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ABSTRACT

Headphone design has traditionally focused on creating a frequency response to make commercial stereo audio
sound more natural. However, because of the sensitivity of spatial hearing to frequency-dependent cues, binaural
reproduction requires headphones’ target spectrum to be as flat as possible. Initial attempts to equalize headphones
used a naive inversion of the headphone spectrum, which degraded binaural content because the headphone transfer
function (HpTF) changes each time headphones are re-seated. Many different algorithms have been proposed to
improve binaural equalization, each of which has been tested over a limited sample of HpTFs. The present study
gathered 1550 HpTFs from different institutions into a single dataset for large-scale comparisons of equalization
algorithms. A numerical metric was designed to quantify auditory perception of spectral coloration from ’ringing’
peaks in the post-equalization HpTF. Using this metric, eight of the most prominent equalization methods have been
compared over the aggregate HpTF dataset. High-shelf regularization is shown to outperform all other equalization
techniques using either individualized or averaged input spectra. In addition, high-shelf regularization without
individual measurements gives less average coloration than direct inversion using individualized equalization.

1 Introduction

For commercial stereo audio, it is not desirable to
achieve a completely flat headphone frequency re-
sponse [1, 2, 3], but for binaural rendering a transpar-
ent headphone response is important as a flat response
presents a neutral starting point for accurate render-
ing of the head-related transfer function (HRTF) of
a virtual auditory event. Previous work suggests that
flatter frequency responses may contribute to improve-
ments in sound externalization [4], auditory distance
perception [5, 6], and sound localization [7, 8].

The headphone transfer function (HpTF) consists of

low-frequency resonance effects primarily from the
headphone cups and the high-frequency resonances of
the listener’s pinnae [9, 10, 11]. Early research into
HpTFs assumed that the headphone response could be
completely removed via a direct inversion filter [12,
13], given by

H−1(ω) =
1

H(ω)
. (1)

However, in practice the refitting of headphones by the
same listener leads to significant geometric changes at
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small wavelengths, leading to shifts in the HpTF’s high-
frequency notches [14, 15, 16].1 These differences can
be immediately audible [18], but directly inverting the
old measured response at these frequencies leads to
large peaks in the inverse filter which introduce dy-
namic range loss but no longer equalize the measured
notches.2 In addition, these peaks are much more no-
ticeable than the notches they are intended to equal-
ize [20, 21]. For these reasons, more recent headphone
equalization approaches use some form of averaging,
discrimination, or regularization to reduce gain at high
frequencies [22, 23, 10, 24].

Pralong and Carlile reported large HpTF differences
between subjects above 4 kHz, leading them to rec-
ommend individualized headphone measurements [25].
However, 4 kHz also marks the beginning of high-
frequency HpTF variations introduced by re-seating the
same headphones for the same subject [22, 10]. Thus
inter-subject and intra-subject variations are highly in-
tertwined, making it difficult to account for one and not
the other. Since many of the headphone equalization
algorithms mentioned above reduce their gain at high
frequencies, they may also reduce some of the benefits
from individualized equalization. Since an averaged
filter only accounts for the resonance of the headphones
themselves and not individual anthropometry [23, 24],
it is an open question whether individualized measure-
ments are necessary if the primary goal is to reduce the
presence of ‘ringing’ distortion peaks at the listener’s
eardrums [26].

2 Background

2.1 Existing Headphone Equalization
Algorithms

The headphone equalization algorithms in use today
use a variety of frequency discrimination methods to
achieve a natural listening condition. It is possible to
hand-tune equalizing peaks and notches to a single fit-
ting of headphones to achieve good results [27], but
because of the time-consuming nature of this approach,
most equalizations try to achieve a good inverse fil-
ter which will not require additional tuning by the user.

1Some variability within headphone transducers is also present,
but these are much smaller than the variation within the measured
HpTF [17].

2In-ear headphones display smaller intra-subject variability if they
achieve a complete seal [19], but they also induce greater listener
fatigue, making them less desirable for many binaural applications.

These techniques tend to look for different ways to min-
imize the most extreme peaks in the frequency response
of the inverse filter.

In particular, these include a frequency-domain peak
compression algorithm [22], a statistical approach in-
verting the 95th percentile of each frequency bin’s mag-
nitude for a set of HpTF measurements [10], and a
variety of frequency regularization methods, with fixed
or adaptable parameters [23, 28]. While all of these
algorithms have the same goal (i.e. the reduction of
large high frequency peaks), their approaches vary, and
in general their parameters have been hand-tuned using
informal listening tests over small databases of HpTFs
measured at different laboratories.

Using the Spatially Oriented Format for Acoustics
(SOFA) [29], we have created a new data format for
HpTFs and consolidated many of the existing HpTF
databases into a single publicly available dataset with
1550 HpTFs [30]. This allows the large-scale compari-
son of different algorithms and input parameters under
a variety of different conditions.

2.2 Peak Error Metric

Since the reduction of ‘ringing’ distortion peaks is
the stated objective of all the different equalization
algorithms listed, it makes sense to rank these al-
gorithms based on the amount of such peaks in a
large number of HpTFs after equalization using each
method [26]. Given an input power spectrum H, we
create two smoothed versions of the spectrum: one
coarsely smoothed version using full-octave smooth-
ing, Hc, and another finely smoothed version using 1/48
octave smoothing, H f . Using these we first calculate
the difference spectrum Hd = H f −Hc.

All peaks on Hd are located by finding changes in the
sign of the gradient of Hd . From this list of peaks,
peaks smaller than a threshold are removed to account
for signal noise. We use a threshold value of 1 dB
to find perceptually significant peaks, similar to [24].
The peaks are sorted in order of decreasing height, and
smaller peaks within ± 1/6 octave of a higher peak are
removed. This prevents the over-counting of doublet
or triplet peaks above the threshold value, which cause
broadband coloration rather than the ‘ringing’ associ-
ated with narrow peaks. As shown in figure 1, this
increases the numerical contribution of narrow peaks
by emphasizing their difference with the spectrum im-
mediately around them.
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Fig. 1: Example post-equalization difference spectrum
and detected peaks.

From these selected peaks, we remove those for which
the original input spectrum H is negative (0 dB is de-
fined here as the average level between 100 and 4000
Hz). This leaves a vector of peak locations p, which is
used to calculate the peak error metric Epk+ by

Epk+ =
∑p H(p)

3[log2( fhigh/ flow)]
, (2)

where the denominator represents the number of third
octave bands within the frequency range of the spec-
trum.3 Using values of flow = 50 and fhigh = 21000,
this amounts to a division by about 26. This scales most
Epk+ values from 0-1, where 0 represents zero peak dis-
tortion, and 1 dB per third octave is representative of
the most distorted equalization spectra.

3 Cross-Comparison for Single
Subjects

Using this metric, we can begin to visualize the effect
of naive inversion on a set of HpTF measurements for
a single listener. Figure 2 shows the Epk+ resulting
from equalizing 20 individual measured HpTFs on the

3Calculating the value based on H ensures the contribution of
each peak is continuous, whereas because of thresholding the values
each of Hd(p) could jump from 0 to 1 dB. However, because of the
near-peak rejection within ± 1 dB, this function is not continuous as
a whole, which is important to note when optimizing HpTF filters
numerically.

Fig. 2: Epk+ for 20 HpTF measurements of the same
subject, applied to every other measurement.

same subject by naive inversion of each of the other
measurements. Each row of the matrix represents an
HpTF (1-20) being filtered, while each column shows
the measurement used to produce the inverse filter. Col-
umn 21 shows the results of using an averaged filter
based on all 20 measurements instead.

From this and similar plots for different subjects in the
PHOnA dataset, we can observe several tendencies:

• All Epk+ values on the main diagonal are 0, since
each measurement’s naive inversion gives perfect
cancellation with itself.

• Some measurements are easier to filter than oth-
ers: Rows 1, 6, and 19 for this subject have much
higher Epk+ than others for most filters applied.
Conversely, some rows have fairly low Epk+ re-
gardless of the filter applied.

• Some measurements create a better filters than
others. For instance, measurement 6, despite its
high Epk+ value when filtered, creates a lower than
usual Epk+ when applied to other measurements.
This is perhaps due to the inversion process, as
certain HpTFs with prominent peaks will tend to
create very aggressive filters once their frequency
response is inverted.

• The mean filter (Column 21), based on an av-
eraged magnitude spectrum across all measure-
ments, outperforms any individual inverse filter.
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Because of the superiority of mean filters, many early
efforts emphasized taking many measurements of sub-
ject’s HpTFs to get the best generic spectrum of
the headphones independent of intra-subject variation.
However, when a regularized filter was applied to this
same subject, all Epk+ values in this matrix became 0
(i.e., no peaks above 1 dB were detected in the differ-
ence spectrum), though this was not the case for every
subject in the database. Thus individual measurements
with good regularization may sometimes reduce distor-
tion peaks as well as methods based on an averaged
filter.

4 Methods

After having considered cross-comparisons of this sort
for different subjects, we measured the Epk+ resulting
from different proposed equalization techniques across
the PHOnA dataset. In addition, for each we compared
the result of an averaged filter across all subjects for the
same set of headphones, as well as an individualized
filter which was based on the averaged spectrum for a
single individual with a single set of headphones. This
mean filter was then passed as the input to each of 8
different equalization algorithms:

1. LMS High-Shelf Regularized Inversion [24]

2. Frequency-Domain Peak Compression [22]

3. LMS Regularization Based on Input Spec-
trum [24]

4. “Compare and Squeeze” [31], similar to #3

5. Sigma Inversion [28]

6. LMS Inversion Without Regularization [23]

7. Direct Inversion Only [32]

8. 95th Percentile Inversion4 [10]

Here, algorithms #1 and 2 both seek to reduce equal-
ization peaks above a set value (4 kHz in both cases).
Algorithms #3-5 apply some form of regularization,
but using a smoothed version of the measured HpTF

4The last algorithm actually required a set of multiple measure-
ments, out of which it inverted the 95th percentile magnitude at each
frequency bin. Thus this algorithm was passed multiple measure-
ments, either all the measurements for a set of headphones, or all the
measurements for a single individual with a single set of headphones.

as a target function instead. Algorithms #6-7 apply no
regularization, and algorithm #8 finds a target spectrum
based on the variance across many measurements.

The direct inversion was intended as a benchmark only,
since direct inversion even with a mean filter can still
produce large distortion peaks. All algorithms were
implemented based either on the original authors’ de-
scription or using average parameters built in the Mat-
lab functions sent by the authors of the equalization
methods. Thus no calibrations nor adjustments of the
algorithms were performed since the goal was a com-
parison of a single technique over a large number of
HpTFs measured on different subjects, headphones,
and microphones.

Each measurement in the PHOnA dataset was then
equalized using both an averaged filter, taking the mean
across all measurements of the same headphones, and
an individualized filter, taking the mean across all mea-
surements of each subject for a single set of headphones.
The Epk+ values for all filtered measurements were then
averaged into a final Epk+ value for each case (individ-
ualized/averaged) and each algorithm (1-8). Statistical
evaluation was performed on Epk+ values by a two-way
ANOVA on input filter and headphone equalization
method as factors. Post-hoc analysis with Bonferroni
correction on p-values were provided.

5 Results

The two-way ANOVA revealed a statistically signifi-
cant interaction between input filter and equalization
algorithm for both channels: left [F(7,26096) = 59.3,
p� .001] and right [F(7,26096) = 67.6, p� .001].The
resulting averaged Epk+ values for each algorithm (#1-
8, ordered left to right) and input type are displayed in
Figures 3 and 4 for the left and right channels, respec-
tively. It can be seen that every algorithm performs sig-
nificantly better with input individualized to the listener
than with only the averaged data for the headphones
being used (all comparisons exhibited p � .001).

Looking closer at the results, algorithm #1 (LMS High-
Shelf Regularization) clearly outperformed all the oth-
ers, both in the individualized or averaged case with
statistical significance. When individualized input was
available, this algorithm left less than 0.1 dB/third oc-
tave in the equalized spectrum, by far the least distor-
tion of any of the techniques investigated. Moreover,
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Fig. 3: Averaged Epk+ values for all algorithms, using both individualized and averaged input, left channel.

Fig. 4: Averaged Epk+ values for all algorithms, using both individualized and averaged input, right channel.

the two-way ANOVA reported no statistically signifi-
cant differences between algorithms #3 and #4 both in
the individualized or averaged case, p > 0.99.

However, the LMS High-Shelf Regularization also re-
duced Epk+ to between 0.3-0.4 dB/third octave when
using an averaged input across headphones only. The
red lines on Figures 3 and 4 show the mean Epk+ for

algorithm #1 when using a non-individualized input,
and it can be seen that the averaged input for algo-
rithm #1 outperforms the individualized results of di-
rect inversion for both the left and right channels with
a statistically significant difference, p � .001.
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6 Discussion

In evaluating the final results of the comparison, it is
useful to consider the goals of each algorithm being
investigated: algorithms #3-5 all consider the shape of
the input spectrum as a basis for their own regulariza-
tion parameters, resulting in a less drastic equalization,
while algorithms #1-2 apply a more uniform criteria at
all frequencies above 4 kHz. Algorithms #6-7 apply
no regularization (algorithm #8 is in a class by itself as
it is based only on the variance across measurements,
which will tend to have a regularizing effect at high
frequencies since they experience the most difference
between measurements). In this sense algorithms #3-5
attempt to be more ‘organic’ in their approach while
algorithms #1-2 are a bit more ‘ruthless,’ and the ruth-
less approach clearly results in lower distortion. These
differences were also detected from the ANOVA statis-
tical interaction between input filter and equalization
algorithm.

However, distortion is not the only goal of a good HpTF
equalization: it is a well-known problem that such regu-
larized approaches, which reduce their gain drastically
at high frequencies, end up having a net lowpass effect,
as the natural notches of the physical HpTF combine
with the notches (but no peaks) of the equalization filter
(Fig. 5). It is possible that if we understood the variance
in high-frequency peaks better, it might be possible to
design new approaches to binaural headphone equaliza-
tion which combine the peak-avoidance of the ’ruthless’
algorithms with the better high-frequency content of
the ’organic’ algorithms.

7 Conclusion and Future Work

This study merely compared distortion products in ex-
isting algorithms. However, there are many possibili-
ties for improving the state of the art based on large-
scale data analysis. First, we would like to apply ma-
chine learning techniques to individual algorithms and
their output spectra, using hyperparameter optimiza-
tion techniques for adjusting many input parameters on
individual algorithms to reduce distortion for a single
headphone. Since the Epk+ metric is not continuous,
grid search techniques will be more useful than gradient
descent, which assumes a continuous multidimensional
function.

In addition, since even the ’ruthless’ algorithms still
performed significantly better with individualized data,

Fig. 5: HpTF filtered using algorithm #1 with
Epk+ = 0, but with a net lowpass effect

it is worth further investigating the previously stated
model of “headphone cups affect low frequencies,
while individual differences affect high frequencies.”
While that statement is obviously true, it may be in-
complete: re-seating of the same headphones results in
minute changes to the HpTF spectra at very high fre-
quencies, while the changes resulting from individuals’
pinnae differences involve slightly larger wavelengths
and may occur at slightly lower frequencies on average,
which would explain why the high-shelf regularized
approaches still performed significantly better with in-
dividualized input data. To investigate this, we plan
to perform clustering analysis over peak locations in
the final spectra using both individualized and non-
individualized filters, to provide better data regarding
this point.

Finally, the application of large amounts of HpTF data
might be able to be combined with the HRTFs of lis-
teners in situations where the HpTF and HRTF contain
similar information. Building off the work of Kelly
and Boland [33], if a better database connecting users’
HRTFs and HpTFs could be constructed, it would be
possible to create binaural renderings which build off
the naturally-occurring notches in the HpTF rather than
trying (unsuccessfully) to fill in existing notches and
then superimpose new ones in the binaural rendering.
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