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ABSTRACT

Many communities which are experiencing increased gun violence are turning to acoustic gunshot detection
systems (GSDS) with the hope that their deployment would provide increased 24/7 monitoring and the potential
for more rapid response by law enforcement to the scene. In addition to real-time monitoring, data collected by
gunshot detection systems have been used alongside witness testimonies in criminal prosecutions. Because of
their potential benefit, it would be appropriate to ask— how effective are GSDS in both lab/controlled settings vs.
deployed real-world city scenarios? How reliable are outputs produced by GSDS? What is system performance
trade-off in gunshot detection vs. source localization of the gunshot? Should they be used only for early alerts or
can they be relied upon in courtroom settings? What negative consequences are there for directing law enforcement
to locations when a false positive event occurs? Are resources spent on GSDS operational costs well utilized or
could these resources be better invested to improve community safety? This study does not attempt to address many
of these questions including social or economic questions of GSDS, but provides a reflective survey of hardware
and algorithmic operations of the technology to better understand its potential as well as limitations. Specifically,
challenges are discussed regarding environmental and other mismatch conditions, as well as emphasis on validation
procedures used and their expected reliability. Many concepts discussed in this paper are general and will be likely
utilized in or have impact on any gunshot detection technology. For this study, we refer to the ShotSpotter system
to provide specific examples of system infrastructure and validation procedures.

1 Introduction cameras. One surveillance technology that may be less
known to the general public and is gaining a promi-
nent position are gunshot detection systems (GSDS).
As an example, the ShotSpotter GSDS is currently de-
ployed in about 117 cities in the United States and
worldwide [1]. The goal of GSDS is primarily to de-

Recent years have witnessed an ever increasing pres-
ence of surveillance technologies in various aspects
of our daily lives, ranging from monitoring of email
communication and posts on social media, to location
tracking via smartphones, and city deployed CCTV
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tect, and second potentially locate, gunshot activity
and alert local law enforcement. There are numerous
instances where GSDS technology has helped solve
violent crimes and, thanks to the quick turnaround be-
tween gunshot detecting, raising a system alert, and
dispatching a patrol to the location, has contributed to
saving victims’ lives [2]. However at the same time,
city-operations/legal/scientific communities are raising
questions regarding GSDS associated annual costs, effi-
ciency, reliability, and social impact factors. Arguably,
some of these questions are fueled by limited publicly
available, independent conducted validation studies of
the technology. While GSDS vendors often emphasize
very high system accuracies, it is often unclear how
those values were established and how they will fare in
real-world deployments. For forensic audio analysis,
the domain of automatic speaker recognition has an
extensive community of researchers, industry develop-
ers, private/government sector users, and very struc-
tured publicly available speech corpora and established
testing paradigms with well recognized evaluation met-
rics. Far less, if any, formal testing paradigm(s) exists
for GSDS evaluation. A study by the MacArthur Jus-
tice Center [3] (Northwestern Univ. Pritzker School
of Law’s Bluhm Legal Clinic), analyzed ShotSpotter-
initiated police deployments from July 1, 2019 to April
14, 2021. The study aimed to determine if ShotSpot-
ter’s claimed accuracies would apply in Chicago where
the system is used by 12 police districts, and understand
GSDS impact on Chicago’s marginalized communities.
Analysis of records kept by the city’s Office of Emer-
gency Management and Communications revealed that
over 46,000 system dispatches were initiated in 21.5
months in the Chicago area, of which 10.28 % resulted
in a filed incident report of likely involving a gun, and
86 % lead to no report of any crime at all. While
dispatching patrols more often than needed could be
viewed as precautionary, this comes with its own prob-
lems. In an interview in [4], the spokesperson for the
MacArthur Justice Center pointed out: “It sends police
racing into communities searching, often in vain, for
gunfire. Any resident in the area will be a target of
police suspicion or worse. These volatile deployments
can go wrong in an instant.” The numbers found by the
study seem to be in sharp contrast to those reported in
ShotSpotter advertisement materials. Indeed, this is not
the first time system performance was questioned. In
2017, ShotSpotter’s employee stated in court testimony
[5]: “Our guarantee was put together by our sales and
marketing department, not our engineers... We need to

give them [customers] a number. We have to tell them
something. ...It’s not perfect. The dot on the map is
simply a starting point.”

The goal of this study is to bring to light possible mis-
conceptions surrounding GSDS technology by review-
ing fundamentals of gunshot acoustics and surveying
the history and current state in the gunshot detection
field. Due to the market coverage, in discussion of
typical GSDS architecture and evaluation procedures,
we focus on ShotSpotter system. In a ‘case study’ on
evaluations of GSDS systems, we analyze Mazerolle
et al. [6] which has been cited by ShotSpotter advertise-
ments at least until 2017. We provide a critical analysis
of that study, including discussion of what we believe
to be conceptual and ‘numerical’ issues. Subsequently,
we outline several limiting factors and issues that are
expected to affect any GSDS technology. Some limita-
tions are inspired by Litch and Orrison [7] which eval-
uated the SECURES GSDS. Finally, we compare the
maturity and state of gunshot forensics versus acoustic
speaker recognition forensics. With the latter being
arguably more mature in terms of completed scientific
research, engineering solutions, and evaluation cam-
paigns, we believe that such a comparison may offer
inspiring motivation for the GSDS community in terms
of next steps in developing a reliable and repeatable
data sets for evaluation and calibration, as well as devel-
oping best practices for the field of gunshot forensics.

2 Fundamentals of Gunshot Acoustics
and Forensic Acoustics for Gunshots

The physics of how a sound is produced will impact its
time-frequency signature response and other defining
traits. For gunshot acoustic analysis, firearm design,
including length, diameter and construction of the bar-
rel, as well as the type of ammunition all impact the
acoustic signature of the firearm discharge [8].

From an acoustics perspective, gunshots have an acous-
tic structure consisting of the ballistic shockwave and
resulting muzzle blast which are dependent on gun
type and ammunition used. In general, each gun will
have its own signature in terms of acoustics based on
barrel size/design, type of weapon, and ammunition
employed. Three general broad classes of guns are: (i)
Handgun, (ii) Shotgun, and (iii) Rifle, with resulting
barrel characteristics summarized as follows [9]. Hand-
gun: short barrel with rifling and thick walls to with-
stand high pressures; Like the rifle, rifling in the hand-
gun puts a spiral spin on a bullet when fired, increasing

AES 151st Convention, Online, 2021 October
Page 2 of 10



Hansen, Boril

Reliability of Gunshot Detection Systems

‘oo T T T @ Location / Environment
E Ba“is‘ﬁc i 3 i 3 © Buildings in Area: density, 1-2 story
o Shockwave |\ b homes, high-rise apartment buildings, etc.
] Blast | @ Points of Reflection in area: trees, billboards, etc.,
'%_ l Lo © Environment: Weather (rain, etc.), Altitude, Temp.
E s, 200 B
< [ = @® Acoustic Equipment / Algorithms (GSDS)
2000, — e /Mics: number & placement location of sensors
Time (ms) <% Geometry: location of gunshot relative to ~N sensors
< Algorithm/Tech.: goals of GSDS — (i) detection, (ii) location;
L C “®Gunshot Detection: performance vs gun class, cartridge type,
. ‘3‘ C single/multi shots, gun orientation (true +pos/-neg detection)
——a— “®Non-gunshot Rejection: sounds (true +pos/-neg detection)
T N % Location: beamforming, majority rule, triangulate from 3 or
L= — more sensors; operating threshold?; field calibration?
R

#Number & Placement Mics
Detection Test Calibration
Location Test Calibration

Geometry (x,y,2)

Acoustic ‘

Gun Class

Barrel Physiology
Cartridge logistics
Gun 4 Orientation

@ Gunshot Acoustic Variability

< Gun Class: Handgun, Shotgun, Rifle
< Barrel physiology: length,

wall thickness, rifling, etc.
< Cartridge/: jition: .22 to .46
< Orientation: angle of barre|

(angle n®, down, horiz., up)

L - ilding Density
General City Noise Reflections/Multi-Path
Weather, Altitude, etc. Non-Gun impulse events

Fig. 1: Sources of acoustic variability & issues that
impact system performance for Gunshot Detec-
tion Systems (GSDS): (i) Acoustic Variability,
(>ii) Location / Environment, and (iii) System
deployment — acoustic sensor equipment, algo-
rithms, field calibration/testing.

accuracy and distance; used for firing at stationary tar-
gets; barrel bore made for only one specific caliber of
ammunition. Shotgun: a long barrel, usually with a
smooth bore to reduce friction; barrel’s walls thinner
due to reduced pressures; typically used for shooting
at moving targets in the air; barrel bore made for only
one specific gauge of ammunition. Rifle: long barrel
with rifling and thick walls to withstand high pressures;
rifling puts spiral spin on a fired bullet, increases accu-
racy and distance; used for firing at stationary targets;
barrel bore made for only one specific caliber of am-
munition. Fig. 1(center left) highlights differences in
caliber and barrel size after [9]. In addition firearm
type, the specific cartridge/ammunition used will also
impact the acoustic signature for a gunshot.

Speaker Recognition vs. GSDS: In a manner similar to
the rigorous, structured, and systematic work done for
voice-based forensic speaker verification due to data
mismatch [10], it is possible to establish a similar multi-
space set of mismatch issues that impact the acoustic
signature and performance of GSDS. It is important to
note that while many have explored acoustic analysis
of gunshots [8, 11, 12], there has not been an attempt
to create and summarize those individual and combina-
tion of factors that impact both variability of acoustic
gunshot signatures as well as deployment, calibration,

Table 1: Sound level averages in decibel for various
handguns, shotguns, and rifles (from a study
by Krammer, documented by E.A.R. [13])

CENTERFIRE PISTOL DATA SHOTGUN NOISE DATA

.. 155.0 dB 410 Bore 28" barrel ...
26" barrel ...

. 150 dB
. 150.25dB
156.30 dB

.25 ACP .

20 Gauge 28" barrel ...
22" barrel ...

152.50 dB.
154.75 dB.

12 Gauge 28" barrel ...
26" barrel ...
18 1/2 barrel

151.50 dB
156.10 dB
161.50 dB.

CENTERFIRE RIFLE DATA

.223, 55 gr. commercial load 18 1/2" barrel
.243in 22" barrel ......

.30-30 in 20" barrel
7mm Magnum in 20” barrel ..
.308 in 24” barrel .
.30-06 in 24" barrel
.30-06 in 18 1/2 barre

and testing mismatch which should occur for GSDS
algorithms/systems deployed in the field. Figure 1 is
suggested from this study to span the range of issues
which should be taken into account in understanding
gunshot acoustic signatures and GSDS performance:
(1) Gunshot Acoustic Variability—gun class, barrel phys-
iology, cartridge/ammunition; (ii) Location and Envi-
ronment-buildings in the area, points of reflection in
the area, environment (weather—rain, wind temperature,
altitude); (iii) Acoustic Equipment—type and placement
of sensors, geometry (location and orientation of the
gunshot relative to the sensors). Please note that the
study by Aguilar [8] does consider a number of these in-
dividually but does not suggest a comprehensive space
as illustrated in Figure 1.

From an acoustics perspective, there has been extensive
work on sound levels from various guns. This has been
motivated more for hearing protection for both gun and
hunting enthusiasts as well as the military in order to
protect an individual against hearing loss. For exam-
ple, online hearing data [13] shows the different sound
levels measured by a sound-level meter in terms of deci-
bels for three classes of guns: handguns, shotguns, and
rifles (see Table 1). In this gunfire sound level reference
chart, all measured levels vary from 152—163 dB, which
far exceed the threshold of pain (120 dB for threshold
of pain; conversational speech 60dB; ([14]). It is clear
that the manufacturer of the gun (specific across hand-
guns, etc.), caliber, or length of barrel for shotguns or
rifles, will all impact the acoustic sound level response
in dB.
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| Male Speaker: word is “help” |

Fig. 2: Time-frequency spectrogram comparison of (i)
male speaker producing the word “help” (0-
4 kHz); (ii) Colt 45 single shot (0-20 kHz); (iii)
Glock 27 single shot (0-20kHz). Time in sec-
onds.

Next, it would be reasonable to briefly note time-
frequency structure of the acoustic differences be-
tween gunshots. Fig. 2 compares three different time-
frequency spectrograms which were analyzed from
sample acoustic files: comparison of a (i) male speaker
producing the word “help” (0—4 kHz); (ii) Colt 45 sin-
gle shot (0-20 kHz); (iii) Glock 27 single shot with
a .40 caliber Smith & Wesson cartridge (0-20kHz).
While human speech production shows periodic struc-
ture (e.g., virtual harmonic lines/bars) seen for phones
such as the vowel “e” and semi-vowel “1”, the fre-
quency responses for the two handgun gunshots are
dramatically different. The acoustic signature decay
is reflective of the muzzle blast response. A clear ini-
tial acoustic shockwave is present, followed by muzzle
blast which decays over time. The upper-left plot in
Fig.1 shows that this muzzle blast is approximately
4-5ms in duration, and travels at the speed of sound
(~340m/s depending on altitude/density of air).

Several recent studies have focused on the acoustics
of gunshot analysis and gunshot detection systems for
law enforcement. The study by Maher and Routh [11]
focused specifically on analysis of gunshot acoustics.
The study collected multi-channel acoustical record-
ings of gunshots under controlled conditions for sev-
eral firearms. Their approach was to obtain recordings

with an elevated platform and spatial array of micro-
phones to explore directional recordings of the muzzle
blast. The study only considered waveform acoustic
comparisons as well as peak amplitude pressure varia-
tions. One important area considered was the consis-
tency and repeatability of gunshot sounds. A study by
[15] focused on variations in recorded acoustic gunshot
waveforms generated by small firearms under different
controlled conditions. A study by Lo and Ferguson [16]
focused on localization of small firearms using acous-
tic measurements of muzzle blast/ballistic shock wave
arrivals. Luzi et al. [17] dealt with acoustic firearm
discharge detection and classification in an enclosed
environment. The study by Aguilar [8] is by far one
of the most comprehensive, which covered topics such
as: (i) physics of gunfire, (ii) historical development
of gunshot detection systems, (iii) current GSDS tech-
nologies, and (iv) performance discussion.

Sniper Detection Technology—In early 1990’s, there
was a need for sniper detection to address sniper fire
from Serb snipers in Sarajevo (Bosnian War). NATO
intervened and the need existed to localize both gunfire
and mortar blasts. A number of systems were devel-
oped to address this task, including HALO by Roke
Manor Research & BAE Systems (UK), PILAR by
Metravib (France), Integrated Sniper Location System
by SenTech & Lockheed Martin, Sentinel by SAIC
(Science Applications International Corporation), and
Bullet Ears by BBN Technologies (see [8] for detailed
overview of the systems).

Battlefield Transfer to High Crime Urban Areas: lever-
aging the DARPA’s early advancements in sniper fire
detection, there was an effort to transition sniper base
detection to urban locations for gunshot detection. The
System for Effective Control of URban Environment
Security (SECURES) [7], was originally developed
by Alliant Technology Systems (contractor Planning
Systems, Inc). The first version of SECURES was
deployed in Olympic Village in Atlanta, GA, in 1996
[8]. The ShotSpotter system was originally introduced
by Trilon Technologies, with its first installation in
Redwood City in 1996 [6]. In 2009, ShotSpotter, Inc.
acquired the SECURES product line and became a
leading company in the area. Currently, ShotSpotter is
deployed in nearly 120 US and worldwide cities [1].

3 Gunshot Detection Systems

The following paragraphs detail ShotSpotter’s GSDS
framework as described in available literature. This de-
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scription refers to system versions deployed by or prior
to 2017, noting that it is likely that further technological
advancements have been made since then.

ShotSpotter is a system that uses an array of acoustic
sensors installed in an area of interest to detect and
locate gunshots, and sometimes other acoustic events
such as fireworks or helicopter activity, and alert the
customer, typically a law enforcement agency or a se-
curity personnel, about those events in real-time [18].
Alerts sent by the system to the customer indicate the lo-
cation of the incident in the form of a dot on a map [19],
latitude and longitude coordinates, and a street address.
In the case of detected gunshots, the alerts indicate the
number of rounds fired. Before issuing the alert to the
customer, the automatically detected events are first
reviewed by a human analyst in ShotSpotter’s Incident
Review Center, who makes the decision whether the
alert is justified or if it was just a false alarm. Human
analysts may append additional information to the alert
indicating the type of gunfire (e.g., a full automatic
weapon was fired), presence of multiple shooters, or a
shooter being on the move. The typical time interval
between the incident and the alert being confirmed by
the analyst and issued to the customer is advertised to
be less than 45 seconds [18].

The ShotSpotter system consists of four primary ele-
ments: (i) sensors (includes detection algorithm operat-
ing with 1,2, or 4 microphones), (ii) Location Server,
(requires a certain number of field sensor locations
to agree on gunshot detection before location is esti-
mated; uses the time difference of arrival-TDoA), (iii)
Incident Review Center (human analysts perform a lis-
tener assessment to accept or reject automatic detected
Alerts), and (iv) ShotSpotter Alert Console (provides
information on detected gunshot and estimated location
information).

ShotSpotter sensors are distributed over a geographic
area indicated by the customer. Each sensor is a stan-
dalone device whose purpose is to detect gunshot pulses
(or other events) and send information about the inci-
dent to the Location Server. Each sensor typically
contains several microphones, a CPU system running
the detection algorithm, and a GPS and cellular net-
work modules. All sensors, as well as the Location
Server, are synchronized to the GPS satellite time [20].
The task of the Location server is to process incident
alerts from sensors, calculate geographic locations of
the incidents, classify the types of the incidents, store

information about the incidents in a database and alert
the Incident Review Center [20]. Incident Review Cen-
ter Analysts, also called Flex Operators, assess alerts
from the Location Servers and determine whether those
alerts will be published to the customer or dismissed.
Analysts can change the classification of the incident
and add comments to the record [20]. When an alert
is issued by the Incident Review Center Analyst, the
customer receives the alert on their ShotSpotter Alert
Console. The Alert Console is a software application
running on the customer’s (dispatcher’s) PC and dis-
plays the date, time, and location of the incident. The
time refers to the first shot fired in an incident. If mul-
tiple shots were fired, only the time of the first shot
is given. The location is graphically represented as
dot on a map representing the latitude and the longi-
tude of where ShotSpotter located the incident. For the
2017 and earlier versions, ShotSpotter was stating that
it would detect at least 80 % of all detectable outdoor
gunfire that occurred within the system deployment
area and that in those detected cases, the actual shooter
location would be within a radius of 25 meters from
the location determined by the system [20].

4 A Case Study: ShotSpotter
Evaluation in Mazerolle et al. [6]

Mazerolle et al. [6] report presents a controlled field
trial of the ShotSpotter System in Redwood Village,
a neighborhood located in Redwood City, CA. The
field trial was conducted on June 26 and 27, 1997 and
the report was completed in November, 1999. At the
time of the study, the company operating the ShotSpot-
ter System was referred to as Trilon Technology and
the system did not utilize the Incident Review Cen-
ter, which means that the Location Server was sending
automatic alerts directly to the client’s Alert Console
without a human-based (perceptual) review.

Redwood City Police Dept. gave permission to the
Evaluation Team to conduct field tests during two time
periods: 10:00 am to 3:00 pm and 7:00 pm to 10:00 pm.
These times were decided by the Police Dept. in con-
junction with Trilon Technology to avoid heavy traffic
hours. The Evaluation Team indicates that “avoiding
heavy traffic hours decreased the possibility of false
positive alerts during our field trial as reduced levels
of background noises were somewhat artificially re-
stricted (i.e., car backfires and car horns) through this
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process. We acknowledge that, in real life situations,
such background noises cannot be ignored.”

Redwood Village, a neighborhood of approximately
one square mile, was chosen for the field test due to
its high incidence of celebratory and random gunfire.
The test area was covered by 8 sensors mounted on
rooftops of residences and other buildings. The sen-
sors were disguised to visually resemble heating vents
and bird houses. Based on police calls statistics, the
evaluation team randomly selected 32 locations in the
test area—27 face block locations and 5 intersections.
During the test, blank rounds were discharged from
these locations. Three types of weapons were used
in the trial-—a .38 Caliber Pistol, a 12 Gauge Shotgun,
and an MP5 Assault rifle. Depending on the location,
one to four blank rounds were discharged. The trial
personnel comprised the Cincinnati Evaluation Team,
the Redwood City Police Dept., and Trilon Technology
technicians.

A total of 31 test events were employed in the evalua-
tions. The Evaluation Team used a random assignment
to determine the number of shots that would be fired
in each location-—from a single shot to bursts of two
to four shots. The three weapon types were randomly
assigned to locations. During the trial, an Evaluation
Team member in the field was in contact with an Evalu-
ation Team member in the dispatch center to verify that
locations, times, weapon types, and number of rounds
fired were all correct.

During the field trial, the Evaluation Team decided to
replace the MP5 Assault rifle with either of the other
two types weapons on several occasions. The authors
state that the MP5 Assault rifle was hardest to detect for
the system and this replacement helped ShotSpotter to
achieve a higher positive rate: “Once again, this alter-
ation in the methodology greatly assisted the ability of
Shotspotter to achieve a higher true positive rate than
what would have been the case if the original design
was followed. Nonetheless, we believe that the change
in method was warranted since we had so few shots
(N = 32) to fire: by repeatedly failing to identify shots
from the MP5 assault rifle would not have illuminated
additional insights as to the operational accuracy of
Shotspotter. We point out, therefore, that reports of
the Shotspotter’s accuracy as to a system’s accuracy
needs to take into account the type of weapons that
were fired.” In total, 8 locations used the MP5 assault
rifle, 13 locations used the .38 caliber pistol, and 10
locations the 12-gauge shotgun.

The authors summarize the gunfire detection perfor-
mance: “Overall, the ShotSpotter technology annunci-
ated nearly 80 percent of the test shots (N = 24). Specif-
ically, the technology annunciated shotgun rounds at
the highest rate (90 percent) followed by pistol rounds
(77 percent) and the MP5 assault rifle (63 percent).”
The automatic location accuracy is reported as follows:
“Overall, the system was able to triangulate random
gunfire events 84 percent of the time within an average
margin of error of 41 feet (see Table 2). In terms of
automatic identification, ShotSpotter was able to iso-
late the location of random gunfire 45 percent of the
time with an average margin of error of 26.5 feet.” The
manual location accuracy after the intervention of the
Trilon Technician: “With assistance from a Trilon Tech-
nician, ShotSpotter was able to locate an additional 39
percent of the gunfire events within 59 feet.”

4.1 Issues of Mazerolle et al. [6] Study

Alteration of Stimuli During Trial: While the trial was
in progress, the Evaluation Team deliberately altered
the stimuli (the type of weapon used). The authors
openly admit that this alteration was made in observa-
tion of one type of weapon, MP5 assault rifle, produc-
ing lower detection success rates than the other two
weapon types-—a shotgun and a pistol.

Automatic vs. Manual Gunshot Location: The Evalua-
tion Team established three categories for the gunshot
location process—automatic, manual, and missed. The
missed category refers to instances where the gunfire
event was not detected by the system and hence, the
system will not be attempting to locate it. The auto-
matic category refers to the system’s multi-lateration
algorithm calculating the gunfire location without any
intervention. Finally, the manual category refers to
the case where the Trilon Technician would make ad-
justments to the system parameters after the automatic
location process failed. Mazerolle et al. [6] does not
define what are the criteria for the automatic location to
be considered failed, neither what types of adjustments
the Technician would be making. However, the manual
category lacks any meaning in the context of practical
applications of the system. In real-world applications,
the actual location of the gunfire is unknown and if
the system determines the location incorrectly, there
is no way to assess it. Unfortunately, the authors of
the study assess both automatic and manual location
performances and eventually present them cumulative
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as a single metric: “Overall, the system was able to tri-
angulate random gunfire events 84 percent of the time
within an average margin of error of 41 feet (see Table
2).” Only this cumulative performance is presented
in the Executive Summary of the report, without any
disclosure of the fact that the real performance of the
automatic location algorithm is only 45 % and that the
other 39 % are coming from manual interventions by
the Trion Technician after the fact.

Successful Location of Undetected Gunshots: The re-
port counts one gunshot event that was not detected
by the system as successful location (see Table 2, next
to the last row—* Shotgun’; ‘Annunciation No*; “Tri-
angulation Manual’ instead of ‘Missed’). This leads
to a curious conclusion by the authors that, while the
system was able to detect 9 out of 10 shotgun gunshots
(i.e., 2 90 % detection accuracy), “Shotgun events had
the highest rate of triangulation at 100 percent (N =
10 of 10 events) with a median margin of error of 23.5
feet.” This is then propagated to the cumulative re-
sults reporting: “Findings from the Shotspotter Field

Evaluation indicated that overall, the gunshot location
technology was able to annunciate (detect) nearly 80
percent of the test shots.” followed by, “The gunshot
location technology was able to triangulate (locate)
84 percent of the test shots (N = 26 of 31 shooting
events) within a median margin of error of 25 feet.”
The authors do not elaborate on how the system could
be successfully locating events that it did not detect.

In summary, Mazerolle et al. [6] (i) compromises its
experimental protocol by altering the stimuli during the
trial to artificially boost the shot detection accuracy;
(i1) allows manual interventions by the Trion techni-
cian during the location process, results of which are
then blended with the automatic location results and
reported as a single number in the Executive Summary
of the report; and (iii) overstates the location accuracy
by counting in as a success a manual location of a gun-
fire incident that was not detected by the system at all.
It is noted that the results from the Executive Summary
were relied upon in advertisements of the ShotSpotter
performance as recently as in 2016 [20].
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5 Limiting Factors and Issues in GSDS
Systems

The previous section discussed a ShotSpotter evalua-
tion study. This section first highlights major observa-
tions from a similar study conducted on the SECURES
system by Litch and Orrison [7]. This is followed by
our assessment of limiting factors for GSDS systems.

5.1 SECURES Study by Litch and Orrison [7]

Litch and Orrison [7] is a 2011 study of the SECURES
gunshot detection system deployed in Newport News
and Hampton. Similar to Mazerolle et al. [6], the
executors of the study were not affiliated with the
owner/operator of the system. Besides field trials, the
authors also analyze law enforcement agencies’ data
to empirically validate claims and perceptions of the
actual usefulness of the system for police officers.

The SECURES system detects and locates gunshots
in the coverage area. The system sensors are typically
mounted on utility poles and building walls. Sensors
triggered by an acoustic event send a signal to a re-
ceiver that communicates with a server. Data from the
triggered sensors are used to locate the incident in a
three-dimensional space. The system produces map
coordinates and also information whether the event
is on the ground or aerial-based. The system alerts
police dispatchers via a law enforcement dispatching
system (CAD). While the space limitations prevent a
detailed discussion of this study, some of the final ob-
servations in Litch and Orrison [7] nicely outline some
of the major issues seen in GSDS designs: “Results
attained suggest the complexity of deploying new tech-
nologies in urban settings...”; “There was a noted
tradeoff between true positive errors in the Hampton
live fire experiment. If the sensor bar were set higher,
false positives would be reduced but so would true
positives”; “In the field assessment, the problem of un-
necessary responses (false positive error) was an issue.
In Hampton, 18 % of SECURES-related dispatches had
associated 911 calls. This means that 82 % of dis-
patches would not have occurred but for the gunshot
detection system.”; “The conclusions of this report sug-
gest that many of the most optimistic notions of how
the system would perform and how the system might
impact police operations lacked empirical support by
the assessment efforts of the investigators.”

5.2 Limiting Factors for GSDS Systems

Multi-lateration and other techniques relying on TDoA
assume that the received signal is arriving directly from
the source to be localized (direct sound). Reflected
sound waveforms (echo) cannot be used towards suc-
cessful location of sound with these methods. GSDS
sensors are prone to confusing echo impulses with di-
rect sound impulses, especially in urban areas where
many tall buildings exist.

There are other effects that will impact trajectory/route
of the sound waveform arriving to the sensor, including
direct sound waveform, such as wind, sound diffraction
and refraction. Alterations of the arriving direct sound
trajectories may notably reduce accuracy of the location
algorithm even if the detected sound is coming from
the direct sound waveform.

The composition of the direct sound and reflected sound
waveforms arriving all together to the sensors will not
depend only on the absolute location of the sound
source versus the sensor, but also on the direction of
the gunshot. For example, the same gunfire location
may be producing a nearly pure direct sound arriving
to a sensor or a nearly pure reflected sound waveform,
depending if the shooter is aiming towards the sensor
without any obstructions on the way or aiming towards
a wall of a building that is in the opposite direction
from the shooter than the sensor.

Mazerolle et al. [6] did not test on other incidents
of interest (fireworks, helicopter sounds) and con-
trolled competing impulse noises (backfires, construc-
tion equipment, mufflers); as such there is no indica-
tion of what the performance of ShotSpotter-like GSDS
would be under such conditions.

In Mazerolle et al. [6], only 45 % of all test gunfires
were automatically located by ShotSpotter in 31 trials.
The very limited number of trials provides little statis-
tical significance to the already low location accuracy
result. Moreover, the trials were conducted outside rush
hours, which reduced environmental noises that might
have further impacted detection and location accuracy.

6 Summary—Comparison of Gunshot
Forensics and Acoustic Speaker
Recognition Forensics

In this section, we summarize several major differences
between the fields of gunshot detection/location and
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speech recognition forensics in terms of maturity and
research and evaluation frameworks. It is suggested
that some of these differences may inspire researchers,
engineers, practitioners in the GSDS field for future
next steps in developing and solidifying the field.

While studies have considered comparison of acous-
tic waveform differences between gunshots based on
firearm types, ammunition, etc., the field is extremely
limited with only a handful of researchers considering
the acoustics of gunshots. Maher and Routh [11] notes:
“...acoustical characteristics of gunshots are currently
little understood in an objective sense by many law
enforcement investigators and acoustical consultants,
so there is the possibility of unscientific assumptions,
interpretations, and testimony.”

There have been no efforts to establish formal eval-
uation procedures to benchmark gunshot detection,
gunshot firearm classification, and gunshot location
estimation in the field. For comparison, the USA
based NIST OSAC-Speaker Recognition Subcommit-
tee [21] has membership from forensic practitioners, re-
searchers/academics, legal/government agencies to es-
tablish best practices for forensic speaker recognition in
terms of technology use, limitations, testing paradigms,
legal/courtroom practices. NIST has established recog-
nized benchmark criteria for evaluating speaker recog-
nition systems. The NIST OSAC-Firearms & Tool-
marks Subcommittee only considers analysis of tool-
marks on bullets, cartridge cases, firearm function test-
ing, serial number restoration, muzzle-to-object dis-
tance determination. There is no specific subcommit-
tee considering forensic acoustics of gunshots within
OSAC, suggesting there is no group providing neutral
oversight in this field.

The range of sources of acoustic variability & issues
that impact system performance for Gunshot Detection
Systems (GSDS) shown in 1 have not been compre-
hensively studied by the community. While GSDS
manufacturers understand the issues/dimensions which
impact variability/mismatch, their main focus has been
to ensure their deployed field solutions can remain op-
erational as they try to claim effective performance.
There are limited engineering/scientific evaluation stud-
ies vs. those in other forensic areas, including speaker
recognition, that validate these commercial systems.
The range of causes of acoustic mismatch for gunshots
has effectively not yet been addressed in any system-
atic manner. Therefore, there is serious doubt as to the
test/re-test validity of gunshot detection systems.

The speaker recognition community has estab-
lished well recognized performance acoustic
train/development/test sets, a range of algorithm
advancements, and formal metrics propagated by
NIST- Equal Error Rates (EER), Detection Error
Tradeoff (DET) curves, and Detection Cost Functions
(DCF/minDCF). In the acoustic gunshot detection
domain, open data sets, formalized open competitions,
and a community based set of best practices are not yet
available. In essence, each company performs a range
of experiments/testing, and decide what results to share
in their public literature. It is suggested that for the
progression of gunshot detection system advancement
and acceptance, more formal evaluation and testing
procedures are needed. A neutral group which can
address and highlight strengths and limitations are
needed to help drive this field forward, especially if
these systems are to be used beyond simply alerting
and directing law enforcement to a location (i.e.,
detection), versus transitioning these system output
data to be used formally used as evidence within
legal/courtroom cases. The lack of a formal test
corpus where evaluations are conducted by non
GSDS-industry personal, transparent field calibration,
and periodic re-calibration procedures are needed.
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