PAPERS

cess Freely available online

K. J. Werner, F. G. Germain, and C. S. Goldsmith, “Energy-Preserving Time-Varying

Schroeder Allpass Filters and Multichannel Extensions”
J. Audio Eng. Soc., vol. 69, no. 7/8, pp. 465-485, (2021 July/August).
DOI: https://doi.org/10.17743/jaes.2021.0018

Energy-Preserving Time-Varying Schroeder
Allpass Filters and Multichannel Extensions

KURT JAMES WERNER ,* AES Member, FRANCOIS G. GERMAIN, AND CORY S. GOLDSMITH

(kwerner @izotope.com)

(fgermain @izotope.com)

(cgoldsmith@izotope.com)

iZotope, Inc., Cambridge, Massachusetts

We propose time-varying Schroeder allpass filters and Gerzon allpass reverberators that
remain energy preserving irrespective of arbitrary variation of their allpass gains or feed-
back matrices over time. We propose various ways of realizing the unitary matrix involved in
the Schroeder structure, based on classic ladder and lattice filters and their generalizations.
We show how to construct more elaborate structures including nestings and cascade, giving
various strategies for reducing their implementation cost. Extending these algorithms to the
multi-input, multi-output case yields time-varying, energy-preserving generalizations of Ger-
zon’s reverberator, providing a link between Schroeder allpass filters and Schelcht’s recently
proposed “Allpass Feedback Delay Networks.” Stability proofs are given for common uses
of Schroeder allpass filters, such as inside of Feedback Delay Network reference structures.
Finally we give a substantial review of the properties of time-invariant Schroeder allpass filters.

0 INTRODUCTION

Manfred Schroeder’s work on artificial reverb in the
1960s [1, 2] introduced the “Schroeder” (or “comb”) all-
pass filter: a high-order, low-complexity allpass filter char-
acterized by the length of its single delay line and gain
coefficient. They can be implemented in various ways: Fig.
1(a) shows the original form [1] and Fig. 1(c) and 1(d)
show the two most commonly seen (e.g., [3, 4]). Schroeder
allpass filters are also “nested” in cascade with delay lines
inside of Feedback Delay Networks (FDNs) [5—10] or an-
other Schroeder allpass [2, 11-16]. Time-varying first-order
allpass filters (Schroeder allpasses with length-one delay
lines) have also been explored in digital audio effect and
synthesizer design [10, 17-25].

Although reverb algorithms are almost always designed
from a linear time-invariant (LTI) prototype, it is common
to vary gains over time to break up resonances [5, 8, 11,
26-30]. It is essential in varying these gains that the struc-
ture’s stability be preserved, which can be accomplished
by preserving the signal energy during variation. Unfortu-
nately the standard Schroeder allpass filter has been shown
not to preserve energy as its coefficient is changed [8].

*Correspondence should be addressed to Kurt James Werner;
e-mail: kwerner@izotope.com
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In this article we address this issue, introducing a novel
family of Schroeder-style allpass filters that are energy-
preserving during arbitrary and continuous change of their
gain coefficient. Preliminary results were given in [31].

Michael Gerzon generalized Schroeder allpass filters to
the multi-input multi-output (MIMO) case [9, 32, 33]. His
basic design, shown in Fig. 1(b), replaced each of the gains
in Schroeder’s original (cf., Fig. 1(a)) with a diagonal matrix
of identical gains and the delay line with a parallel arrange-
ment of delay lines or a more elaborate unitary system. Just
like the single-input single-output (SISO) Schroeder allpass
filters from which they are derived, Gerzon-style reverber-
ators do not, in general, preserve energy during coefficient
modulation.

In this article we extend the approach of [31], allowing
MIMO Gerzon-style reverberators to be created, which are
energy-preserving during arbitrary and continuous change
of their matrix gains. At the same time we propose some
extensions allowing for a wider class of feedback gain ma-
trices. Since these MIMO structures are allpass by construc-
tion, they can be considered an alternative, constructive path
to the “Allpass FDNs” proposed by Schlecht [34].

Recent research extended Schroeder allpass filters and
reverberators, e.g., allowing frequency-dependent gains in
Schroeder allpass filters [35]; connecting FDNs to room ge-
ometry [36]; adding controls of directional distribution of
sound to FDNs [37]; imbuing FDNs with the allpass prop-
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(c) Common Schroeder.

(d) Less common Schroeder.

Fig. 1. Classic Schroeder allpasses (and Gerzon reverb), with input
x (x), output y (y), delay lines 8" (A™), and gains parameterized
by g (gI).

erty [34]; generalizing FDN feedback to a matrix of filters
[38], including the case of velvet noise [39, 40] feedback
matrices in particular [41]; and studying coupled and par-
allel FDNs [42, 43]. This article complements these works,
providing new insight on Schroeder allpass filters and FDN
architectures with good time-varying properties.

The rest of the article is structured as follows. We start
with preliminaries (SEC. 1). In a first part we present our
proposed approach to building energy-preserving, time-
varying Schroeder allpass filters (SEC. 2), including their
building blocks, algorithm recipe, and more advanced com-
binations, including cascades and nestings. Next we discuss
techniques for saving multipliers in groups of Schroeder
allpass filters (SEC. 3) and a case study demonstrating
some of the proposed filters (SEC. 4). In a second part
we present a MIMO generalization allowing the creation of
energy-preserving time-varying “Gerzon-style” reverbera-
tion algorithms (SEC. 5), again giving case studies (SEC. 6)
on how the proposed techniques improve existing MIMO
structures. SEC. 7 concludes and an APPENDIX thoroughly
reviews various properties of the LTI Schroeder allpass
filter.

1 PRELIMINARIES

Here we review important concepts such as the sign con-
vention (SEC. 1.1), our time indices and delay notation (SEC.
1.2), L2 and matrix-norm and unitary (SEC. 1.3) and parau-
nitary matrices (SEC. 1.4), energy-preserving systems (SEC.
1.5), and a state space variation called “delay state space”
(SEC. 1.6).

1.1 Sign Convention

The classic Schroeder allpass filter [1] (Fig. 1) has a
feedforward gain —g and feedback gain +g; we call this the
“negative sign convention.” However many sources use the
opposite “positive sign convention”: feedforward gain +g
and feedback gain —g. In rare cases both sign conventions
are intermingled (e.g., [44]). One can see evidence of the
variety of conventions later in the article (Table 4).

In this article we use the “positive sign convention” due to
its use in recent extensions to Schroeder allpass filters [31,

466

PAPERS

35], out of deference to the historical usage at CCRMA [45],
and because it is congruent with standard transfer function
conventions. Adherents to the other sign convention may
simply substitute —g for g throughout.

1.2 Time Indices

This article is primarily concerned with time-varying all-
pass structures. So, nearly every gain and signal has a time
index [n]. The main exception to this is the discussion in the
APPENDIX of the basic LTI Schroeder allpass filters, where,
since the z-transform is used to discuss the transfer function,
the gain cannot vary over time. For compactness we sup-
press the notation of the time index except in places where
multiple time indices appear in the same expression, e.g.,
in difference equations or summations over time indices.
In these instances it will be notated with square brackets,
e.g., input x[n], output y[n], allpass gain g[n]. We also use
an operator 3' to represent a one-sample delay. A length-M
delay line can be formed by 3" = ]_[,A:;Ol 8.

1.3 Norms and Unitary Matrices

This article relies on certain properties of the L2- and
matrix-norms and unitary matrices, which we review here.
We will present many of these theoretical aspects with com-
plex matrices even though practically we mainly only care
about the real-valued cases. We do this to be consistent with
prior artificial reverb literature and in case the complex case
somehow becomes useful in the future.

The L2-norm of a length-M vector x € CM*! is

M—-1 1/2
e[l = (Z |xm[n]|2) : (1)

m=0

where x,,[n] is the mth entry of x at time [n]. We use the L2-
norm of scalar quantities over time (square root of signal
energy). For scalar x[n], ||x[-]|| is defined as

00 1/2
L1 =( > |x[n1|2) : )

n=—0o0

This is distinguished from the L2-norm over entries by
the inclusion of the bracketed dot.

The matrix norm ||M || of a matrix M is defined as the
largest singular value of M. A matrix U € CM>*M is called
unitary when it satisfies

vt =vtv =1, 3)

where ( - )T is the Hermitian conjugate, the transpose and
conjugate of the coefficients and I is the M x M iden-
tity matrix. Throughout this article identity and zero (0)
matrices are assumed to have the appropriate implied di-
mensions. An important property of unitary matrices is that
they preserve the L2-norm during vector multiplication

y=Ux = |ylnll=lxnll, “

for any x, y € CM*1,
Throughout this article we often refer to a specific uni-
tary matrix, which can be identified by the presence of an
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argument in parentheses. This is the unitary dilation of the
contraction G € CV*N on C*M*2N a5 [46, pp. 13-19]:

Dg GH &)

UG) = [

with U(G) € C*M*2M We assume |G| < 1, i.e., that G is
contractive, and use the compact notation

Dr = (I —THM)/2 | ©)

where D . is the “defect operator.”
In the scalar case used for constructing SISO allpass
filters we have U(g) € C>*?, where |g| < 1, defined by

—g D§
U(g) = ¢ 7
© |:Dg 8 } @
with scalar defect operator

D, =vI—7y2. ®)

Throughout this article we will often say that a matrix M
is diagonally similar to a unitary matrix U. By definition
M is diagonally similar to U if there exists a matrix P =
diag(p), p € RM*! such that M can be written as

M=P'UP. ©)

‘We use a line under a matrix as a reminder that the matrix
is diagonal (M; ; = 0, Vi # )).

1.4 Paraunitary Matrices

Unitarity is only defined for scalar matrices. However
we often have to consider matrices that involve filters, e.g.,
a diagonal matrix of delay lines. So it is useful to consider
paraunitarity. A matrix U(z) is called paraunitary when

UU%H=1I. (10

Note well that UH(z~!) has transpose-conjugate coef-
ficients w.r.t. U(z) and inverse powers of z (rather than
conjugated) [10, 47, 48]. If a matrix is unitary on the unit
circle, U(e!)UH (e 1) = I, then it is also paraunitary [47,
48].

Paraunitary systems can be combined in several ways to
create new paraunitary systems [9, 49] (we suppress the (2)
argument in the rest of this section for compactness). We
mention three known elementary strategies [9]:

1. Two paraunitary matrices U,V € C¥*M of the
same size can be put in cascade to create a new pa-

raunitary matrix W € C¥>*™ as shown in Fig. 2(a)
and defined by
W=V.U. 11

2. Two paraunitary matrices U € CY¥*M and V €
CN*N | which may be different sizes, can be put
in parallel to create a larger paraunitary matrix
W € CM+NXM+N) " a5 shown in Fig. 2(b). They
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(a) Cascade.

Ym

Xm

U
_L={V]
XM+N ;ﬁ-\:; Ym+N u w

(b) Parallel. (c) Nested.

Fig. 2. Three ways of creating a new energy-preserving structures
from two other energy-preserving structures.

become block diagonal entries of the new matrix; it
is their “direct sum” ():

W:U@V:diag(U,V):[g 3} (12)

3. Two paraunitary matrices U € CM+M*M+N) apq
V e C¥*N can be combined in a feedback arrange-
ment to create a new paraunitary matrix W € CM*M |
as shown in Fig. 2(c). Defining the partitions of U
by

U= Uy Upn
Uvmu Unn |’

where the partitions each have size Uy y € Coxv,
the new paraunitary matrix is defined by F(U, V),
as a function of by U and V, by

W=FU,YV) (13)
=Uum+UpunUnnUy—VUyN) ' Uy n.

This also involves inner signal vectors u, w € CV*!,

1.5 Energy-Preserving Systems

More generally energy-preserving time-varying systems
(that do not have z-transforms) can be combined in the same
three ways to produce more complicated energy-preserving
time-varying systems. An M-input, M-output MIMO sys-
tem is energy-preserving if it satisfies:

M—1 M—1
D vl =D bl - (14)
m=0 m=0

Various systems we have mentioned so far are energy-
preserving, including any paraunitary system U(z), de-
lay line 8™, and parallel arrangement of K delay lines:
A" = @,ﬁ:ol 8™, m e ZX*'. Remarkably time-varying
unitary matrices U [n] are also energy-preserving, since uni-
tary matrices preserve the L2-norm of a vector. Squaring
both sides of (4) and summing over time yields (14), veri-
fying energy preservation.

Two energy-preserving systems in cascade (Fig. 2(a))
or parallel (Fig. 2(b)) yield a new energy-preserving sys-
tem. Two nested energy-preserving systems (Fig. 2(c)) also
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x == >=>P={ A" | D=0—>y u —%% W)
7’7 ? qu v
(a) Delay state space. (b) Del;y_ l_ir_lc;s_detail.

Fig. 3. General delay state space form.

produce a new energy-preserving system, but since it is

slightly more complicated we derive it in some detail.
Assume thatboth U € R™*M and V € RE*L are energy-

preserving. Givenx, y € RM*! and u, w € RL*L, we have

M—1 L—1 M—1 L—1
D LAY lweldl =Y lymlAl+ Dl (15)
M=0 =0 M=0 =0

L-1 L-1
3 Nl 1l =Y lwel 1 (16)
=0 =0

Subtracting (16) from (15) yields (14), verifying energy
preservation.

1.6 Delay State Space Form

In this article, to study the stability of certain structures,
we rewrite their equations in the so-called “delay state-
space” form [34, 50], shown in Fig. 3. For systems that
involve long runs of delays we can compactly describe the

entire system by
:I [w} ' Y= Amu ’
x

bl-les

cCD
—_——
s
with matrices A € RV*¥, B e RV*K € € REX¥, and
D e R¥*K: vectors m,u, w € RV*! and x, y € RK*1;
and system matrix § € RE+V>*(K+N) Whenm = 1 (a vec-
tor of 1s), this is equivalent to standard state space. We will
often refer to FDNs with N delay lines as “N-FDNs” [51].

u
y

a7

2 PROPOSED SISO STRUCTURES

In this section we propose (extending [31]) designs
for energy-preserving time-varying SISO Schroeder all-
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pass filters, which improve on the classic structures by
being unconditionally stable no matter how their coef-
ficients are varied over time. This approach also yields
nested and cascaded structures and forms a foundation for
the MIMO structures we treat in SEC. 5. We present the
building blocks of these structures (SEC. 2.1), a recipe
for combining them into energy-preserving SISO struc-
tures (SEC. 2.2), and a discussion of the resulting structures
(SEC. 2.3).

2.1 SISO Building Blocks

The building blocks of our proposed structures are shown
in Fig. 4. The first type of block (Fig. 4(a)) is a lossless two-
port, well known from filter design and speech synthesis:
Fig. 4(b)—4(j) shows nine versions. Of these nine there are
five distinct matrix descriptions, which we call the “type,”
indicated by a roman numeral I-V. Types I-IV each have
two possible realizations; e.g., Type III can be realized in
four-multiplier form (Fig. 4(c), the classic Kelly-Lochbaum
block [52]) or in one-mult. form (Fig. 4(i)). Type V (the nor-
malized structure, Fig. 4(b)) only has a single realization.

All five of the types (hence, all nine of the realizations)
can be described by a single matrix L(g, &)

J=lain]

where we require £ # 0 to bound the multipliers and assume
without loss of generality that £ > 0. Recall that the scalar
defect operator D, is defined in (8). The correspondence
between building blocks, their types, the entries of L(g, £),
and the value of £ to represent each structure with the
generalized structure are shown in Table 1.

L(g, &) is unilossless [53] V& # O since it is diagonally
similar to U(g) by P = diag(1l, 1/€). However it is only
unitary for £ = 1. Hence all of the two-ports shown, or any
version of Fig. 4(a) with other values of &, are unilossless.
Only the normalized structure (Type V, Fig. 4(b)) is unitary.

The next type of building block is the “transformer,”
shown in Fig. 4(k). The appropriate transformer value &
for each type is simply the same value that parameterizes
the general block. Transformers will always be shown as
shaded, purely for visual ease.

8 DgE
D,/§ —g

(18)

L(g.8) = |: |:300 Lo

L10 €11

2

D, l+g 1—g 1- g
| Y >~ Vany
L L )F
+g —e Hi $g +g% ﬁx,g +e g +g;; —g
— Yo
WS
D, 1-¢ 1+g¢ 1-g
(b) norm., V. (c) 4-mult., T1I. (d) 4-mult.”, V. (e) 3-mult., I. (f) 3-mult.” IL
+g +g —1
AN D s D> Il> u
X 5
_ _ 1 -
aAre L v
A\ %) % -~

(h) 2-mult.”, I1.

(g) 2-mult., L.

(1) 1-mult., III.

G) [-mult.”, IV. (k) transformer. (1) delays.

Fig. 4. Building blocks of the proposed algorithm, including ladder/lattice two-ports, transformer, and delay line.
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Table 1. Two-port entries, corresponding transformer gains, and difference equation coefficients for unnormalized structures.

Two-port L(g, &) entries Transformer Un-corrected difference eqn. coefficients
Name Type 600 601 El() e[] I/E b().n bM,n am.n
- [ 1-gln] 1—gln]
1- & 4-mult. 11 +g 1—¢g 1+g —g ﬁ ﬁ +g[n] 17g[§7M] gln — M]m
T 14+ 1— 14-g[n] 1+g([n]
1- & 4-mult. v +g l+g 1—g —g ﬁ ﬁ +g[n] 1+grsz] gln — M] l+g[i—M1
2 2
2- & 3-mult. I g 1-g> 1 -g D, 1/D, +g[n] % gln — M]%
2- & 3-mult.” II +g 1 1-g2 —g 1/D, D, +g[n] gln — M)
. 1—g[n]? 1—g[n]?
NOrmallZed A\ +g Dg Dg —8 1 +g[l’l] 1*8[::7*1‘/1]2 g[}’l — M] lfg[iian]z
U(g) U(g) ] ] g
S oy : | UG - |Ulg0) Ulg)
| I
| | | |
X—?L(g £) —P>——u X—H>ﬁL(g £) > u (a) Single. (b) Nested.
y<— Clk<t——w  y<t—<— e —w
—— Ve A — ! ol b
i DR . |U(g0) U(g1) U(s2)
(a) Transformer “inside. (b) Transformer “outside. Y<
Fig. 5. Two ways of forming a two-port unitary matrix U (g) from (c) Doubly nested.

two-port L(g, £€) and a transformer.

The two ways of forming an orthogonal block from a
transformer and a ladder/lattice block are shown in Fig. 5.
While it is evident by inspection that that two structures are
equivalent, a proof is given in [31].

The last type of building block is a length-m delay line:
3. Recall that delay lines are paraunitary and hence energy-
preserving. In closing we also mention that a sign flip can
be inserted on the output of the transformer or delay line
without affecting the energy preservation.

2.2 SISO Recipe

We have now assembled a kit of basic energy-preserving
building blocks: delay lines and various realizations of uni-
tary blocks U(g). Now we can use the rules in SEC. 1.5 to
combine these building blocks into time-varying energy-
preserving Schroeder allpass filters and more complicated
related SISO structures.

To produce a SISO energy-preserving Schroeder allpass
filter we simply terminate one of the blocks U(g) (com-
prising a normalized block or a transformer and a lossless
ladder/lattice block in either order) on delay line. Using the
notation of SEC. 1.4, this structure is defined by F (U (g), ™)
and shown in Fig. 6(a). All possible realizations of this
structure have the difference equation

yn] = glnlx[n]
+—DD“”] (x[n — M] —g[n — Mly[ln — M]) .

gln—M]

19)

On the right side of Table 1 the difference equation co-
efficients for the non-stabilized structures that result from
omitting the transformer are shown—notice that they are
quite different. As an example, realizing U(g) as a 2-mult.
(Type 1, Fig. 4(g)) with the transformer “outside” gives the
signal flow graph shown in Fig. 7(a).
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Fig. 6. Three examples of forming energy-preserving Schroeder
allpass filters from the building blocks.

Using the nine different realizations of L(g, &) and the
two possible transformer locations leads to the 17 different
new structures shown in Fig. 8. The normalized (Type V)
structure has no distinction between the transformer loca-
tion because in that case € = 1/& = 1. All of these structures
are energy-preserving under time-varying g.

The same approach can also be used to create more elab-
orate structures. For instance, replacing the delay line with
the cascade of a delay line and another Schroeder allpass
filter, F(U(go), F(U(g1), 8™) 8™°), as shown in Fig. 6(b),
yields an energy-preserving nested Schroeder allpass fil-
ter, shown in Fig. 7(b). Continuing the process further
by F(U(go), F(U(g1), F(U(g2), 82)8"")8™), as shown
in Fig. 6(c), yields an energy-preserving doubly nested
Schroeder allpass filter, shown in Fig. 7(c). In these ex-
amples we have continued illustrating the unitary matri-
ces with two-mult. (Type I, Fig. 4(g)) blocks but empha-
size that any of the 17 proposed structures may be used
instead.

2.3 SISO Structures Discussion

None of the 17 structures shown in Fig. 8 appear to have
been reported before. The implementation costs of each fil-
ter structure—in terms of multiplies (x), adds (+), sign in-
versions (inv.), and delay registers (8)—are shown in Table
2. The two-multiplier and its transpose have the same cost
as the normalized structure. The three and four-multiplier
structures and their transposes are more expensive. The
one-multiplier and its transpose have the fewest multiplies,
although they require an extra add and a sign inversion
compared to the other structures.
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(a) Single Schroeder allpass filter. (b) Nested Schroeder allpass filter.

+,£° +81 +g&
1= 7 7

> | be [
80 81 82
x—> 50 > 5" >0 52 D> > >y
/|7‘(—,<]—I l/Dgz { I/Dgl l/Dgo

1 D
A -
—20 81 —82

(c) Nested Schroeder allpass filter.

Fig. 7. Signal flow graphs for three energy-preserving Schroeder allpass filters.

name type transformer “inside” transformer “outside”
l-mult.  TII +8 \h\\/i%i i
x B> > D—>Y
i T
(@) -
[-mult.” IV +g = =
xfw >S5 > D—>Y
(©
Vi—g +2 IN1-¢
2-mult. 1 —> //, img |—|>—)|
*y P[5 | P>y
<7 LQJ 14/1—g2
© = ® = ’
2-mult.” I
3-mult. I
3-mult.” I
4-mult. 11T
4-mult.” IV
Norm. \"

Fig. 8. Proposed energy-preserving time-varying (SISO) Schroeder allpass filter structures.
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Table 2. Implementation costs of proposed filter structures.

Name Type x + Inv. 3 Total op.
I-mult. / I-mult.”  II/IV 3 3 1 M M+7
2-mult. / 2-mult.”  I/1I 4 2 0 M M+6
3-mult. / 3-mult.”  I/1I 5 2 0 M M+7
4-mult. /4-mult.” II/IV. 6 2 0 M M+38
normalized \'% 4 2 0 M M+6

It is likely that the most interesting structures are those
with the lowest cost (1-mult.(™)) and those resembling the
common LTI embodiment (2-mult.(). We leave to future
work any study of overflow, noise, and sensitivity of the
different designs, in the spirit of Stilson’s work on studying
the different LTI allpass systems [54].

By ignoring the transformer multiplies we obtain a fam-
ily of 9 different LTI allpass filter structures (not 17, since
the “inside”/“outside” distinction does not apply in the
LTT case). Several were already known in the literature.
The original Schroeder allpass was a 3-mult. version (Fig.
8(1)/(j), w/o transformers). Two-mult. versions were used,
e.g., in the “Sampson box” at CCRMA [45, 55, 56], and
these are the versions (Fig. 8(e)-8(h), w/o transformers)
most commonly encountered in the literature today [7, 11,
44]. Moorer also proposed a one-multiply variant [4] (Fig.
8(a)/(b), w/o transformers). Fig. 8(c)/(d), (k)/(1), and (m)/(n)
appear to be novel.

Taking M = 1, certain first-order versions of these struc-
tures are known in the literature. Fig. 8(a)-8(d) arises as
a consequence of the “multiplier extraction” method [57].
Fig. 8(e)/(f) is known [10, 58]. Fig. 8(g)/(h) has been stud-
ied for its scaling properties [54]. Fig. 8(q) was proposed as
an energy-preserving time-varying first-order allpass filter
[17] and inspired the current work [31].

3 MULTIPLIER SAVINGS

‘We have derived energy-preserving versions of all known
forms of the basic Schroeder allpass filter as well as novel
ones, which can be nested and cascaded while still retaining
their energy preservation property. In this section we point
out some special cases that form filter structures with fewer
multiplies: cascades with identical and inverse gains (SEC.
3.1) and up to four distinct gains (SEC. 3.2), a “leapfrog”
multiplier-sharing arrangement (SEC. 3.3), nestings (SEC.
3.4), and a strategy based on periodic modulation (SEC.
3.5). None of these proposed strategies put any restrictions
on delay line lengths. We assume p = +1 throughout!; p =
—1 appears not to be useful in any of these multiplier-saving
cascades or nestings.

3.1 Identical and Inverse-Multiplier Cascades

For the structures with the transformer “outside,” the
multiplies € (resp. 1/€) appear outside of any feedback loop,
just after (resp. before) the input (resp. output). When two
proposed filters with identical allpass gains g are cascaded

'p is defined in the APPENDIX.
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—80 F8o F8o F8o

<J
+8o _
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~
ai -1 a 1
Dy, > > 1/Dyg,
X _'> D &M an ) D {>_> y
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Fig. 9. An example of multiplier savings in cascades.

the reciprocal multiplies £ and 1/£ cancel out, saving two
multiplies. This holds for Types I-IV. It does nothing for
Type V, where € = 1/ = 1. An example is shown in Fig.
9(a) and 9(b), where all adjacent inverse multipliers in a
cascade of four two-mult. (Type III) structures are elimi-
nated. Although this is a special case it is a very common
one. Most reverbs in the literature employing cascades of
Schroeder allpasses use identical gains for each.?

For 2/3-multiply (Type I) cases and their transposes
(Type II) this property also holds whenever g;1; = —g;.
This occurs, e.g., in one of Schroeder’s original reverbs [1],
which has 5 allpasses in cascade with identical gains, up to
a sign flip: +0.7, —0.7, +0.7, +0.7, +0.7.

In certain cases we can also eliminate pairs of multiplies
by alternating g’s sign as well as alternating between 1-
mult.(T implementations (Type III/IV). If stage i is Type
III (resp. IV), switching to Type IV (resp. III) in stage i +
1 allows the pair of multiplies to be eliminated when g,
= —g;. However no such property holds for the 2/3-mult.
(Type D) or its transpose (Type II).

Outside the reverb context a cascade of many identical
first-order allpasses can be used in string modeling [18].
This previously cost 4 multiplies per sample of maximum
delay: 4N for N stages. The proposed method reduces this
down to N + 2, using 1-mult. or 1-mult.T, cutting 3N —
2)/AN =~ 75% of the multiplies. The example in [18] has
N = 126, so here the proposed method would yield signifi-
cant savings (376 multiplies per time step).

2A summary of the number of allpasses with identical gains in
cascade for various reverbs is shown in Table 4.
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3.2 Generalized Multiplier-Saving Cascades

Generalizing the property from SEC. 3.1 allows us to
perform the same multiplier-saving operation of canceling
adjacent multiplies while not necessarily resorting solely to
identical or inverse gains. Recalling Table 1, notice that &;;
= &; can be satisfied in certain cases by choosing different
types and values for g for each stage, leading to canceled
multipliers.

Table 3 shows a set of functions, fiype, iype;.; ()» Which
choose a multiplier-saving gain g;; for stage i + 1 based
on the gain g; of stage i. flﬁl flﬁ,n’ ij\[,’I, and fin are
multifunctions with positive and negative branches.

Several cases are degenerate in one way or another. First
there is no combination of g; and g, (other than g; = g; 4|
= 0) that allows transitioning to or from the normalized
structure (Type V). Second fi 11, and fi1 1 have domains and
ranges of {0}—they are only valid for the useless case of
gi = 0 (a trivial cascade of two pure delay lines, non-time-
varying). Also, not all gains g; map to a multiplier-canceling
gi+1, restraining the valid domain of the different f().

For example, starting with go = 0.7 can yield a cascade:

Type I:  go[n] = +0.7,

Type III:  g1[n] ~ +0.3245 = fim(go[n]),

Type IV:  g2[n] = —0.3245 = fi,v(g1[n]),

Type It g3ln]l = —0.7 = fiy 1(g2[n]).

As it happens in this example we note that any cascade
will necessarily obey the following two constraints. First,
due to the need for compatible domains and ranges between
stages, Type I and II structures cannot both appear in the
same multiplier-saving cascade, even if separated by other
types. Second, the technique described here never leads to
more than four distinct gain values.

3.3 Leapfrog Cascade

In cases with adjacent cascaded allpass stages with iden-
tical gains there are adjacent branch points or sums. In these
cases, pairs of multiplies from adjacent stages can be com-
bined to reduce the total multiplier count, down to as low
as N + 3 for a cascade of N stages.

An example of this is shown in Fig. 9(b) and 9(c). Note
that in Fig. 9(c) every other stage has been flipped vertically
to keep the signal flow graph planar and easy to read. This
structure resembles the classic “Leapfrog” filter structure
from active filter synthesis [59]. Interestingly, besides the
presence of the two multiplies, at the input and output of
the whole structure, which accomplish the energy normal-
ization, this and the same idea applied to 2-mult.” yield
identical structures to the “delay-sharing” allpass cascades
proposed by Mitra and Hirano [57].

3.4 Nesting

In nesting structures [11-14, 16] we can also eliminate
transformer multipliers. To expose multipliers to their in-
verses we alternate between “inside” and “outside” each
nesting. In a nested structure the delay line is replaced with
the cascade of a Schroeder allpass filter and at least a one-
sample delay, the delay being necessary for realizability,
to avoid a “delay-free loop.” The delay makes it so that 1
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Fig. 10. An example of multiplier savings in nestings.

pair of reciprocal multipliers are not actually adjacent, only
giving us the chance to save 1 multiplier per nesting, not
2. An example of nesting a 2-mult.” (Type II) inside of a
2-mult. (Type I) structure is shown in Fig. 10(a).

Valid gains in nestings are handled very similarly to cas-
cades. However, to save a multiplier in a nesting, we need
to solve &, = 1/, rather than &;,; = &;. The solutions can
be described by Table 3 after simply swapping the columns
for both Types I and II, and III and IV.

Furthermore, similar to the “leapfrog” arrangement of
cascades previously discussed, in cases where adjacent
nested stages with identical or inverse gains also lead to
adjacent branch points or sums, pairs of multiplies from
adjacent stages can be combined to lower the multiplica-
tion count. An example of this is shown for the same nesting
example, in the case that g; = g, in Fig. 10(b) and 10(c).

3.5 Periodic Gain Modulation

An additional restrictive way to save multiplies is to
modulate gains by specific periodic functions. When g[n]
is periodic in M the two transformer multiplies cancel out,
saving two multiplies. This can be seen by considering the
“inside” proposed structures (Fig. 8). An equivalent filter
is obtained by “pushing” &[#n] through the length-M delay
line, giving a composite multiplier £[n — M]/E[n], which
cancels out when g[n] = g[n — M], Vn.

Alternatively, consider (19), the energy-preserving time-
varying Schroeder allpass filter’s difference equation.
When g[n] = g[n — M] Vn, we get Dg[n]/Dg[nfM] =1,
and the difference equation reduces to (34), the difference
equation for a linear time-invariant Schroeder allpass filter.
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Table 3. Gain g, of the (i + 1)th stage that eliminates reciprocal multiplies in a cascade, in terms of the previous (ith) stage’s gain g;.
(Multi)function domains and ranges are shown as {domain} — {range} if different from | — 1, +1[. For the case of nested structures,
swap columns “Type I’ and “Type II,” and swap columns “Type III” and “Type IV.”

Filter structure for the (i + 1)th stage

Type I Type 11 Type III Type IV
Typel fii= =g Sin=0 fim = +82/2— g fiv =—g}/2—g?)
{0} — {0} =1L, +1[ — [0, +1[ ]-1,+1[ — ]-1,0]
Typell fi1=0 Sun ==£gi Sum = —g,‘z/(2 — giz) S = +g,-2/(2 - gl_z)
filter structure for {0} — {0} 1-1, +1[ — 1-1,0] 1-1, +1[ — [0, +1[
the ith stage
Type I fiij, = ++/2gi/(g + 1) flﬁ,u =+2gi /(g — 1) fim = +g Sy = —gi
[0, +1[ — 1-1,+1[ ]-1,0] — ]—-1,+1[
Type IV fiy, = £v28 /(¢ — 1) fion =£v28 /@ + 1D fivn =—g vy = +gi

1-1,0] — -1, +1[

[0, +1[ — ]—-1, +1[

(a) Allpass 1-FDN.
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(b) Redrawn as standard 2-FDN.

Fig. 11. Allpass 1-FDN to standard 2-FDN conversion.

4 SISO STABILITY CASE STUDY

In this section a case study demonstrates how the pro-
posed structures can stabilize an allpass 1-FDN prototype.
Experimental results in [31] show that this structure pre-
serves energy down to numerical precision. Schlecht intro-
duced the idea of rewriting different digital reverb structures
as FDNs [8, 60] so that, e.g., they can be studied using
Laroche’s time-varying stability criteria [61] or concepts
like unilosslessness [53].

Consider a SISO “allpass 1-FDN” in the sense of a stan-
dard 1-FDN augmented with an allpass filter in cascade
with its delay line, with allpass gain g and FDN feedback
gain ¢, as shown in Fig. 11(a). Here the Schroeder allpass
filter is realized by the generalized block (Fig. 4(a)) without
any corresponding transformer. Here the case £ = 1 rep-
resents any realization of the proposed structures and the
cases § # 1 represent others. For instance § = 1/D, would
represent a realization with a classic Type I structure, i.e.,
one un-treated by our proposed techniques.

Assume that we are designing an FDN “reference filter”
[3, 49] or “prototype” [50]—an FDN that is supposed to be
marginally stable, ringing forever with a constant energy
in response to an impulse input. To make a reference filter
whose energy cannot vary over time as g is changed, the
feedback matrix should be unitary. Considering that the
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feedback matrix in the allpass 1-FDN is simply [q], this
means that g = £1.

Rewriting the allpass 1-FDN as a standard 2-FDN in
delay state-space form, as shown in Fig. 11(b), yields

[ as gDt [t A mm
e RN

C=[g&D,], D = [0]. (20)

Again, we would like the feedback matrix A to be uni-
tary. Keeping in mind the already established constraints
lgl < 1 and g = +1, we find that a sufficient criteria for
unitarity of A is & = 1. This means that any of the pro-
posed structures in SEC. 2 (Fig. 8) ensure that varying g
over time does not affect the stored energy in the system.
Considering the weaker constraint of unilosslessness, A is
unilossless for any £. Again keeping in mind the already
established constraints on g and ¢, A is diagonally sim-

. +10 10 .
ilar to [ 0 1]U(g) by P = [0 1/2]. This was shown

for the particular case of a 2-mult.” (type I, § = 1/D,)
Schroeder allpass filter in [53]. In sum, A is unilossless but
only unitary for & = 1.

We can also look at the stability of this system from the
standpoint of [61]. We have shown that the the reference
filter is marginally stable when ¢ = +1; now we contract
that to |g| < 1. Intuitively this should create a bounded-input
bounded-output (BIBO) stable system, just as in the time-
invariant case. We study two cases: the somewhat restrictive
case of all delay line lengths equal to one, for which we
prove BIBO stability using Laroche’s criterion, and the
more general case of delay lines of any length, for which
we have strong evidence of stability but no formal proof.

If we set the delay line lengths m, m’ = 1, we can apply
Laroche’s proof directly. Laroche showed that if the norm
(largest singular value) of the state transition matrix in a
standard state space system is less than one at every time
step, i.e., ||[A[n]|| < 1 Vn, then the structure is BIBO sta-
ble. Setting our two delay line lengths to 1 means that A
becomes identical to the standard state transition matrix.
Unfortunately, as Laroche found in studying a normalized
ladder filter, we find that A has singular values of 1 and g.
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So ||A|| = 1, and we cannot apply this theorem directly to
prove BIBO stability.

However we can instead study a generalization, the norm
of the transition matrix corresponding to two time steps,
and show that the norm of this matrix is less than one,
ie., ||A[n + 1]A[n]| < 1. Setting € = 1 (e.g., using the
proposed Schroeder allpass structure rather than the clas-
sic one), this can be shown using a similar procedure
to the one Laroche uses in the appendix of [61]. Unlike
Laroche, we have not assumed that g[n] = g[n + 1], nor
that A[n] = A[n + 1]. So we achieve the proof of BIBO
stability without any constraint that g does not vary over the
two time steps. In this sense we have also expanded slightly
on Laroche’s proof (which assumes A[n] = A[n + 1]).

More generally, allowing m > 1 and m’ > 1, we ar-
rive at a much more complicated state transition matrix
A € Rintm)xm+m) for which it is not simple to study
||A[n]]| or ||A[n + 1]A[n]] in closed form. Furthermore it
appears that when 2 < m + m, even ||A[n + 1]A[n]| = 1,
so two time steps are not sufficient to prove BIBO stability.
From experimenting with a number of delay line lengths
we conjecture that the number of time steps we must con-
sider to show BIBO stability is H = m + m’, i.e., we would
need to prove that ||]_[Hz(l){ A[n 4+ n]|| < L. Our tests have
shown us that setting £& = 1 is sufficient to achieve this,
while & # 1 is not. This shows that the proposed structures
create BIBO-stable allpass FDNs while classical Schroeder
allpass filters do not. Unfortunately we do not at this time
have a formal proof.

Along these lines we note that Schlecht [8] has shown
that applying a constant gain |[v| < 1 to a feedback ma-
trix that is unitary at every time step is sufficient to stabi-
lize the structure. This is related to but not precisely the
same as setting |g| < 1. Instead it forms a feedback matrix
A= [—\)g vD,

vD, —vg
Schroeder filter by adding frequency-independent “absorp-
tion” [7, 49], giving it a transfer function of (assuming LTI
for a moment for notational simplicity)

], which disrupts the allpass nature of the

m

+ vz~
H(z) =2

= 21
14 gvz=m @1

5 PROPOSED MIMO STRUCTURES

So far we have focused on creating energy-preserving
time-varying SISO systems, particularly Schroeder allpass
filters and generalizations (nestings and cascades). Now
we show how the same techniques can be used to create
energy-preserving time-varying MIMO systems, particu-
larly generalizations of a Gerzon reverberator. Because of
the added complexity of these systems we leave the par-
ticular ways that unitary matrices U(G) are realized and
strategies for multiplier savings for future work but rather
just focus on the structure of several particular versions
of G.
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Fig. 12. Poletti’s MIMO allpass reverberator.

5.1 MIMO Building Blocks

The building blocks of MIMO (N-input, N-output) all-
pass structures are related to those for SISO structures.
Rather than individual delay lines 8" we have parallel ar-
rangements of delay lines A™, m € RV*!,

Rather than using only 2 x 2 unitary matrices as we did
for the Schroeder filters we use larger unitary matrices. In
analogy to the SISO case where an allpass gain with |g| < 1
leads to a2 x 2 unitary matrix U(g) as in (7), in the MIMO
case we have a contraction G € R¥*V | forming a unitary
dilation U(G) € R2Y*?V a5 in (5).

We could also use some of the many other unitary ma-
trix parameterizations that exist and are well known in the
reverb literature [51]. However we do always need to be
mindful of stability, ensuring that the norm of the upper-left
portion of the unitary matrix corresponding to the feedback
is less than one at each time step for stability.

5.2 MIMO Recipe

We can again use the rules from SEC. 1.5 to combine
these building blocks into new energy-preserving systems.
But first we review two reverbs from the literature. Consider
the reverbs [9, 62] of Gerzon (“G,” Fig. 1(b)) and Poletti
(“P,” Fig. 12), which have system matrices

S — —glI 1 Sy — —gl (+ g9l
STla=-ghIgl]" TP |-l gl

These are both particular cases of L(g, &) ® I, where
® is the Hadamard product. Their multiplier structure is
simply a vector version of two versions of an LTI Schroeder
allpass filter: the 3-mult. and 1-mult., respectively.

Sg and Sp are both diagonally similar to U(gI) by
[10]®Iresp [1 0

0D, "LOD,/(1+g)
each matrix is unilossless [53]. However neither one is uni-

i| .(22)

] ® I. This means that

tary.
It can be shown that any system matrix
—§ DgE:|
S = ®1 23
[Dg/s g @9

is diagonally similar to U(gI) by [(l) (E)] ® I.So all system

matrices in the form of § are unilossless but not unitary
unless £ = 1. Although these structures (with & # 1) would
not enjoy good energy-preservation properties under time-
varying g, we mention them because they should work fine
for LTI applications and appear not to have been widely
reported, except for Gerzon’s original and Poletti’s.

This allows all of the structures presented in the earlier
SISO allpass section to be readily converted to MIMO form
just by replacing each scalar gain by a diagonal matrix of
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Fig. 13. Forming an energy-preserving version of Gerzon’s rever-
berator from the building blocks.

identical scalar gains, similar to Gerzon’s original concept
[9], but with better time-varying properties.

Similar results hold if the diagonal matrix of identical
gains g1 is replaced by a diagonal matrix of distinct gains
G = diag(go, g1, -- -, gv—1), and the diagonal matrices of
identical gains £I and 1/£1 are replaced by diagonal matri-
ces of distinct gains E = diag(£g, &1, ...,Ey_1) and 2"
In this case any system matrix

_| -G DgE
. .. I 0
is diagonally similar to U(G) by P = [0 =1 ] So all

system matrices in the form of Sy are unilossless but not
unitary unless [g,| = 1, Vn € {0, 1, ..., N — 1}. This
generalizes Gerzon’s approach to a wider class of structures
and also imbues them with the energy-preservation property
under time-varying conditions.

To produce a MIMO energy-preserving system we ter-
minate a block U(G) € R*™>*2M | parameterized by G ¢
RM*M " on a parallel arrangement of delay lines A™,
m € RM*! This is defined by F(U(G), A™), as shown in
Fig. 13(a), and leads to the signal flow graph shown in Fig.
13(b). In the same way that Gerzon’s reverb generalized
Schroeder allpasses, this structure generalizes the proposed
energy-preserving Schroeder allpass structures.

This generalizes Gerzon’s design, replacing the single
gain g with a full matrix of gains G, with G contractive
(1G] < 1). This gives us a system matrix

S=UG) = [Dg DGGTT} : (25)

The big difference w.r.t. (23)—(24) is that we see G,
not G, in the right partition. This S is unitary by construc-
tion; hence the reverberator constructed from it will enjoy
the energy-preservation property. The main reason to care
about more complicated structures like this is that the echo
density will build up faster with a dense feedback matrix
than the diagonal feedback matrices of (23)—(24).

As in the SISO case these can be combined into more
complicated structures, e.g., nestings and cascades [3, 9,
49]. Replacing the parallel arrangement of delay lines A™
with any M x M paraunitary system is common [5]. It
is probably more common than nestings in the Schroeder
allpass filters, since with the classic Gerzon design, pa-
rameterized by g1, it is essentially a parallel arrangement
of Schroeder allpass filters, unless the delay lines A™ are
replaced by a more complicated energy-preserving system
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(classically, paraunitary) to mingle the signals among chan-
nels.

These structures are related to a type of FDN recently
proposed by Schlecht. In [34] he showed how to create M-
input, M-output FDNs with N delay lines that are allpass by
construction. He treats the problem of “orthogonal comple-
tion,” or how create a matrix U € RM+M*M+N) from jts N
x N upper left partition (subject to some admissibility con-
straints on that partition), yielding a structure F (U, A™).
Based on our development here, structures using his “or-
thogonal completion” will be energy-preserving under time
varying conditions as well.

As an alternate to showing that the resulting structures
are allpass due to the rules for combining energy-preserving
systems, we can show that this property holds through al-
gebra. We can begin with the transfer function

H(z) = G + DnZ(2)I + G"Z(2)) 'Dg , (26)

where G is a contraction (|G| < 1) and Z(z) is a parau-
nitary matrix (Z(z)Z(z) = I) with every entry causal (ei-
ther zero or with at least one delay z~!). To show that
this is an allpass transfer function we must prove that
H (z) H (z) = I.Suppressing (z) for compactness, we have

HH = G"G + G"H, + H,H, + H,G 27)
where

H, =DgZ(I + G"2Z)"'Dg,

H,=Dg (I + ZG)71 ZDgn.

Using the fact that Dgn G = GDg and Dg G = G'Dgn
[63] to rearrange H,G and G" H,, all terms on the right-
hand side of (27) are now of the form Dg ...Dg. Then

subtracting GG from both sides of the unitarity condition
I = H () H (2), we come to

I -G"G =G"H, + H,H, + H,G

=Dg[(I +ZG)'ZG

+ (I+ZG)'ZDL.Z(I + G"'Z)™

+G"Z(I +G"Z) D¢ . (28)

Now, since the left-hand side of the above is simply D%,
if we left-multiply everything by (I + Z G)D(_;1 and right-
multiply everything by Dg'(I + G"Z), we have

I+ZG+G"Z+2GG"Z (29)
=7ZG+ZGG"Z + ZDZGHZ +GH"Z + ZGG"Z.

Dropping the common terms, left-multiplying by Z,
right-multiplying by Z, and substituting Dgn by its defi-
nition yields

I=1-GG" + GGH [ ]

6 MIMO STABILITY CASE STUDY

In this section we present a few case studies demonstrat-
ing how the proposed techniques can stabilize reverberator
structures under time-varying conditions. Building on the
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Fig. 14. Allpass N-FDN to standard 2N-FDN conversion.

results of SEC. 4, we show how a particular allpass 2-FDN
prototype, which was previously shown to be unstable un-
der time-varying coefficients, is stabilized. We also show
an allpass N-FDN prototype, for general N, is stabilized
using the proposed technique.

6.1 Correcting a Particular 2-FDN

In [8] Schlecht shows a particular allpass 2-FDN with
time-varying gain g, which is not BIBO stable. In this
section we show how the proposed techniques correct it,
ensuring that it is BIBO stable.

Consider the allpass FDN shown in Fig. 14, with N = 2,
(1) (l)] all delay line
lengths mg, my, m;,, m| = 1, and allpass gains

with the unitary feedback matrix Q = [

PAPERS
The state transition matrix is thus
0 81 0 Dgl E]

A — gO 0 Dgo EO 0 (3 1)

Dgo/EO 0 —&0 0
0 Dg/E 0 —-g&

For a 2-mult.” Schroeder [8], ||A[~]|| > 1, Vr and
|A[n]A[n + 1]|| > 1, Vn. So the structure is not BIBO sta-
ble, nor is it marginally stable—the property that it should
have as an FDN prototype. Furthermore, considering two
time steps (as Laroche does in the appendix to [61]) is also
not sufficient to guarantee BIBO stability.

Now, by setting &y, & = 1, i.e, using the pro-
posed Schroeder structures from this article, we obtain
|A[n]]] = ||A[r]A[n + 1]|| = 1, Vn. So the structure is
now marginally stable, as an FDN prototype should be,
under these particular time-varying coefficients.

Looking at A instead from the perspective of unitarity, we
can see that when £, &1 = 1, we obtain A = [ g IOZ]U(Q)’
where G = diag(go, g1). That is, A is the product of two
unitary matrices and therefore unitary.

6.2 Correcting a General Allpass N-FDN

Consider a MIMO “allpass FDN” in the sense of a stan-
dard N-FDN augmented with Schroeder allpass filters in
cascade with each of its delay lines, with diagonal matrix
of allpass gains G, FDN feedback gain @, and allpass de-
fects E = diag(£o, &1, ..., En_1), all € RV*N a5 shown
in Fig. 14(a). As in the SISO case (SEC. 4, Fig. 11(a))
the Schroeder allpass filters are realized by the generalized
blocks. Assuming that we are designing an FDN reference
filter, we require that @ is unitary.

Rewriting the allpass N-FDN as a standard 2N-FDN, as
shown in Fig. 14(b), yields the delay state space system

[ QG QDgE ! ~ [mm]
A_[DGE_I _G ]’B_[O]W_A[ ]u
C = [g0 0 ED,, 0], D = [0]. (32)

—

)

Keeping in mind the usual constraints on G and || Q|| =
1, we find that a necessary and sufficient criteria for unitar-
ityof Aisg, =1,Vne {1,2,...,N — 1}. So, using any
proposed Schroeder allpass structures from SEC. 2 (Fig. 8)
for each of the N Schroeder allpass filter structures used
here is sufficient to make an energy-preserving reference
filter, no matter how each one’s gain is varied over time.

Considering unilosslessness A is unilossless because it is
0

diagonally similar to [ %)2 7 ]U(G) by P = [6 EO_] ]
Contracting the constraint | Q|| = 1to || @| < 1, we can
make similar comments as in the SISO case (SEC. 4). In this
case we conjecture that stability can be proven by consider-
ing H = max,(m, +m)),ne{0,1,...,N — 1} time steps,
i.e., proving ||]_[2:;1 A[n + ]| < 1. Tests have shown us
that setting &, = 1,n € {0, 1, ..., N — 1} appears to be suffi-
cient to cause this. This shows that the proposed structures
create BIBO-stable allpass FDNs while classical Schroeder
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allpass filters do not. Unfortunately we do not at this time
have a formal proof.

We can also make the same comment as in the SISO case
(SEC. 4) about the guaranteed stability imbued by contract-
ing A by a gain |v| < 1. This will guarantee BIBO stability
and is closely related to though not identical to using a
contractive Q in an allpass FDN. And, again, this would
cause a certain disruption to the allpass response of each
Schroeder allpass filter.

7 CONCLUSION

In this article we have presented novel generalizations
of the (SISO) Schroeder allpass filter and (MIMO) Ger-
zon allpass reverberator, which, unlike the classic versions,
are energy-preserving under arbitrary time-varying coeffi-
cients. These algorithms should be useful in artificial re-
verberation designs and audio effects like choruses and
phasers, which involve time-varying allpass filters.

For the (SISO) Schroeder allpass filters we have also re-
viewed various properties of the LTI versions, derived a few
new ones, and shown several strategies for saving multipli-
ers in cascaded and nested structures. As with the classic
Gerzon design our proposed MIMO systems are allpass by
construction, although we have extended the classical de-
sign space significantly to include systems parameterized
by any contractive feedback matrix G, and they now en-
joy good time-varying properties like the Schroeder allpass
filters.

As a case study, we have examined 1-FDNs and N-FDNs
whose delay lines have been augmented with cascaded
Schroeder allpass filters. By redrawing these as standard
2-FDNs and 2N-FDNs we showed that the proposed struc-
tures improve on the classic design by rendering the proto-
type structure’s feedback matrix unitary. Introducing some
losses, we find that these structures are BIBO stable under
time-varying coefficients, though a formal proof is left to
future work.
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APPENDIX: LTI SCHROEDER ALLPASS REVIEW

In this section, after reviewing the basic definition, we
derive a number of properties of the Schroeder allpass filter
in the time (A.1) and frequency (A.2) domains. The transfer
function of the LTI Schroeder allpass filter with real-valued
inputs and outputs is

g+z M

Y@
T’

H(z) = X0

(33)

where g € R is the “allpass gain,” p € &£ 1 is the polarity,
and M € Z, is the delay-line length. For stability, |g| < 1.
This filter can be implemented by the difference equation

yln] = p(gx[n] + x[n — M]) — gy[n — M]
(34)

Values used for Schroeder allpass gains in known reverbs
and related structures are shown in Table 4. In practice,
certain values of g are commonly used, including g = 0.7,
1/¢ ~ 0.618 (the inverse of the “golden ratio” [65-67],
o=+ \/g)/Z ~ 1.618), and 1/2. In practice, positive
values of g are used more often than negative values.

PAPERS

A.1 Impulse Response

Here we study the impulse response of the Schroeder
allpass filter, including an energetic analysis (A.1.1) and an
analysis of its effective length (A.1.2).

The impulse response, at discrete time index n, of the
time-invariant Mth-order Schroeder allpass filter is

0, n<0or n/M¢Z
hin] = {08, n=20
o(—g)" (1 — g%, n/MeZand n > 0
(35)

This impulse response is only non-zero at time indices
that are integer multiples of M. It has a single pulse of
amplitude g at time n = 0 and an exponentially decaying
tail starting at time n = M (oscillatory for positive g and
unipolar for negative g). The exponentially decaying part is
bounded by an envelope

hemln] = gl ' (1 — g%). (36)

For n > M the maximum possible value of Ay [1] is

2M(n — M)
N

37
(n+ M)z

henv,max [n] =

For n < M the envelope is unbounded as |g| — 0. At time
n > M, heny. max[7] 1s obtained by

n—M
n+M

A family of impulse responses with various gains g are
shown in Fig. 15. In each case A[n], the impulse response
itself is shown with stems, /e,y [72] is shown with a solid line
in the region where it is valid and a dashed line elsewhere,
and Aeny max[72] 1s shown with a dotted line. For illustrative

Zenv,max[11] = (38)

+] T .
O +3/4 + 3 ‘ 1
< +1/2 ¢ ) , 1
Q .
é +1/4 + T
g 0 :
g —1/44+ 1 2 1
é ~1/2 % igmple index n (xM) L /
g ol s g _
3/4 =-1/p~ 0618 | g

‘T = 1 g=

=—1/v2 = —0.707

Fig. 15. Schroeder allpass filter frequency response. The center and center bottom panes show phase response ®(w) and group delay

D(w) responses for g € { — 0.99, —0.9, —0.8, .. .,

+0.8, +0.9, +0.99}, for any 1/M of the frequency range, w € [2nm/M, 27t(m + 1)/M].

The left panes show representative curves for g = %1 and definitions of extremal group delay quantities. The way these quantities vary
according to |g| is shown in the lower right panel and the phase response at w = 27t(m + 1/4)/M is shown in the right pane. The top pane
shows the relationship between g and break frequency wy,. The z-plane poles and zeros are also shown inset, where the unit circle |z| =

1 is shown as a solid line.
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Table 4. Summary of cascaded and nested Schroeder allpasses in reverbs and related applications. In the notation ” g(x¢) in the gains
column, c represents number of allpasses in cascade, ¢ represents how many times that cascade appears in the structure, and 7 is the
nested allpass filters. The last column indicates the sign convention used in each reference; the values shown are (re)written using the
“positive sign convention.” Reverberators below the line involve neither nestings nor cascades but are included to further illustrate

common values of g.

Author / ref Name Gains +
Schroeder and Logan [1] “colorless” {0.7,50.7, —0.7} -
Cook and Scavonne [67] PRCREV {20.7} —
Chowning [10] JCREV {;0.7} +
Chowning [10] SATREV {;0.7} +
McNabb [68] NREV {;0.7} +
Sheeline [69] KipREV {40.7} +
Wakefield [10] Freeverb {40.5} +
Barr [70, 71] FV-1 demo {,0.5 x 4} +
Dattorro [44] Plate {,0.75, ,0.625} +

Gardner [11]

Small Room
Medium Room

0.4, 0.60.3’ 0.40.1
{0.7, 0450'3, 0460'3, 05}

Large Room {20250.5, 0250.5, ,0.3} —
Holm-Rasmussen et al. [66] Filt. VN Rev. {7(1/¢) ~ 0.618} +
Vilimiki et al. [72] Filt. VN Rev. {40.7} +
Fagerstrom et al. [41] (Allpass) FDN {70.7 x 16, 32} +
Griesinger [73] Schroeder AP Net. {70.62} —
Parker and Vilimaki [65] AP chain {:(1/)} +
Viliméki et al. [20] Spectral delay filter {20061 el < 0.9 +
Pakarinen et al. [18] String model {1268}, 18] < 1 +
Bai and Chen [14] Triple nested (TMH-04623 _ () 5922} -
Bai and Bai [15] Triple nested OV -088 _ 0.77765} -
Ahn and Dudas [16] Inharm. resonator {*0% £0.8} +
Jot and Chaigne [3] Series allpass {;1/¢} -
Adriaensen [10] Zita-Revl {£0.6 x 8} +
Vainanen et al. [5] Late reverb. {0.5 x 4, 8} —
Viindnen [6] Late reverb. {0.7 x 6, 8} —

purposes the impulse responses are shown with p =1 and M
= 3; changing p would only change the sign and changing
M would only change the number of zero-valued samples
between pulses.

A.1.1 Impulse Response Energy Analysis

Here we analyze the energetic properties of the LTI
Schroeder allpass filter’s impulse response, including its
total energy, its “center of gravity” in time, an energy-based
length metric, and properties of particular gain values.

The energy Egirect in the “direct path” (n = 0) is

0
Egire = Y _ (h[n])* = (h[0])* = g* . (39)
n=0

The energy Ery, in the recirculating part (n > 1) is
[e.¢] oo
Epp =) (hinl’ =(1—g?P ) ¢ =1-g". (40)
n=1 =0

They sum to unity, confirming energy preservation:
Eiot. = Egirect + Erp, = 1. (41)

Eldirect> Etp, and Eyy, are shown in Fig. 16(a) in solid lines
corresponding to the right vertical axis.
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The “center of gravity” of the direct path is at ngjrect = O.
The “center of gravity” of the recirculating part is at

D ST YD 9 e 1
nfp = S ki) M S, g = Ml — g2 . (42)

From this we can see that the “central time” [75, 76],
i.e., the “center of gravity” of the entire impulse response,
is always centered at n = M

" _ Ndirect Edirect + 1. Erp. Y, 43)
center — - .
Egirect + Etp.

This also means that ngp = 2M = 2ncener When g =
1 /ﬁ. Ndirects Nfb.,» and Reener are shown in Fig. 16(a) in
dashed lines corresponding to the left vertical axis.

We can identify a few interesting critical values of g,
which are commonly used in practice. To equate the en-
ergy in the direct path and the first reflection, we solve |g]
=(1—g*)byg=%2/(1++/5)==%1/¢ ~ +0.618. This
also minimizes the impulse response’s peak value. To set an
equal energy between the direct path and the entire recircu-
lating part, we solve g2 = 1 — g2 by g = +1/+/2 ~ 0.707.
This also establishes a constant decay rate throughout the
impulse response (solving g/(1 — g*) = 1/g), i.e., it aligns
the pulse at n = 0 with the exponential decay of the rest of
the impulse response.
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A.1.2 Impulse Response Effective Length

Although the energy of the Schroeder allpass filter’s im-
pulse response always has its center of gravity at n = M,
the decay time still varies. Although IIR filters ring forever
we can calculate the energy-based effective length (EL)
[76, 77]: the time it takes for a certain percentage P of the
impulse response’s energy to pass. The EL #np is the small-
est non-negative integer that sets the accumulated energy
E4 higher than P percent of the total energy

np P
Ealnpl = Z}“’”“ > Ep=1F. (44)

Adapting the method of [76, 77], we find the accumulated
energy E4[n] and EL np of a Schroeder allpass filter as

Eyln) = g2 (1 + G0 ) 45)
np =M [ R2O=LA00 e | (46)

where | - | and [ - ] are the floor resp. ceiling operators.
The value of P that maximizes n', (np, without the ceiling
operation) for a certain g is

(82-Dlog(1-g?)—¢? log (s2)
Prax(g) = —100(6 g - 1) , 47)
which is realized for
gz
nP.max(g) =M 5 - (48)
l—g

To find the value of g given a certain np max, we have

g =1 _nema/M (49)
14 nP,max/M )

np for various P and np n,x are shown in Fig. 16(b), where
the traces all have slight vertical offsets for legibility. Notice
that we cannot really assign one particular EL to a Schroeder
allpass filter with a particular gain g—the length always
depends on the setting of P. Similarly the value of g that
maximizes np also depends on P.

A.2 Frequency Response

In this section we give the important frequency-domain
properties of an Mth-order Schroeder allpass filter’s magni-
tude response (A.2.1), phase response (A.2.2), group delay
(A.2.3), and poles and zeros (A.2.4).

A.2.1 Magnitude Response

Evaluating the transfer function (33) at z = e 1
g+ e—jcuM pefju)M (1 + geJrju)M)
1 + ge—ioM 1+ geioM

HE*) =p (50)

and noting that |pe 7°¥| = 1 and |1 + ge M| = |1 + ge 1*¥|
verifies that Schroeder allpass filters have a flat unit mag-

nitude response:

|HE)| =1 |X(@)| = |Y(®)

Vo eR. (1)

482

PAPERS

Eiot. = Edirect + Etb.
10 : 1.0

o1 4 - iz /1 0.9
b, = ‘

21 % Ny | 108
_ ) ‘
2 4l K2 [ 107
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0 Ndirect .
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(b) Effective length.

Fig. 16. Schroeder allpass filter energy analysis.

According to the discrete-time Parseval’s theorem for
any signal s[n] and its transform S(w),

[0¢] 1 T
2 sl = | IS(@)do, (52)

n=—0o0
(51) implies, in the time-domain [10, p. 74; 17]:
[ly[-1ll = llx[-1ll, for any input sequence x[n] . (53)

This is equivalent to what we found in (41). Since the
filter output’s energy is equal to the filter input’s energy, we
say that it is “energy-preserving.”

The property (53) can be considered for time-varying
systems as well. An energy-preserving time-varying allpass
filter should satisfy (53) for a time-varying gain, and (51)—
(53) for a non-time-varying gain (LTI case).

A.2.2 Phase Response
The phase response ©(w) = ZH(el®) is [78]
— in (wM) +1
O(w) = 2 arctan (%) —oM+n5=.  (54)
For g # 0, the phase response has inflection points
(%@(m) =0) at w=mm/M, m € Z. It always trends

downward, i.e., %@(w) < 0, o € R. Swapping the polar-
ity of p only adds or removes an offset of .

J. Audio Eng. Soc., Vol. 69, No. 7/8, 2021 July/August



PAPERS

The frequency at which the phase response falls to 7/2
lower than its dc response is called the “break” frequency
wp [10], i.e., O(wp) = B(0) — 1/2, and depends on g by

1
wp, = —2arctan <—) _I . (55)
g 2

The gain g, that sets the break to a certain frequency m
is

gu() = — cot (g + %) . (56)

In Fig. 17 two particular cases of the phase response for
illustrative values of g = +0.7 are shown in the middle left,
the phase response itself is shown in the center, and the way
that the phase response at the halfway frequencies depends
on g is shown in the middle right.

A.2.3 Group Delay
The group delay D(w) = —%@(Q) is

l—g2

D =
() = T e ¥ 2gcos (@)

M, 57

and is shown in Fig. 17. The group delay is positive for all
frequencies, i.e., D(w) > 0. D(w) is entirely independent of
p. For the case g = 0, where the filter reduces to a delay
line, D(w) = M.

Again, as long as g # 0, the group delay also has in-
flection points (% D(w)=0)at w = wm/M, m € Z, rep-

resenting alternating minima and maxima of D(xtm/M) =
l—g2

TToagte - Specifically,
1—g? 1— o2
Dpeak = max { g 2 } = g 2 (58)
o l1+28+g 1+2[gl+¢
, 1-g° 1-g2
Dvalley = min 5= 5 (59)
EllE2+g?]  1-20gl+g

For g > 0 (resp. g < 0), m € Z ¢ven are minima (resp.
maxima) of D(w) and m € Z, oqq are maxima (resp. min-
ima) of D(w).

The maximum obtainable group delay for each w is

Do) = —— (60)
max\®) = i (M)
obtained by
[sin (wM)| — 1
() = ROPN T 61
Emax(®) cos (M) (61)

Note that gmax (@) = gp(w); the value of g that maximizes
the group delay at a certain frequency is the same value that
sets that frequency as the break frequency. This is shown
at the top of Fig. 17. Dy (tm/M) = oo, m € Z is not
obtainable because, for m € Z, we get

gman (57) = (=1 ()

which are disallowed due to the stability constraint |g| < 1.
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The Schroeder comb filter may also be described by the
ratio F between the minima and maxima of D(w) [1]

Dpeak _ 1+2|g| +g2
Dvalley 1- 2|g| +g2 .

F reaches its minimum of ' = 1 (Dpeak = Dyaiey) When
g=20,and hmg—)i]F = (Dpeak — o0, Dva]]ey — 0). A
given ratio F is obtained by setting

0 F=1

F)= 1-2F+ F . 64
gr(F) n F\/_1+1F>1 (64

Because H(z) has real-valued coefficients, it is Hermi-
tian, H(z) = H(—z), meaning that |[H(e®)| has even sym-
metry and ®(w) has odd symmetry around w = 0. On
account of the delays z7¥, H(ei‘”)| and ®(w) also have
the same symmetries around o = tm /M, m € Z. D(w) is
even symmetric around w = wm/M, m € Z.

An interesting critical point is

F =

(63)

l—g2
eQ~=1+g2

the group delay for which D(w) is equal regardless of a sign
flip of g, which occurs at ® = m + #, n e Z.

In Fig. 17 the definitions of Dyax, Dpeak, and Dygiey are
shown on the bottom left for two particular illustrative val-
ues of g = £0.7; the group delay itself is shown in the
bottom center; and the ways that Dyeak, Dyalley, and Deg,

vary according to |g| are shown on the bottom right.

M, (65)

A.2.4 Poles and Zeros

The poles (z = p) resp. zeros (z = g) of a Schroeder
allpass filter [35] with a length-M delay line come from
solving the numerator resp. denominator of (33)

M=—g or  zM=—1yg (66)
which gives

P = (—g)Me T me{0,1,..., M —1) (67)

Gm = (—1/)"Me™ e {0,1,..., M —1}. (68)

Alternatively these poles and zeros can be represented
by their magnitudes and frequencies as

Pm = |pm|e_jépm and qm = |qm|e_jéqm P (69)
where
|pml = 1gI"™  and |gm) = 11/g1'™ (70)
4pm = qu = 2nm/M + a, (71)
with

_ {n(sgng +1)/2, M odd (72)

m(sgng + 1)/2M, M even °

It is well known that |p,,| = 1/|g,| and Zp,, = Zqpm, i.€.,
the poles and zeros are distributed uniformly in frequency
and placed reciprocally across the unit circle.
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g to set @y, or maximize Dy (@)

+1 7 i
e \\
M fE4 .
wa / - ‘\\\
E 0 )
%0
-1/2 ¢4
-1
_ +mq phase res onse
E4n/2 1
R
b
+ —m/2 1
@ £<0
—n t { t
D extrema
_q_z Dpe‘dk
E 100§ Thsse TR ot e et e et L
s =
Z
Q
m m+‘—l‘ m+% m m+£ m+% m—&-f—1 m+1 0 ,% % % 1
o Q2r/M),me Z Frequency @ (27/M rad/s), m € 0,1,... .M — 1 allpass gain magnitude, |g|

Fig. 17. Schroeder allpass filter impulse responses (in red) for various gains g € +{1/2, 1/¢, 1/+/2, 0.9}, all with p = +1 and M = 3.
Blue solid lines represent /.y, the decaying bound on each impulse response. The black dotted line Agpy max is the maximum value that

heny can take for any value of g.

The pole magnitude expression (70) directly gives us forg € +{1/2,1/¢, 1/4/2,0.9} and M = 3 are shown inset
the Schroeder allpass filter’s stability criteria—to keep the  for each plot in Fig. 15. The unit circle is shown in a solid
poles inside of the unit circle (|p,,| < 1,m € {0,1,...,M —  line and the pole and zero radii and magnitudes are shown
1}) we require [g| < 1. in dashed lines.

Representative pole-zero plots illustrating these concepts
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