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ABSTRACT

In-room loudspeaker equalization requires a significant amount of microphone positions in order to characterize
the sound field in the room. This can be a cumbersome task for the user. This paper proposes the use of artificial
intelligence to automatically estimate and equalize, without user interaction, the in-room response. To learn
the relationship between loudspeaker near-field response and total sound power, or energy average over the
listening area, a neural network was trained using room measurement data. Loudspeaker near-field SPL at discrete
frequencies was the input data to the neural network. The approach has been tested in a subwoofer, a full-range
loudspeaker, and a TV. Results showed that the in-room sound field can be estimated within 1–2 dB average
standard deviation.

1 Introduction

When a loudspeaker radiates sound in a room, its re-
sponse gets severely altered. The frequency response
at the listening position can show peaks and valleys up
to 20 dB, especially in the frequency range where the
wavelengths are comparable with the room dimensions.
These variations can cause audible artifacts based on
their width, center frequency and gain [1, 2]. This
frequency response is due to the interaction of sound
waves with the boundaries of the room, building dis-
tinct zones with high sound pressure level (SPL), re-
lated to the room resonances, and zones with low SPL
related to zones where the sound is self-canceling. The
effect in the perceived sound is boominess related to

the excessive low-frequency energy that causes exag-
gerated sustain at some frequencies in the room.

In order to equalize the loudspeaker in-room response
for a restricted listening area (LA), it is required to
obtain the energy average (EA) in dB, or if one de-
sires to equalize the entire room, the total sound power
(TSP) needs to be acquired. This is normally measured
with a number of microphones spaced over the target
listening area in the room [3, 4, 5, 6]. This study ex-
plores the use of machine learning to solve and learn
the relationship, in one case between near-field pres-
sure of a loudspeaker and its sound field in the room,
and in another case to solve and learn the relationship
between an average of microphones attached to extra
loudspeakers to the sound field in the listening area.
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The paper proposes a computer-implemented method to
automatically estimate the TSP or EA over a LA with-
out user interaction for room equalization purposes.
The main focus of the paper is proper sound field pre-
diction by machine learning. Three audio loudspeaker
applications were tested, including a subwoofer, a TV,
and a multichannel loudspeaker system. The error anal-
ysis on the three different application cases is presented.
Issues as data overfit and proper evaluation of the mod-
els are discussed. Finally data augmentation to improve
the prediction performance is detailed, followed by dis-
cussions and summary.

2 Methods

2.1 Automatic room equalization

The proposed method includes, acquiring sound pres-
sure data at one or more discrete frequencies, obtained
from a frequency response of a loudspeaker in the room,
via at least one microphone. The sound pressure data
is input into an artificial intelligence (AI) model which
incorporates a relationship between the near-field (NF)
frequency response, and the EA in a listening area or
the TSP.

The loudspeaker system is connected with an equal-
ization filter. At least one microphone is configured
to acquire sound pressure data at one or more discrete
frequencies obtained from a frequency response of the
loudspeaker in a room. An AI model is connected
with the NF microphone. The sound pressure data
is input into the AI model. The AI model incorpo-
rates a relationship between the frequency response
and the EA over the listening area or the TSP produced
by the loudspeaker in the room. A basic block dia-
gram for a speaker system is shown in Fig. 1, which
includes, a NF microphone input to a neural network
(NN) model, an EQ-filter design block linked to the
NN output, and a equalization filter block connected
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Fig. 1: Basic block diagram to estimate the in-room
sound field.
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Fig. 2: Flow charts of training process and main auto-
matic equalization process.

before the loudspeaker, that compensates the frequency
response towards a desired target.

This approach can be extended to a system with mul-
tiple loudspeakers. The system further includes mul-
tiple equalization filters. Each equalization filter is
connected to each one of the multiple loudspeakers.
The system additionally includes multiple microphones.
Each microphone is configured to acquire sound pres-
sure data obtained from each of the multiple loudspeak-
ers in the room. An AI model is connected with each of
the multiple microphones. The sound pressure data is
input into the AI model. The AI model incorporates a
relationship between the near-field frequency response
and the EA over a listening area or the TSP produced
by each loudspeaker in the room.

2.2 Energy average

To obtain the TSP radiated by the loudspeaker into
the room, the mean-squared sound pressure level at a
number of microphones randomly distributed in the
room can be computed as:

T SP( f ) =

√
1
n

n

∑
i=1

|pi( f )|2, (1)

where pi is the sound pressure in dBs at the n number of
microphones randomly located in the room at discrete
frequencies f . Concerning the number of microphones
needed to obtain a reliable measurement, Pedersen [4]
has found that by using from 9 to 10 random micro-
phone positions in the room, the RMS deviation from a
reference estimate of the energy in the 3D sound field
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of 20 random microphone positions gets down to 1 dB.
Alternatively a moving microphone (MM) technique
can be utilized to obtain the TSP [7]. To compute the
EA produced by the loudspeaker over the LA, the sound
pressure level at discrete frequencies is measured ac-
cording to Eq. 1, but the n number of microphones are
distributed over an area where the listeners normally
are.

2.3 Neural Networks

Typically, the term artificial intelligence (AI) is used
when a machine emulates cognitive functions that hu-
mans associate with other human minds, such as learn-
ing and problem solving. In this study we explore the
use of machine learning to solve and learn the relation-
ship between near-field pressure of a loudspeaker and
the produced sound field in the room. More specif-
ically we used neural networks in MATLAB’s Deep
Network Designer application [8], to automatically es-
timate the energy average in the room without user
interactions. The sound pressure data was input into
the model. Training was performed with dB SPL data
measured in rooms using the NF response at discrete
frequencies, the TSP, and EA over the listening area.

Feed-forward Neural Network

The Feed-forward neural network (FFNN) is one of the
first successful artificial neural networks and is known
for its simplicity. The information is only processed
forward in the network. As the universal approximation
theorem [9] describes, using one single hidden layer
with enough hidden neurons can approximate any con-
tinuous function [10]. The FFNN applied here consists
of one input layer, one output layer, and one hidden
layer, (see Fig. 3). The input layer consists of neurons

Fig. 3: Feed-forward neural network.

that receive inputs and pass them on to the other layers.
The number of neurons in the input layer is equal to

Fig. 4: Feed-forward neural network block diagram,
from MATLAB.

the attributes or features in the data-set. In between
the input and output layer, the hidden layer contains
a number of neurons which apply transformations to
the inputs before passing them to the output layer. The
output layer puts out the predicted features. As the
network is trained, the weights and biases are updated
to learn the relationship between loudspeaker near-field
response and total sound power, or energy average over
the listening area.

Generalized Regression Neural Network

A generalized regression neural network (GRNN) can
be categorized into the probabilistic neural networks.
As described by Specht [11], a GRNN is a four-layer
feed-forward neural network, consisting of an input
layer, a pattern layer, a summation layer, and hidden
layers, (see Fig. 5). A GRNN is often used for con-
tinuous function approximation. More specifically, the
architecture for the GRNN consists of an input layer,
a radial basis function (RBF) as an “activation” layer,

Fig. 5: Generalized regression neural network,
adapted from Specht [11].
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Fig. 6: FFNN subwoofer in-room prediction. Upper row, room 8, lower row, room 10.

and an output linear layer [12]. A GRNN can be uti-
lized in different applications as system identification,
modeling, and control of online dynamic systems. The
training of a GRNN consists of a single-pass learning
with no back propagation involved. At the same time,
a GRNN requires high memory capacity and can be
computationally expensive; the number of the hidden
neurons is usually equal to the number of the training
samples, since the hidden layer consists of at least one
neuron for each pattern in the training set [11]. In MAT-
LAB the function newgrnn was used to design and
test a GRNN [8]. The parameter value “spread” of the
radial basis functions was set to 1 in the GRNN tests.

2.4 Application Cases

In this section, the audio application cases studied in
this paper are presented. In all cases the TSP or the EA
over a listening area was the target output. Bayesian
regularization was employed in the training process to
acquire better generalization. The overall dataset was
divided randomly into three subsets: training set (70%),
test set (15%), and validation set (15%). The mean
squared error was computed to evaluate the training
performance.

Subwoofer

The first study case was a subwoofer prototype built
to test a former method presented in [13]. The data
obtained in the preceding study was utilized to train the

Fig. 7: FFNN subwoofer in-room prediction error.

network. A measurement microphone was attached to
the prototype in front of the driver for the experiments.

The subwoofer was measured in 11 typical US living
rooms. In each room, the subwoofer was placed at
4 to 6 positions completing a data-set of 60 typical
subwoofer positions. On each room at least one corner
position was included.

The near-field pressure was obtained via the attached
microphone and the actual total sound power in the
room was obtained using nine microphones randomly
positioned in the room as detailed in Eq. 1. A multi-
tone test signal was utilized to compute the complex
frequency response on each microphone [14]. A FFNN,
configured with one hidden layer and one output layer
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MEMS Microphone

Fig. 8: TV with MEMS microphone attached for room
measurements.

was utilized. In this experiment, 15 neurons were em-
ployed in the hidden layer, (see Fig. 4). The NF fre-
quency response was the input to the FFNN, and the
expected output is the TSP in the room. The training
process was performed in dB scale; the produced result
was in dB SPL. Figure 7, shows the prediction error for
the subwoofer case. An averaged standard deviation of
1.4 dB (20–200 Hz) was accomplished, a significantly
better result compared to a previous study presented by
the author [13]. In Fig. 6, the TSP predictions of four
subwoofer positions in rooms 8 and 10 are presented.

TV

A Samsung TV Q7 55-inch model was measured in
four rectangular rooms at Samsung Audio Lab, includ-
ing a gym and three listening rooms. In each room,
the TV was placed at 10–15 positions acquiring 51
measurement positions. A Knowles SPM0687LR5H-
1 MEMS microphone was glued in the center of the

20      100 1k 10k     20k 20      100 1k 10k     20k

20      100 1k 10k     20k20      100 1k 10k     20k

Fig. 9: TV prediction error analysis.
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Fig. 10: LA and TSP for three loudspeaker setups.

lower part of the frame of the TV, between the two
speakers, (see Fig. 8). The NF and MM measurements
were conducted at each TV position in every room. The
NF frequency response was the input for the FFNN,
while the MM frequency response was the target out-
put that represents the actual total sound power in the
room.

For the TV case, an overall prediction error of 1.6%,
and an average standard deviation of about 1 dB was
achieved over the four rooms. The prediction error for
the four different rooms is shown in Fig. 9.

Full-range loudspeaker

For the third case, a full-range loudspeaker was uti-
lized to predict its sound field in the room. First, room
simulations were carried out, and secondly a 7.1 mul-
tichannel loudspeaker system was set up in one of the
listening rooms at Samsung Audio Lab.

FDTD Simulations

A room and loudspeaker were simulated using Finite
Differences in the Time Domain (FDTD), which is
a wave propagation model. A compact closed-box
speaker was simulated in a rectangular room with
4.83× 6.36× 2.74 m dimensions. The observation
plane was at 1.2 m height, the considered frequency
range was from 20 to 1000 Hz. More details of the
simulation method can be found in [15]. A listening
area defined by 5× 5 virtual microphones centered at
a sweet spot, at 1.2 m height was defined. To compute
the TSP, 45 virtual microphones randomly spaced in

AES 151st Convention, Online, 2021 October 
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Loudspeaker prototype

Fig. 11: Multichannel setups for training and loudspeaker prototype with NF microphone attached.

Stereo Setup Multichannel Setup

20

20 20

20

Fig. 12: Full-range loudspeaker room prediction from
FDTD simulations.

the room were set up. A NF virtual microphone was
included on each loudspeaker. For each loudspeaker
position the EA over the LA was calculated. Each mag-
nitude response was 1/12-octave smoothed before input
to the FFNN.

Two variations were selected for this test, a stereo setup
with one NF microphone on each loudspeaker, (see
left graph in Fig. 10), and a multi-channel setup with
one NF microphone on each loudspeaker respectively
(middle graph in Fig. 10). For the first variant, to pre-
dict the EA or the TSP of Left loudspeaker, the input

to the FFNN was the SPL at discrete frequencies of
the NF microphone of the Right loudspeaker. For the
second variant to predict the EA or the TSP of Left
loudspeaker the input to the FFNN is the EA of all NF
microphones excluding the active loudspeaker (Left
speaker). Interpolation to 120 frequencies from the
simulation data was performed for the FFNN train-
ing. The FFNN contained 10 hidden neurons, and was
trained for 500 epochs. Bayesian regularization was
applied for the training process.

The prediction error for the full-range loudspeaker in
the FDTD room simulations are presented in Fig. 12. In
left column, the prediction errors of utilizing only one
microphone to predict the EA over the listening area
(top graph) and the TSP (lower graph) are shown, (see
Fig. 10). In the right column, the error of utilizing four
microphones to predict the EA over the listening area
(top graph), and the TSP (lower graph) are presented,
(see loudspeaker setups in Fig. 10). As can be observed,
an overall prediction standard deviation ranging from
0.5–0.8 dB was obtained.

2.4.1 Multichannel loudspeaker setup

Seven 135 × 125 × 150 mm sealed boxes with a
51 mm full-range driver each, were set up with individ-
ual multichannel amplification in one of the listening
rooms at Samsung Audio Lab. Each loudspeaker pro-
totype included a MEMS microphone mounted with

AES 151st Convention, Online, 2021 October 
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Fig. 13: Room prediction error analysis of full-range
loudspeakers in multichannel setups.

a fixture in proximity of the driver as seen in Fig. 11.
An ITU 7.1 loudspeaker layout was established as an
initial setup for testing.
Eleven different loudspeaker setups variants, starting
from the ITU 7.1 reference setup were measured for 77
cases, (see Fig. 11). A transfer function measurement
from each loudspeaker terminals to each near-field mi-
crophone was obtained utilizing the logarithmic sweep
method [16]. At the same time, the transfer functions
from each loudspeaker to 3 × 5 microphones laid over a
0.65 × 1.3 m listening area at ear height were acquired,
completing 1694 impulse responses. Each magnitude
response was 1/12-octave smoothed before input to
the FFNN. The data was split into 80% for training
(62 cases), and 20% for validation (15 cases). Batch
normalization was utilized to improve the results. The
FFNN for this study had the following attributes:

• Sequence: 1 × 125 vector (dB) magnitude loud-
speaker sound field response

• Batchnorm: batch Normalization layer

• Bilstm: bidirectional LSTM layer with input size
= 125 and 512 hidden units

• Batchnorm: another Batch Normalization layer

• Output: a fully connected layer with Input Size =
1024

• Size = 125, 125 × 1024 weights , and 125 × 1
bias

• MSE: a regression layer with a MSE loss function

Figure 13, presents the prediction error for the mul-
tichannel loudspeaker setup in the real listening
room. An average standard deviation of ±0.46 dB
(45–10k Hz) was achieved over the full data.

Fig. 14: FFNN subwoofer prediction error for rooms
8 and 10, network re-trained without these
rooms.

3 Results

Among the three applications, the subwoofer seems
to be the most challenging case in terms of predicting
the TSP. In the TV application and in the multichannel
loudspeaker setup, the prediction error seems to be very
promising. But if one wanted to deploy this technology
in a product, the key question would be: how would
this technology work in a room that was not in the
training data?

To answer this question for the subwoofer application,
a new network with the same structure was trained, but
excluding room 8 and 10 in the training set, then the
network model was reevaluated with these two rooms.
The result of the prediction error of this experiment is
shown in Fig. 14. As it can be seen, the 95% confidence
interval is about ±4–5 dB which is not acceptable.

Fig. 15: FFNN full-range loudspeaker in-room predic-
tion error, 28 different evaluation cases which
were not present in training.
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Fig. 16: FFNN subwoofer in-room prediction. Upper row, room 8, lower row, room 10. Rooms 8 and 10 excluded
from training.

Fig. 17: Augmented FFNN data evaluation, full-range
loudspeaker in-room prediction error, the
23.8k cases were not included in training.

Figure 16, shows the TSP prediction errors in rooms
8 and 10, evaluated with the trained network model.
These rooms were not included in the training set. The
detriment on the TSP estimation is obvious compared
with results in Fig. 7. As for the multichannel setup,
four extra loudspeaker positions setups were measured,
then the FFNN model was evaluated with the data from
the 28 extra loudspeaker positions. The resulting pre-
diction on each of the 28 cases presented a variable dB
offset compared with the expected EA over the listen-
ing area. To analyze the prediction error on each case,
the resulting frequency response was normalized with
the expected EA over the listening area. In Fig. 15 the
prediction error of this experiment is shown. As it can
be observed, the confidence intervals at low frequen-
cies increased, and the standard deviation grew from

Fig. 18: Augmented GRNN data evaluation, full-
range loudspeaker in-room prediction error,
the 22k cases were not included in training.

0.4 dB to 2.4 dB (45 –10 kHz), and from 0.7 dB to 3.4
dB (45–100 Hz).

These not so encouraging results may indicate that the
FFNN has overfit the data. To overcome the issue
of overfitting, the multichannel loudspeaker data was
augmented by adding cases with a variety of high- and
low-pass filters to the input and corresponding target.
Also different dB offsets (up to ±10 dB in 1 dB steps)
were added to selected data cases, completing 95340
cases from a database of 84 cases. The result of this
experiment is shown in Fig. 17 where a validation set of
23k cases was evaluated with the network model. It is
worth mentioning that these cases were not included in
the training. As seen in Fig. 17 the standard deviation
improved from 2.4 dB to 1.4 dB (45–10 kHz), and from
3.4 dB to 2 dB (45–100 Hz).
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Fig. 19: GRNN Multichannel loudspeaker in-room predictions.

Finally the same augmented data was utilized to train a
GRNN network. The network was trained with 73318
cases and the rest of the data was left for validation. In
Fig. 18 the prediction error is presented. A significant
improvement in prediction error was observed, the stan-
dard deviation reached 0.8 dB (45–10k Hz), and about
1.5 dB (45–100 Hz). Figure 19, presents frequency re-
sponse results of eighth cases evaluated in Fig. 18, and
predicted with the GRNN.

4 Discussion

Neural networks can be used to predict the sound field
produced by a loudspeaker in a room, but it seems that
the network can overfit the data if the amount of cases
is insufficient.

In the subwoofer application data, consisting of 60
cases does not seem to be enough to predict the sound
field in rooms that were not used in the training set. It
appears that there is less relationship between the near-
field response and the sound field in the room. This
issue seems to also be true for the TV application case.

On the other hand, for the multichannel loudspeaker
setup, the prediction of the sound field benefits because
more information about the sound field in the room is
gathered by the NF microphones attached to the other
loudspeakers. However, it seems that the amount of
data to predict the sound field in the room needs to be
in the order of thousands of cases. Another discussion
point is the data distribution or variety. By looking at
the training of the multichannel setups (Fig. 11) there

does not seem to be enough variety in terms of loud-
speaker positions within the room.

The process of acquiring the right amount of data for
a loudspeaker setup can be overwhelming due to the
amount of loudspeaker positions and variety of rooms
needed. With our measurement data of 60–80 cases
the network overfit the data. Not until the data was
augmented to more than 90k cases did the prediction
error improved to a reasonable level for evaluation on
the same room. More tests need to be done in order
to verify if a network can be trained to generalize the
prediction on several rooms with a limited amount of
data.

Future research work may be to focus on a fast room
simulation, as the image source model, to be able to
simulate thousands of cases and find out what is the
minimum amount of data to generalize the problem
and predict the sound field with acceptable errors in
several room sizes and shapes. It seems that a GRNN
can give better results in this kind of audio applications,
but the network has to be trained with enough variety
of cases, and the amount of memory can be an issue.
Other methods, such as linear regression models may
be suitable for these kind of audio applications.

5 Summary

A novel method to estimate the in-room sound field
produced by loudspeakers using AI models has been
proposed. To automatically estimate the TSP or EA
over a listening area without user interaction, neural
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networks were utilized. The input to the trained model
is the near-field response of the loudspeaker and the
output is the predicted TSP or EA over a listening area.
Three different applications have been tested, a sub-
woofer, a TV, and a full-range loudspeaker in a multi-
channel setup. Results have shown better performance
in the sound field estimation, in comparison with for-
mer methods, but the neural network can easily overfit
the data, if not enough cases and variety are included.
Care must be taken on the amount of data used for the
training. As learned from this study, data augmentation
can achieve acceptable results on the sound field room
prediction, but more research still needs to be done.
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