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ABSTRACT

In this paper we study how sound quality is evaluated by different groups of assessors, with different levels of
hearing loss. Formal listening tests using the Basic Audio Quality scale were designed using 22 headphones
spanning a wide range of qualities and sound quality characteristics. The tests were performed with two formally
selected listening panels with normal hearing (NH), and mild (N2) or moderate (N3) hearing loss characteristics.
It is shown that not only do the two panels evaluate the sound quality consistently within each panel, but also
that there are systematic changes in the manner in which hearing loss impacts the evaluation and ranking of the
devices under study. Using this data we successfully train machine learning algorithms to predict the sound quality
for the two assessor type panels. The prediction performance for each panel is NH: RMSE = 7.1+ 3.0, PCC =
0.91+£0.13; HI: RMSE = 8.7 4+2.4, PCC = 0.91 0.12. Whilst it may not be practical to run listening tests with
multiple panels of assessors, we demonstrate here that machine learning based models can be practically and cost
effectively employed to predict the perception of multiple assessor groups rapidly and simultaneously.

1 Introduction vices are individually tuned for the needs of each user

based on the nature of their personal hearing loss. In

In the field of audio there are different perspectives on
how sound quality is perceived. In listening tests we
use different assessor groups for different purposes. For
example in telecommunications ITU-T based listening
tests (e.g. [1, 2]), panels of consumers are employed,
to be representative of end-users. Alternatively, in the
domain of audio codec listening tests, as recommended
by the ITU-R (e.g. [3, 4]), experienced or expert asses-
sors are selected, to represent the most acute members
of the population. The general categorisation of as-
sessors is defined in ISO 8586-1 [5], ISO 8586-2 [6]
and discussed in detail in [7, 8]. Furthermore, in the
field of hearing aids and audiology, hearing aid de-

this field it is well understood that hearing loss has a
significant impact on the perception of sound, sound
quality and intelligibility. Prior to 2012, the evaluation
of hearing aids was primarily performed on an individ-
ual basis. Due to the very individual nature of hearing
loss, assessor panels were rarely employed. In recent
years, assessors with similar hearing losses have been
grouped in panels to take on the challenge of design-
ing devices for hearing impaired users. This will be
discussed further in the next section.

From these observations and other experiences, it is
clear that at a panel level, we can expect different re-
sponses from listening tests due to the hearing acuity or
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expertise of the assessors. In many audio applications it
would be interesting to know how well audio technolo-
gies perform from the perspective of multiple groups of
assessors. For example, it would be interesting to know
what the optimal bit rate would be for naive consumers
and for experts, as potentially the latter group is more
stringent than the former. However, due to the cost
and complexity, it is rare for listening tests to be run
with more than one group of assessors and thus this
comparison is seldom possible.

With the continued development in smart wireless head-
phones, the advent of hearables and the continued rapid
development of hearing aids, we are seeing an increas-
ing overlap of these product categories - e.g. hearing
aids are being tuned to be able to reproduce music and
audio, while smart headphones and hearables are de-
veloped to help the mildly hearing impaired. There is
thus a growing interest to be able to evaluate the au-
dio quality perceived by different assessor groups and
understand whether this is the same for all groups or
not.

With the current development in the field of machine
learning, computing power and tools, it is becoming
increasingly accessible to develop predictive models.
In this paper we thus study how audio quality is per-
ceived by a number of different panels and evaluate
how well the performance from these can be predicted
using machine learning on a modest size dataset.

2 Background

It can be demonstrated that certain aspects of sound
quality are perceived in a commonly agreed manner,
more or less by all people. For example the percep-
tion of loudness will generally be ranked in a similar
manner. These aspects are objective in the sense, that
they are only affected by perception and not subjec-
tive weighting by factors such as cultural or personal
connotations or degree of liking. Ideally, these aspects
can be described in terms of one-dimensional attributes
as illustrated in the sound wheel for reproduced sound
[9, 10, 11]. However, when evaluating sound quality
overall on a single scale, it is less evident whether all
assessors will weight and integrate all the sound qual-
ity characteristics in a similar manner. For example,
for normal hearing individuals many aspects of sound
quality are important including the key attribute fami-
lies such as loudness, timbre, artefacts, spaciousness,
dynamics, intelligibility, etc. However, as hearing loss

increases, certain characteristics become more impor-
tant, such as loudness and intelligibility, whilst other
aspects have less importance, such as distortion or spa-
ciousness. Further discussion of the nature of sound
quality attributes employed by hearing impaired panels,
can be found in Chapter 9 of [8].

In order to be able to robustly and repeatably study how
people perceive sound, we commonly employ groups
of assessors or panels, with similar characteristics. For
example expert assessors are screened for normal hear-
ing characteristics and also their basic aptitude for per-
forming sound quality evaluation. Once selected such
assessors are then trained and assessed for their skill in
performing in different types of perceptual evaluation
tasks.

As hearing loss is very individual in nature, it is more
complex to find groups of assessors with similar hear-
ing loss characteristics. Hearing loss can be conductive
and / or sensorineural in nature and can be charac-
terised by pure tone audibility thresholds (audiograms)
or other more specific traits (loudness recruitment, fine
structure, spectral smearing, etc.). In order to study the
sound perception of different hearing loss groups, we
have set about developing different panel of expert as-
sessors. The IEC 60118-15 standard [12] provides one
way to group assessors based on the simple audiogram.
In this standard several different categories of hearing
loss are defined ranging from mild to severe hearing
losses, as illustrated in Figure 1.

In order to evaluate headphones, hearables and hearing
aids, it is of interest to span a range of hearing losses.
For this study we considered including three types of
assessors with normal hearing (NH), a mild hearing
loss (N2) and with a moderate (N3) hearing loss. In the
research leading to the IEC 60118-15 standard reported
by Bisgaard et al. [13], the N3 group was the largest
of 28244 individuals tests with an average hearing loss
(HL) of 46 dB. The N2 group was the third largest
group with a hearing loss of 31 dB.

3 Experimental setup

In order to study how different panels of assessors
evaluate the sound quality of a range of products, we
selected a range of 20 headphones and two "anchor"
headphones for evaluation. These were recorded on a
high resolution head and torso simulator. The anchor
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Fig. 1: Example of standard audiograms for the flat
and moderately sloping group found in IEC
60118-15[12].

headphones recordings were manually altered to de-
grade the sound quality. A novel design of experiment
were utilised whereby 4 clips (15-35s) were selected
from each of 15 samples (music track). The specific
experimental design is used to ensure that all asses-
sors evaluate all headphones with one clip from each
sample to increase the number of audio files without
increasing the duratio or complexity of the listening
tests - this approach is called pre-augmentation and is
described in detail in [14], with further details of the
tested headphones, samples, etc.In the current study a
second anchor stimuli mid anchor was removed from
the test with the hearing impaired panel, as it was rated
too similar to the low anchor. Furthermore, the hearing
impaired panel (being older than the normal hearing
panel), was spared listening to three samples: Metal-
lica, Jay-Z and Rage Against the Machine. Also to
give them a bit more time per response within the same
test duration. The recorded clips for each headphone
were equalised for reproduction over reference head-
phones. These stimuli were presented to each assessor
using a double blind multiple stimulus presentation test
paradigm and evaluated using a 100-point basic audio
quality (BAQ) continuous quality scale (CQS). Presen-
tation order was randomised for each assessor and the
tests were performed as independent experiments for
the normal hearing- and the hearing impaired assessors.

4 Assessors

For these two experiments we employed a number of
selected and trained expert assessors panels. Since
2008 we have maintained a panel of ~ 25 — 35 trained
expert assessors with normal hearing (NH) characteris-
tics, selected based on the principles outlined in [15].
Additionally, we also have a panel of hearing impaired
assessors following the N3 profile, according to [12]
the selection of which is described in [16]. The panel
consists of ~ 20 selected and trained assessors with an
average age of ~ 70.

Additionally, an N2 panel was developed with an aver-
age symmetrical hearing loss of 38 dB.

For this study the following details summarise the na-
ture of each panel employed:

Normal hearing (NH): n = 20, median age = 36.9,
min = 19.5, max = 58.8; 18 men and 2 women.

Hearing loss group (N2+N3): n = 20 (7 N2 & 13
N3), average HL = 42.1 dB, median age = 73.4,
min = 64.4, max = 86.2; 11 men and 9 women.

The audiograms of the assessors included in this study
are shown in Figure 2.

5 Results

Data from the two experiments were analysed to study
the differences, if any, between the two panels. For the
sake of comparison alone, the normal hearing results
are selected as a point of reference.

Prior to analysis, the data from each experiment is nor-
malised using a two-step z-transform introduced in [17]
and examined for this data set in the pre-augmentation
paper [14]. This transform reduces the variability of in-
dividual assessor differences with regards to difference
in scale usage related to multiple factors.

5.1 Normal hearing (NH)

The normal hearing data is taken as the baseline for
comparison. The average scores for all 20 assessors
for all clip/sample combinations are plotted in Figures
3 illustrating the mean and 95 % confidence intervals.
Note, that the data quality here is very high, leading to
confidence intervals smaller than the dot presenting the
mean. The data extends a bit beyond the BAQ scale as
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Fig. 2: Audiograms of the hearing impaired panel with seven N2 assessors (blue) and thirteen N3 assessors (red)

and the average in grey.

an artefact of the normalisation!. From the data we can
see that the selected headphones span the entire range
of audio quality. The headphones are sorted by BAQ
scores to assist in later comparisons.

5.2 Mild and moderate hearing loss (N2 & N3)

Data for the HI panel are shown in Figure 4. Firstly,
we see that the HI assessors are able to identify the
reference (highest scoring) and the low anchor (lowest
scoring) and that the overall trends look similar to that
of the NH panel, while clear differences in ranking are
also seen. The confidence intervals are small allowing
statistically significant separation of headphones and
an indication of assessor agreement overall.

5.3 Data comparison

To compare the data collected from each panel sum-
mary statistics were calculated and are presented in
Tables 1-2 and Figures 3-4.

Taking the normal hearing data as a point of reference,
the HI panel rates the stimuli in a significantly different

IThe data normalisation proposed in [17] seeks to maintain the
original scale. However for certain data, such as these, the trans-
formed scale extends beyond the original 100 points, due to an
assumption of normal distribution, which for smaller subsets of data
are known to follow a t-distribution with heavier tails, e.g. higher
probabilities at the extremes.
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Fig. 3: Mean values and 95% confidence intervals of
20 normal-hearing (NH) assessors. Averaged
over assessors, samples, and clips. Note that
the error bars for confidence intervals are too
small to show.
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Fig. 4: Mean values and 95% confidence intervals of
20 hearing impaired (blue) assessors. Averaged
over assessors, samples, and clips. Sorted by
normal hearing (grey) mean values. Lines are
3. order polynomial fits.

manner, viewed from several perspectives. We see that
the span of the data from the HI panel is compressed
compared to the NH panel. This suggests that timbral
and distortion artefacts are less significant to hearing
impaired assessors, as for example the low anchor and
similar stimuli are rated higher by the hearing impaired
panel compared to the NH panel. This upwards com-
pression of the scale with hearing loss, is systematic
across system averages.

Additionally, from Figure 4 we can observe that while
the overall trend is similar between the two panels the
manner in which the hearing impaired panel rates the
stimuli still differs significantly . This is further con-
firmed by the correlations between the panels in Table
2. Whilst we do not have data to fully explain the
cause for these differences, it might be hypothesised
that there is a weighting of different perceptual char-
acteristics or attributes for each panel. This would be
logical as it is generally known that with hearing loss
the importance of sound quality characteristics shifts
towards an emphasis upon fundamental characteristics
e.g. intelligibility, loudness, etc. However, this would
require further data to verify, which is beyond the scope
of this study and data.

Panel Min. score  Max. score  Dataspan  Avg. 95% CI
(points) (points) (points) (points)

NH 5.2 105.8 100.6 2.3

HI 29.5 100.5 71.0 33

Table 1: Summary statistics of the data ranges for each
assessor panel.

Comparison MAD RMS
NH vs. HI 0.79 0.79 23.1 26.1

Pearson Spearman

Table 2: Statistical comparison of differences between
the panel data in terms of Pearson correlation
coefficient, Spearman rank correlation coeffi-
cient, mean absolute difference (MAD) and
root-mean square (RMS).

Nonetheless, we can confirm that there are statistically
significant differences in the ratings between the three
panels, which are non-trivial and are worthy of model
modelling and prediction.

6 Machine learning

For establishing a machine learning prediction model of
these two data sets it was decided to use previously suc-
cessful metrics combined in regression models. This
choice was made as training a deep-learning model
would require more data to perform well as was estab-
lished in our pre-augmentation paper using the same
normal hearing data set as in this one [14]. The metrics
with the best performance are described in the next sec-
tion. Besides the ones described here, PEAQ [18, 19]
(in the GstPEAQ implementation [20]) and CPAM [21]
were tested, but not found to improve the model.

6.1 Metrics

ViSQOLv3 [22] is an open source implementation
that merges the speech quality model proposed in
VISQOL with the audio quality model proposed in
VISQOLAudio [23]. It constructs a Gammatone spec-
trogram of each audio input, finds spectrogram patches
with the best alignments and computes a difference be-
tween them using Neurogram Similarity Index Measure
(NSIM) [24]. For the audio quality mode, the NSIM
is mapped to a Mean Opinion Score (MOS) using a
Support Vector Regression model, while for speech
quality a polynomial mapping is used.

AES 150th Convention, Online, 2021 May 25-28
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CDPAM from 2021 by Manocha et al. [25] expands
upon CPAM [21], which is a deep learning model using
a Convolutional Neural Network on raw audio wave-
form. The dataset used for training was constructed
using synthetic distortions that were evaluated by a
crowd sourced listening test. The assessors were asked
to determine if two audio clips are exactly equal or not,
and the dataset is referred to as Just Noticeable Dif-
ferences (JND). The model outputs a distance metric,
where 0.0 indicates no perceptual difference. CDPAM
extends CPAM by including a 3-stage learning process.
The first stage uses contrastive learning inspired by
SimCLR[26] to learn a vector representation of each
audio input, the second stage uses JND training like
CPAM, and a third stage performs fine tuning on a new
dataset of triplets. The output is a distance metric like
CPAM, which outperforms CPAM, especially on large
distortions well outside the just noticeable difference
region.

A metric derived only from the frequency response
was also included. This is inspired by works show-
ing that loudspeaker and headphone preference can be
modelled effectively using simple models based solely
on frequency response deviations (see e.g. [27]). The
overall frequency response of each headphone was cal-
culated by subtracting the spectrogram of the processed
audio by the spectrogram of the corresponding refer-
ence audio. The spectrogram type used was 32-bins
log-mel-spectrogram. The overall frequency response
difference from the reference track was summarised
using Mean Squared Error (MSE). We dub this metric
FreqERR.

6.2 Modelling

Regression models (linear and non-linear) were created
using the three mentioned metrics to predict the listen-
ing tests results. For each audio file (one clip) the out-
put from the metrics and the normalised response (aver-
aged across assessors) is used as input during training.
The predictions of all audio files from the same system
is then averaged to become the estimate of Basic Audio
Quality for that system. The model performance met-
rics used are root mean square error (RMSE), Pearson
regression coefficient, and Spearman rank coefficient.
The evaluation was done with 20-fold cross-validation.
The folds were stratified on system (headphone), such
that samples from the same system does not appear in
both training- and test split. In each fold, samples from

Model  Group RMSE Pearson Spearman
LN NH 9.7+4.1 086+0.22 0.81£0.22
HI 8.7+24 091+0.12 0.89£0.12
GBT NH 7.1+£3.0 091£0.13 0.84£0.22
HI 99+44 0.85+£0.21 0.80+0.27

Table 3: Results of predictive models for each assessor
group and using either linear regression (LN)
or Gradient Boosting Regression (GBT). Per-
formance metrics are root-mean square error
(RMSE), Pearson correlation coefficient and
Spearman rank correlation coefficient.

4 systems were used as test data (~ 25%). The number
of folds was selected such that every systems appears
at least once in the test subset. Results from two types
of regression models are reported: Linear regression
using FreqErr, CDPAM and ViSQOLvV3 (referred to as
LN) and Gradient Boosting Regressor using all metrics
(referred to as GBT). A few other model- and metrics
combinations were also tested, without improvements.

6.3 Modelling results

Using the model structure described in the previous
section, the two assessor groups, NH and HI, were
modelled separately. The results are summarised in
Table 3 as system averaged predictions on the combined
test sets across all folds.

Figure 5 compares the model prediction per system
with the normalised responses.

Two of the largest prediction errors in the NH model is
that of the low anchor, AnchorLow, and the reference,
Ref. These are particular of the test methodology in
which the reference must be correctly identified and
rated at 100 (before Z-normalisation, in a similar man-
ner to the user of references and anchors in standardised
methodologies. See Sec. 5.1) and the low anchor is arti-
ficially generated and easily identified by our assessors
as the artificial system that must be scored low on the
scale. Consequently, the true perceived quality of these
two systems might differ from the collected ratings.
That the model is unable to predict these systems well,
might actually be a good sign and the prediction error
of Gen.EarBuds of greater concern. Due to the position
of AnchorLow and Ref at the extremes on scale, they
were still beneficial to keep in the dataset and improved
the overall modelling.
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Fig. 5: Normalised listening test responses (black/blue circles) vs. model predictions (orange squares), with
95%-confidence intervals. Left: Results for normal hearing panel, using GBT model. Right: Results for

hearing impaired panels, using LN model.

7 Discussion

Using the pre-augmentation approach described in Volk
et al. [14], an identical experiment was run with a panel
of hearing impaired assessors with either mild (N2) or
moderate (N3) hearing loss (see Figure 2). Although
it would have been interesting to model the N2 group
and the N3 group separately, we had insufficient data
and statistical power to allow for a complete analysis
of each group and as a result the N2 and N3 data were
combined for analysis. While responses do not differ
too much between N2 and N3 assessors in this test, we
do not believe this to be the case in general.

The key observation from the two experiments is that
normal hearing and assessors with hearing loss score
the performance of the systems under test very differ-
ently. These differences are summarised by two key
characteristics for these systems see in Figure 4. Firstly,
we see that the hearing impaired panel compressed the
BAQ scale upwards, illustrating a potential tolerance
to sound quality aberrations. Secondly, from this figure
we can also see a difference in the rank of the systems
under test compared to the NH panel. Thirdly, due to
the very tight confidence intervals, we can see a a clear
pattern of results for both the NH and HI panels.

Based on these significant results, it makes sense to
develop separate predictive models for the NH and HI
panels.

With average RMSE values of the sizes in Table 3,
it is possible to predict system performance for both
assessor groups with sufficient performance to be of
significant value even with the relatively small data
sets collected for this study, due to utilisation of rel-
evant metrics based on previously published models.
However, the few systems with large errors are a con-
cern, which require further data or model optimisation,
but it is certainly a good step along the way. With
regards to the RMSE metric, we aim to switch to a
version better suited for target data with uncertainty in
our model optimisation process, namely RMSEpsilon
ITU-T [28], which does not penalise predictions within
the confidence intervals of the target data.

8 Conclusions

In this paper we illustrate how assessor groups with
systematically different hearing thresholds yield differ-
ent audio quality ratings on the Basic Audio Quality
(BAQ) scale. The differences found with a hearing im-
paired panel consisting of assessors with mild (N2) and

AES 150th Convention, Online, 2021 May 25-28
Page 7 of 10



Volk et al.

Predicting Audio Quality for different assessor types

moderate (N3) hearing losses are significant compared
to a normal hearing panel.

Using the combined data collected from listening tests
for normal hearing and hearing impaired listening pan-
els predictive models were successfully created to pre-
dict the basic audio quality scores from unseen audio
files. Whilst this is work in progress, this proof-of-
concept level modelling inspires us to understand that
machine learning can be used to predict overall sound
quality for different hearing impaired groups and also
potentially other groups of assessors such experts and
consumers, etc. Even common subsets of consumers
such as the bass-lovers and the naturalness seekers.
In future efforts, this approach could enable the opti-
misation of product performance from multiple user
perspectives.

9 Future work

This paper shows the basic principle of how audio qual-
ity varies with hearing loss. For certain this element
should be studied in further depth to understand the
role of hearing loss on audio quality at different hear-
ing loss levels, or using other approaches to cluster
assessors. For this to be of greater interest, this would
need to be tested on more complex audio stimuli, e.g.
with hearables, hearing aids, that also employ digital
signal process audio enhancement for a wide range of
audio scene types.

We can also see that different assessor groups weigh
audio quality characteristics differently. Exploring this
phenomenon further and understanding the underlying
mechanisms for this would also be valuable.

Exploring the applicability of modelling to different
assessor group or clusters (e.g. different hearing impair-
ment levels, consumers, experts, audio professionals,
etc.) would also be of interest to both the scientific and
industrial community.
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