
Audio Engineering Society

 Convention e-Brief 656
Presented at the 151st Convention

2021 October, Online

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its presentation,
and the AES takes no responsibility for its contents. All rights reserved. Reproduction of this paper, or any portion thereof, is
not permitted without direct permission from the Audio Engineering Society.

Developing plugins for your ears
Gary Spittle, Michael Lee, and Weiming Li

Sonical, San Mateo, California, USA

Correspondence should be addressed to Gary Spittle (gary.spittle@sonical.ai)

ABSTRACT
We present a new intuitive development platform that allows algorithm developers to put plugins in our ears. The
growing number of advanced audio processing plugins developed for DAWs is enabling highly creative sound
experiences. We explain how plugins for DAWs can be easily ported to small embedded processors used in ear
worn products and other audio devices. This includes signal processing targeting low latency, low power, high
compute and large memory plugins. We describe an open development platform to bring machine learning based
algorithms directly to the end user. This will also give plugin developers access to data streams from additional
sensors and multichannel audio data beyond stereo music streaming. The next generation of hearables for gaming,
music, movies, AR/VR will require processing techniques currently only available to professionals in studios.
These new development tools allow algorithms to be created such that end users can select, download and control
plugins to unlock innovation that fits their individual needs and personal preferences.

1. Introduction
Today’s headphones and other ear worn devices such
as hearing aids and true wireless Bluetooth earbuds,
are becoming significantly more feature rich. The
compute capabilities of other devices we regularly
interact with, such as laptops, gaming consoles,
mobile phones and tablets, provide a strong
increasing trend in capabilities and performance. This
has enabled enormous creativity in software and user
experiences. The same level of efficient compute will
soon be available in hearable devices which serves to
unlock a new wave of innovation.

Our ear devices will do significantly more than be
used for listening to music or making phone calls.
Users will download applications and plugins that
will be customized for the different use cases we
experience during a day. This will include spatial
rendering with head tracking. It will also enable the
processing of ambient sounds in a way that is
personalized and based on each individual user’s

preferences. It will bring new processing algorithms
for gaming and movie content. It will combine the
real world with multiple virtual scenes from many
different sound sources and devices.

The community of audio algorithm developers have
been unable to deliver their plugins directly to
consumers, until now. They typically require
permission from end device manufacturers or are
limited to DAW platforms. User demand for new
technology is converging with our appetite for
immediate downloadable applications, just like we do
with our mobile phones and tablets and other smart
devices.

We are witnessing a platform transition where plugin
developers will be able to deliver their algorithms
directly to the end user’s earphones. This will allow a
user to select plugins for specific use cases during the
day to enhance the way they interact with the real and
virtual worlds, bringing them together into
personalised experiences.

Spittle et al Developing plugins for your ears

AES 151st Convention, 2021 October, Online
Page 2 of 5

This requires a new set of development tools. We are
creating an embedded platform that brings advanced
processing capabilities to wearable devices to enable
plugin developers direct access to consumers. A
complete hardware and software stack provides the
foundation of a development environment that will
enable a rapid migration of professional plugins to
consumer applications. The platform will present
software APIs that map onto traditional plugin
development frameworks such as VST and JUCE. An
embedded operating system, specifically designed for
low latency audio processing for low power
applications, will provide a simple host framework.
The framework will allow multiple plugins to run in
a single platform, fully controlled by the user.

The graphical user interface can be accessed and
controlled by the user from their existing devices,
such as a laptop, mobile phone or tablet. Here they
will select the plugin developer’s GUI that is
connected to the embedded code running in the
wearable device.

We discuss how the simple migration of existing
algorithms will provide a baseline of experiences to
build on for more advanced wearable products. This
will include multiple data streams including local
sensors and multi-channel audio. We explain how the
end user will access plugins and manage their
experiences during a day. No longer will our hearable
devices be fixed in their functions and performance.
We will not be relying on end device manufacturers
to create a feature set that meets our individual needs.
Instead, we will create our own menu of plugins that
we can select and activate, as needed, during the day.

2. Why is it important
Many impressive audio processing algorithms have
been developed for specific applications such as
music compression, audio streaming, speech
enhancements, noise reduction and spatial rendering,
to name just a few. Now there is a growing interest in
machine learning based algorithms with some
astonishing results. It is clear that some of these
processing modules are best placed in the cloud,
others need to run on devices we carry with us and yet
some are most effective if running in, or on, our ears.

Due to latency and data streaming limitations, it
makes sense for many algorithms to process data
locally in the ear device.

Our ears are used for a lot more than listening to
music. The development system will provide a
framework that supports stereo audio processing and
rendering. There are also a number of extensions of a
typical headphone system that can be implemented to
evaluate other types of audio processing algorithms.
For example, this can include the capture and
processing of the sounds around us to provide
augmented hearing. This could bring enhancements
and intelligent control of noise to everyone, not just
those that have hearing loss. The EarOS framework
allows for multiple microphone and sensor data
streams to be passed to the plugin for processing. This
allows for low latency processing of binaural signals
and also the analysis and monitoring of sounds that
the user is exposed to.

This raises a number of technical challenges. Plugins
are generally developed on a computer. Some
systems allow plugins and algorithms to be ported to
an embedded platform or small single board
computer, such as Elk [1] for plugins on hardware and
OpenMHA [2] for hearing algorithms on a
BeagleBone Black [3]. Although these solutions
provide a number of advantages over a laptop for real
world testing it doesn’t represent a real device that an
end user will purchase.

Other platforms use the mobile phone as the
processing host (UTDallas [4]) or have created
development boards based around ARM processors
(Tympan [5]). The intent of the EarOS is to allow
these solutions to make the final step to the ear and
embed their plugins into the ear worn device in
preparation for user download. This will also provide
a useful starting point for developers building on the
open speech platform (OSP) as created by the
University of California, San Diego [6].

Instead, we have identified the need for reference
designs that contain all the electronics of a typical
device in a representative form factor. This enables
plugin developers to build algorithms for a real target
device that closely resembles what a manufacturer is

Spittle et al Developing plugins for your ears

AES 151st Convention, 2021 October, Online
Page 3 of 5

likely to build, or where the plugin developer could
design and 3D print their own form factor.

3. The solution

Figure 1: Sonical system with the EarOS

1. The concept
We have created a wireless audio platform that can
enable all phases of algorithm development from
laboratory research to end user deployment. The
platform is a small form factor, battery powered,
wireless multichannel audio device and
accompanying software. The system, using its real-
time OS and plugin framework, can be easily
configured and dynamically updated via a mobile
companion app enabling fast iterations during
experimentation phases. As previously mentioned,
the goal is for this platform to become widely
available amongst mainstream consumer headphone
related products.

2. System description
The system is comprised of three main components:
a wireless audio embedded system, the EarOS and
audio plugin framework, and a mobile companion
app for controlling the embedded system. Algorithm
researchers and plugin developers will typically
produce and deploy two separate artifacts: the
compiled plugin to be hosted by EarOS on the
embedded device and a compiled software
component hosted by the companion app framework.
The embedded system includes both serial and
Bluetooth interfaces for either wired or wireless
remote control.

3. EarOS
The EarOS is a multi-tasking embedded real-time OS
with audio centric features with primary design goals
to maximize processor utilization, minimize resource
constraints caused by fixed allocation schemes, and
enable add-on and post deployment flexibility. To
achieve this, the underlying system implements a task
scheduling and data delivery mechanism, basic file
management, a hardware abstraction layer, and a
flexible and dynamic audio plugin framework to
realize complex signal graphs. The system supports
down to 1mSec latency and sample rates ranging
from 8kHz to 96kHz without restrictions on either
dimension. Further, logging facilities in the OS
enable metrics and debug information to be gathered
for data analysis.

4. Plugin framework
One of the primary goals of our initiative is to provide
plugin developers and researchers with easy-to-use
tools to deploy and experiment with new algorithms.
We kept the following objectives in mind:
- Make it easy to move existing algorithms and

code to the Sonical platform
- Facilitate the development of mobile companion

components that run both iOS and Android
platforms

- Enable control of the embedded plugins over
standard BLE services (GATT and MIDI)

As we expect many novel plugins to come from the
digital music processing community, we specifically
sought out an approach that would facilitate
developers in bringing their algorithms to our
platform. Within this community, many cross
platform plugin tools exist with many based on the
JUCE framework (others options include VST,
JUCE, Distrho, and iPlug2) [7] [8] [9] [10]. Of these,
JUCE can generate the broadest range of software
components: VST (Win/OSX), AU (OSX/iOS),
standalone apps (Win/OSX/iOS/Android/Linux
(including headless)), and native Android activities
(Android). Because our system separates the control
surface from the DSP and requires generating both
mobile and embedded components, none of these
existing solutions are a direct match for our needs.
However, we have taken inspiration from these cross-

Spittle et al Developing plugins for your ears

AES 151st Convention, 2021 October, Online
Page 4 of 5

platform approaches to fashion our own plugin
development tool chain to produce the requisite
embedded signal processing and companion app
artifacts. SOUL, a recent initiative from JUCE, is
similar in concept, but requires a runtime element on
the embedded device [11]. Yet another system by
Elk.Audio also seeks to facilitate bringing VST
plugins to embedded platforms [1]. The Elk system
which boasts over 500 ported VST plugins, is based
on the RaspberryPi platform and takes advantage of
the headless Linux JUCE exporter.

Underneath the hood, each plugin is instantiated as its
own task. As with many other frameworks, the core
functions required by developers are the initialization,
process, and release functions. Each plugin will be
able to save and restore its own state between power
cycles. Audio and control data is passed between
plugins using the internal messaging system enabling
us to create complex signal graphs and control
schemes. Plugins can receive messages via the serial
interface or BLE paths. The signal chain is assembled
by establishing links between the different plugins
and the entire signal path can be assembled and
disassembled dynamically without the need to pause
or break the audio stream: everything still runs
without interruption.

The EarOS employs both priorities and data flow
systems to schedule plugin tasks. This enables the
system to handle a mixed application environment
naturally; for example, one with data coming from
both sensors and audio subsystems.

5. Example application
As an example, we have deployed the EarOS on a
prototype hardware development platform and
modeled after selected opensource plugins
implementations [12] [13]. The prototype hardware
has the following elements:
- 6in/6out Maxim 98090 codecs
- Nordic nRF52840 BLE
- STM32H7 series processor
- GPIO drivers for handling button events and

lighting
- Drivers for temperature, motion, and other

common sensors

Communication between the hardware and other
control surfaces can take place over a serial COM
interface (desktop) or over BLE MIDI.

The example signal chain implemented on the
demonstration hardware consist of a number of signal
splitters (the internal channel count for this example
is set to 6), a flexible 8 stage EQ section, fractional
delay, and gain elements. The EQ implements a
variety of different filter types (shelf, high/low pass,
parametric, notch, and all/band pass filters). The
fractional delay unit operates on the sample level and
the gain elements include phase inversions. The entire
signal graph operates with 1mSec latency and has
enough headroom to accommodate additional plugins
if needed.

Figure 2: Example signal chain

The companion app is built using JUCE with OSX,
Windows, iOS, and Android targets. The desktop
applications use the serial interface while the mobile
devices use BLE MIDI as the communications pipe.
The embedded BLE midi parser is based on the midi-
message-parser opensource repo [14].

Spittle et al Developing plugins for your ears

AES 151st Convention, 2021 October, Online
Page 5 of 5

Figure 3: Companion app screenshot

It is expected that any production application built for
the platform will enable downloadable plugins via
iOS AU or Android dynamic feature module
mechanisms.

4. Conclusions
Ear devices with in-ear compute are expected to
become an increasingly important part of our
wearable world. In this paper we have presented our
flexible digital audio solution. It seeks to deliver
features absent from current platforms and can
facilitate not only rapid prototyping of algorithms and
contextual experimentation, but eventual deployment
and monetization of audio plugins into the market.
The solution combines a real-time OS with a dynamic
plugin architecture with hardware that can be put into
market ready form factors. Further, the platform can
give researchers access to data streams from
additional sensors to combine with multichannel
audio data. Once deployed onto the device, plugins
and algorithms can be manipulated by a mobile
companion app allowing both researchers and users
to experiment.

References

[1] Elk.Audio, "elk.audio," elk.audio, [Online].
Available: https://elk.audio/audio-os. [Accessed 25
August 2021].

[2] OpenMHA, "Open community platfrom for
hearing aid algorithm research," openmha.org,

[Online]. Available: https://openmha.org.
[Accessed 25 August 2021].

[3] beagleboard.org, "BeagleBone Black -
BeagleBoard.org," beagleboard.org, [Online].
Available: https://beagleboard.org/black.
[Accessed 25 August 2021].

[4] University of Texas, Dallas, "Smartphone-Based
Open Research Platform for Hearing Improvement
Studies," utdallas.edu, [Online]. Available:
https://labs.utdallas.edu/ssprl/hearing-aid-
project/research-platform. [Accessed 25 August
2021].

[5] Tympan, "Tympan is Open Hearing," tympan.org,
[Online]. Available: https://shop.tympan.org.
[Accessed 25 August 2021].

[6] L. Pisha, J. Warchall, T. Zubatiy, S. Hamilton, C.-
H. Lee, G. Chockalingam, P. Mercier, R. Gupta, B.
Rao and H. Garudadri, "A Wearable, Extensible,
Open-Source Platform for Hearing Healthcare
Research," IEEE Access, vol. 7, pp. 162083 -
162101, 2019.

[7] Raw Material Software Ltd., "JUCE," juce.som,
[Online]. Available: https://juce.com. [Accessed 25
August 2021].

[8] Steinberg, "3rd Party Developers," steinberg.net,
[Online]. Available:
https://steinberg.net/developers. [Accessed 25
August 2021].

[9] Distrho, "distrho," sourceforge.io, [Online].
Available: https://distrho.sourceforge.io. [Accessed
25 August 2021].

[10] iPlug2, "iPlug2 - C++ audio plug-in framework,"
github.io, [Online]. Available:
https://iplug2.github.io. [Accessed 25 August
2021].

[11] Roli, "Soul - the future of audio coding," soul.dev,
[Online]. Available: https://soul.dev. [Accessed 25
August 2021].

[12] J. Gil, "Audio-Effects," github.com, [Online].
Available: https://github.com/juandaglic/Audio-
Effects. [Accessed 25 August 2021].

[13] D. Walz, "Frequalizer," github.com, [Online].
Available: https://github.com/ffAudio/Frequalizer.
[Accessed 25 August 2021].

[14] N. Hill, "midi-message-parser," github.com,
[Online]. Available:
https://github.com/BinaryNate/midi-message-
parser. [Accessed 25 August 2021].

