for
machine learning models. Here, MP3 samples were
subject to transcoding and sound and image analysis
statistics, such as entropy and image degradation, were
derived from these copies. Different methods of pre-
processing were also evaluated in a data mining style
approach.

2 Methods

2.1 Proposed technique

At a high level, this new approach incorporates an addi-
tional round of lossy transcoding and then examines its

Fig. 1: An example of transcoding curves, using the
CatSIM statistic. CatSIM is a β index, which
compares the structural similarity between ma-
trices. In this study, this measure used spec-
trograms as its input. The results shown are
from applying this feature engineering method
on the entire MP3 dataset (n = 508). The lines
are Locally Estimated Scatterplot Smoothing
(LOESS) curves with 95% confidence intervals.

effects on an audio sample of interest. The data removal
by compression algorithms has a much smaller impact
on samples that are already highly compressed (e.g. a
320kBps MP3 sample transcoded to 128kBps will be
subject to much greater data removal than a 160kBps
sample transcoded to 128kBps). This phenomenon
was exploited to create training data for machine learn-
ing classifiers which could then be applied to identify
compression levels in unseen audio samples.

In this feature engineering process, a short MP3 sam-
ple is temporarily transcoded into four commonly seen
bitrates (i.e. 320kBps, 256kBps, 192kBps, 128kBps).
Then, a statistical measure (or index) was taken for
each of these temporary transcodes (e.g. mean, kurto-
sis, entropy). These measurements were then arranged
in sequence, ordered by bitrate, and this data acted as
a set of features for training machine learning classi-
fiers. This set of data can be visualised as a curve,
whose shape would vary depending on the compres-
sion level of the original sample [Fig. 1]. This process
was repeated for a large number of files and different
statistical measures to create the dataset for this study.

This approach to generating data is more complex and
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Fig. 2: Combined frequency spectrums of the 320kBps, 128kBps to 320kBps and µ-law transcoded samples used
in this study, visualised as 2D-histograms. For each set, n = 127. 256, 192 and 128kBps samples are not
shown. The 320kBps MP3 and 128kBps to 320kBps transcode spectrums show frequency cutoffs around
20kHz and 16kHz respectively. The µ-law transcodes have noise added up to 20kHz.

computationally intensive than by simply applying sta-
tistical measures directly to audio samples. However,
this method provides two advantages. Firstly, it solves
the problem of how to normalise the variance between
different audio samples which vary greatly in their au-
dio characteristics. For example, rock music would
generally have a higher average signal than a quiet
acoustic music, which would prevent using measures
such the mean to discriminate a subtle characteristic
such as compression level. The second advantage is
that it allows us to explore the use of statistic measures
which compare audio samples, by using two temporary
transcodes at a time.

For the statistical measures explored, 34 different
indices were sourced from functions found in the
open-source R packages seewave, SPUTNIK and cat-
sim [10, 11, 12]. α-indices, requiring a single au-
dio sample, were applied to each of the temporary
transcodes to form a 4-point curve. β -indices, requiring
pairs of samples, compared each temporary transcode
back to the highest bitrate temporary transcode (e.g.
320kBps vs 256kBps). Many of these measures re-
quired inputs of frequency spectrums or spectrograms
and these transformations were performed as needed.

This research also explored different combinations of
pre- and post-processing which multiplied the size of
the dataset. The first variation transformed the input

audio signal into ghost audio [13]. This involves sub-
tracting transcodes of lower bitrates from transcodes of
higher bitrates, leaving only the difference in compres-
sion artifacts for analysis. In this study, each of the tem-
porary transcodes were subtracted from the 320kBps
version, which also reduced the size of each set of sta-
tistical measures by 1. The second variation was an
attempt at feature reduction and used the slopes be-
tween the ordered statistical measures of the temporary
transcodes as features. These variations produced four
different processing possibilities (i.e. 2 × 2) and in
total, 136 different types of feature sets were used.

2.2 Dataset and software requirements

Music audio WAV files from the MusDB and Med-
leyDB V.2.0 datasets were used as an uncompressed
source (n = 127) [14, 15]1. To form the MP3 dataset,
each WAV file was encoded into 128, 192, 256 and
320kBps versions (n = 508). Note that this was a dis-
tinct step from creating the sets of temporary transcodes
as part of the feature engineering process. Two sets
of 127 transcoded MP3 files were then also created,
originating from the 128kBps files [Fig. 2]. These
were used to evaluate the ability of the classifiers at de-
tecting transcoded samples. The 128kBps to 320kBps

1Data in the MusDB dataset which originated in the DSD100
dataset were manually removed as permission from this source could
not be sought.
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transcode set had the header data of 320kBps files, but
the compression artifacts of 128kBps samples. The
µ-law transcode set encoded the 128kBps files with
the µ-law encoder which added noise up to 20kHz,
followed by a final transcoding to 320kBps MP3. The
main software requirements were the R language, for
data processing and modelling, and ffmpeg for audio
file encoding [16, 17].

2.3 Model training and evaluation

Two different predictive classifiers were evaluated. The
first was a stacked model, which partitioned sets a fea-
tures into submodels. In total, 136 unique submodels
for each combination of statistical measure and pre-
processing method were combined. The second model
used the XGboost algorithm, which was presented with
all available data at once and was used to baseline the ef-
fect of creating submodels using the individual feature
sets. These classifiers were compared with two exist-
ing methods. The first was a PSVM classifier which
was previously described in the literature and recreated
using the studies original hyperparameters [6]. The sec-
ond pre-existing method was the commercial product
Fakin’ The Funk (FTF), which identifies faked audio
files [8].

To evaluate the stacked and XGboost models, nested
five-fold Monte-Carlo cross-validation (MCCV) was
performed with 75-25% splits in the data. This work-
flow was chosen to make better use of the small avail-
able dataset. The PSVM model did not require hyper-
parameter tuning and was trained and evaluated using
unnested MCCV. The stacked model used radial basis
function kernel SVMs (RBFSVM) for all of the sub-
models, and used least absolute shrinkage and selection
operator (LASSO) regression to blend and prioritise the
sub-model predictions. For computational efficiency,
an additional feature selection step was performed at
the start of each outer fold for the stacked model. This
fitted untuned RBFSVM models for each submodel and
selected the best 50, based on their training accuracy.
Since this is an ordinal classification problem, both the
stacked and XGboost models performed regressions
against the file bitrate and the results were rounded to
128, 192, 256 or 320kBps. Further compromises were
made to save on computational resources. Firstly, only
the middle six seconds of each sample were used. Sec-
ondly, only the frequencies above 16kHz were used for
indices which required FFT transformed data as inputs.

This would likely also improve performance, as MP3
compression artifacts are most prevalent in this region.

There were two stages of evaluation. The first evaluated
the different methods abilities to discriminate between
MP3 bitrates. Here, the Stacked, XGBoost and PSVM
results were calculated from the pooled MCCV holdout
sets. Tests of model stability were performed to ensure
the results from the different folds could be considered
equivalent and combined for evaluation. The second
stage evaluated their abilities to identify the original
bitrate of transcoded samples, with the scope limited
to evaluating 128kBps to 320kBps, and 128kBps to
µ-law transcodes. This stage used final models for
the Stacked, XGboost and PSVM classifiers that were
trained on the entire dataset following the first stage.
FTF, unlike the other methods, was an off-the-shelf
product and for both evaluation stages simply analysed
to all available full length MP3 samples using its default
settings.

3 Results

The results of this study are presented in three parts.
The first part compares the accuracies and errors of the
proposed classifiers with the two reference methods
at discriminating between MP3 samples of different
bitrates. This was followed by comparing the accura-
cies of the methods at identifying the original bitrate
of transcoded samples. Finally, feature importance
measures were explored to identify the most important
statistical measures used by the classifiers.

3.1 MP3 compression classification

Tests of model stability for the Stacked, XGboost and
PSVM models showed that the results from the MCCV
folds were generated by equivalent models and could
be pooled for evaluation (see Appendix). Balanced
accuracy was evaluated, since n varied between the
MCCV folds. The stacked and XGboost models re-
turned accuracies of 0.947 and 0.970 respectively. The
reference methods, FTF and PSVM, returned 0.983
and 0.965 respectively. Considering the confusion ma-
trices of the methods, both FTF and the PSVM model
were negatively biased and tended to overestimate the
compression of the samples, while the stacked and XG-
boost models appeared to be more balanced in their
misclassification [Fig. 3]. The stacked model produced
the highest percentage of any error type, where 13.92%
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Fig. 3: Confusion matrices of MP3 bitrate prediction.
Stacked, XGboost and PSVM models results
were pooled from hold out sets. FTF analysed
the MP3 dataset in a single pass. In each case,
n = 508. Accuracies are percentages, with n in
brackets.

of 128kBps samples were misclassified as 192kBps.
The PSVM model made errors with the biggest dis-
tance, where two 320kBps samples were misclassified
as 128kBps.

3.2 Transcode identification

The evaluation of the transcoded MP3 files consid-
ered accuracy as the evaluation metric, as the test data
was only from one class (n=127). For the 128kBps to
320kBps transcodes, the new approach was less effec-
tive than the reference methods. The stacked model
misclassified all samples as either 320kBps (95.3%)
or 256kBps (4.7%), while the XGboost model mis-
classified 21.3% samples as 192kBps. FTF and the
PSVM model had accuracies of 1.000 and 0.923 re-
spectively, with the latter only giving misclassifications
of 192kBps. For the µ-law transcodes, all methods
performed poorly. FTF and XGboost misclassified all
samples as 320kBps. The stacked model misclassified

nearly all samples as 320kBps (95.28%), with a few
exceptions being classifed as 256kBps (4.72%). The
PSVM model had the best performance, but still only
classified 19.69% correctly as 128kBps. The misclas-
sifications were split between 320kBps (77.95%) and
256kBps (2.36%).

3.3 Feature importance

Feature importance scores were derived from submodel
weighting for the stacked model, and internal gain
scores for XGboost. In both cases, these were from the
final models trained over the entire dataset. The most
important statistics used by the primary and secondary
models included CatSIM, cumulative frequency spec-
tra difference and structural similarity [Tab. 1]. Com-
bining the top five statistics from each model some
patterns could be identified. The majority of these
were β -indices (9/10). Different types of data pro-
cessing methods were also favoured, with the majority
being from slope transformed data rather than raw data
(7/10). Ghost data as a pre-processing step did not fea-
ture in the top five features of either model.

Table 1: Top five features for the stacked and XGboost
models, ranked by internal scoring.

Model Measure Score
Stacked CatSIM 0.24

Cumulative freq. spectra dist 0.20
Structural similarity 0.13
Manhattan dist 0.12
Kulback-Leiber dist 0.12

XGboost Cumulative freq. spectra dist 0.45
Kulback-Leiber dist 0.25
Log spectral dist 0.11
Total entropy 0.04
Kolmogorov-Smirnov dist 0.01

4 Discussion

Overall, the evaluation suggests that the new approach
can produce models which are similar in performance
to existing methods at discriminating between MP3s.
Though existing methods currently perform better at
transcode detection, there may be the potential for
this approach to improve with further development.
The results of the stacked model at detecting 128kBps
to 320kBps transcodes was surprisingly poor and it
could be modeling some unknown aspect of this type
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of transcoding. When it comes to µ-law transcoding,
all methods performed poorly. Though the prevalence
of this in the wild is unknown, current methods to not
appear to be robust to the introduction of signal noise
and this is an area that should improved upon. Fu-
ture work should also evaluate the effect of applying
bandwidth extension methods if possible. Whether the
proposed approach is built upon or not, future methods
could incorporate some of the learnings of this study.
A stacked model combining the PSVM model with a
different model based on other statistical measures is
one possibility. Another could build on the PSVM ap-
proach, that uses the slopes between points as a feature
reduction method.

In terms of execution speed, the proposed method is
currently slower than existing methods. Analysing
transcoded samples took the PSVM model ∼3 seconds
per sample, while the XGboost model too ∼26 seconds
and the stacked model took ∼30 seconds. Removing
unimportant features, reducing the number of encod-
ings, and re-writing the code in a lower level language
are among the possible optimisations that would all
help significantly.

In terms of scope, this study was limited by a small
sample size and the number of potential statistical mea-
sures for feature generation. Additionally, the 16kHz
cutoff, which was enforced to reduce computation time
and improve performance, could be challenged in fu-
ture work and may work well when using samples with
naturally little audio data above this threshold. Other
popular lossy encoders such as Advanced Audio Cod-
ing (AAC) and Opus could also be included [1, 18].

5 Summary

In summation, this study developed a new method
for determining the compression levels of MP3 sam-
ples. It can be used to create machine learning clas-
sifiers with accuracies comparable to existing meth-
ods at discriminating between MP3 bitrates, though
it currently appears to be less effective at identifying
transcoded samples. A reproduction of the PSVM
method, an evaluation of a commercial offering, and
challenging these with noisy samples were also ac-
complished in the process. The study was limited
in the scope of its evaluation, but this approach can
serve as a basis for future studies with a larger scope
for evaluating more audio sample types and differ-
ent compression codecs. The evaluated classifiers,

with supplementary information, have been made avail-
able online as prototype command line interface at:
https://gitlab.com/jammcfar/kbps_detect_proto.
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6 Appendix

The MCCV trained models were tested for instability
by conducting a comparison of matched samples (n
= 625). Here, a Mantel-Haenszel Chi-squared statis-
tic was calculated between the different folds for each
model type [19, p. 387 - 394]. Non-significant results
would indicate that the models in the folds would be
roughly equivalent and allow the results of each fold
to be pooled. When setting α at 0.05, for all tested
classifiers, there were no statistically significant differ-
ences found in the ratings of individual samples, by the
different models, between the folds [Tab. 2].

Table 2: Model stability testing for the trained models.

Model Meana n df Qb p
PSVM 0.964 635 4 0.212 0.995

XGBoost 0.970 635 4 0.313 0.989
Stacked 0.947 635 4 0.417 0.981

a Balanced accuracy mean. b Q: Mantel-Haenszel χ2 statistic.
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