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ABSTRACT

In this paper we study the matter of perceptual evaluation data collection for the purposes of machine learning. Well
established listening test methods have been developed and standardised in the audio community over many years.
This papers looks at the specific needs for machine learning and seeks to establish efficient data collection methods,
that address the requirements of machine learning, whilst also providing robust and repeatable perceptual evaluation
results. Following a short review of efficient data collection techniques, including the concept of data augmentation
and introduce the new concept of pre-augmentation as an alternative efficient data collection approach. Multiple
stimulus presentation style listening tests are then presented for the evaluation of a wide range of audio quality
devices (headphones) evaluated by a panel of trained expert assessors. Two tests are presented using a traditional
full factorial design and a pre-augmented design to enable the performance comparison of these two approaches.
The two approaches are statistically analysed and discussed. Finally, the performance of the two approaches for
building machine learning models are reviewed, comparing the performance of a range of baseline models.

1 Introduction

The evaluation of audio quality is an important ele-
ment of product design, often studied both objectively
and subjectively. Audio quality can be estimated with-
out listening tests, by the use of objective metrics for
specific application areas. The International Telecom-
munication Union (ITU) has standardized ITU-R Rec.
BS.1387 “PEAQ” [1] and ITU-T Rec. P.863 “POLQA”
[2]. Recently, approaches have used more advanced
modelling techniques, such as deep learning to estimate
audio quality based on spectrogram or audio waveforms
[3, 4, 5].

In our field, there is a long tradition of performing
full factorial within-subjects (FFWS) designs for lis-

tening tests, an overview of which can be found in
[6]. The data from such FFWS experiments is often
considered to yield some form of ground truth perfor-
mance of the technologies under study. In such exper-
iments it is common to select a few clips of samples
or sound tracks, typically ∼10-30s in duration, and
process them through the systems under evaluation to
be subsequently perceptually evaluated. This results is
some 5-20 clips being used to generalise system per-
formance. For machine learning this is considered a
very small amount of audio training data, which eas-
ily leads to over-training of the model specifically for
the traits of these samples and thus lacking the desired
generalised applicability to the broader range of audio.
Training ML algorithms benefit from a large and varied
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set of audio samples. But how can this data hunger
be catered for without significantly increasing the size,
complexity and cost of such listening test?

To be better equipped to train ML models, we would
need a perceptual evaluation protocol that when com-
pared to traditional listening tests ideally: 1) Yields
similar results, 2) Is no larger, 3) Cost no more, 4)
Provides more (audio) data.

This paper introduces a proposed machine learning
pipeline for recording-based listening tests and includes
the novel concept of pre-augmentation. It covers in-
vestigations of the influence of this approach on the
statistical analysis in comparison to a traditional full-
factorial listening test design and, finally, the impact
on machine learning performance on the basis of these
two approaches is investigated and discussed.

2 Efficient data collection approaches

Moving beyond full factorial design of experiments,
there are several approached to more efficiently gather
data from listening tests.

The field experimental design or efficient design of
experiment (DoE) is well established on certain field
study due to measurement constrains or the high num-
ber of test conditions. These methods are however
rarely employed in the audio field (outside telecommu-
nication), potentially due to the lack of necessity.

The statistics of design of experiment originated largely
from the work of Sir Ronald Fisher in the 1920’s and
30’s Fisher [7]. The full factorial design provides for
all conditions (combinations of experimental factors)
in an experiment to be measured and as such is a sure
manner to ensure a good experimental design, assum-
ing there is sufficient statistical power. In our domain
a full factorial within-subjects design would comprise
processing all test samples through all system under
test and presenting them to all assessors in a balanced
and randomised manner.

By comparison any design of experiment (see e.g.
Montgomery [8]) aims to reduce the size of the ex-
periment in some manner such that we can either run a
larger experiment, i.e. with more test conditions, or that
the test can be run with less time and effort. In either
case, a partial set of conditions are tested or presented
to each assessor. Thus when employing DoE, we are
seeking to gain the same level of statistical analysis and

interpretability of the data, but with less effort. This is
only possible by making some compromises that need
to be understood. With traditional DoE structures such
as balanced incomplete block designs or D-optimal de-
signs [9] the aim is to maintain the statistical power of
the independent variables of interest in the experiment.
The trade-off is made by compromising the statistical
power of higher order interactions of independent vari-
ables or to confound them, such that they cannot be
analysed with any certainty. Audio examples of effi-
cient DoE using the response surface method (RSM)
can be found in Lorho [10] and other examples of us-
ing IV-optimal design to handle very large numbers of
test conditions can be found in Zacharov and Schevciw
[11, 12].

More recently, we have seen the development of al-
ternative methods for efficient data gathering, most
often tied to machine learning applications. The con-
cepts of adaptive sampling or active learning are effi-
cient methods for gaining as much information from
a stimulus data set without needing to test all of the
conditions. These techniques have been successfully
employed with the paired comparison paradigm to in-
teractively select the next pair of stimuli based on the
the prior and current stimuli (see e.g. [13, 14, 15]). The
aim of this approach is to gain the maximum amount of
information from the data, in as few trials as possible,
achieved through adaptive interactive modelling of the
data during the sampling/measurement. Adaptive sam-
pling has been successfully applied to the evaluation
and tuning of audio quality in hearing aids by Nielsen
et al. [13]. Active learning has also been extensively
researched and successfully applied to video quality
testing [14, 15].

3 Pre-augmentation concept

When performing listening tests, it is typical that we
want to span the range of stimuli to stress and test prod-
ucts as completely as possible to be able to identify
differences and key areas of weakness. Also such tests
are meant to be a generalisable representation of "all
audio material". This is quite a tall order and further-
more needs to be done efficiently, e.g. within a 2-hour
listening test. To do this, usually 10-20 audio clips
of short duration (∼15 s) are selected from different
audio tracks, as illustrated on left the of Figure 1. The
results from such listening test are considered to yield
the ground truth performance for the devices under test,
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even with less than 5 minutes of original audio mate-
rial. From the perspective of machine learning, this is
a very small and limited amount of audio data to train
on, and does not allow for generically robust models
to be build. Furthermore, deep-learning (DL) types of
approaches are even more data hungry. In application
to DL models, methods such as data-augmentation [16]
are used to ensure the robust and generic applicability
of models.

Data augmentation (DA) comprises of slightly modi-
fying the audio files, in a manner that would leave the
listening test scores unaffected and thus creating a dif-
ferent new version of the same audio file for training DL
models. DA can take many forms, for example time-
shifting, re-sampling, etc. and it has generally been
found that 16x data-augmentation can be a valuable
way of making DL models more generically robust,
by feeding the learning process with more samples.
The challenge for regression DL problems is that aug-
mentations must be large enough to matter and small
enough to assume that the change would not lead to
a difference in rating. Consequently, changes might
be too small to improve performance/robustness of a
regression model. Our concept sought to address the
question of how to get more audio samples into a listen-
ing test without the size and complexity of experiments
growing excessively.

We thus developed and introduce the concept of pre
augmentation as a way of using more audio files in a
listening tests, without increasing the size and duration
of the listening test. The idea is to select several clips
from each audio track, as illustrated on the right of Fig-
ure 1 thus increasing the amount of audio data available.
We hypothesis that many of the sound quality charac-
teristics of a track remain largely constant across the
track and thus across several selected clips. To a large
extent the spectral balance, spatial nature, loudness and
dynamics of samples are tied to the nature of the track
and its production. Additionally, by sampling across
several places in a track, the finer nuances are also
evaluated, providing a more generalisable perspective.

In a traditional full factorial, within-subjects design, as
traditionally employed in listening test, all samples are
processed though all test systems and these resulting
conditions are then presented to all assessors in the
listening test. With sample augmentation, using a full
factorial approach would increase the experiment size
by the number of clips, leading to a manageable exper-
iment size. The alternative approach we selected and

sought to test was to use a factorial design, whereby
one set of clips is presented to a subset of assessors, in
a balanced incomplete block design (BIBD). Samples
and clips are distributed using a Latin square design
approach to each of the assessor groups to yield a bal-
anced design, as show in Figure 1.

4 Audio capture

For maximising machine learning data input a audio
capture protocol was established. This was done to
ensure that input audio would be suitable for machine
learning purposes. Input audio for machine learning
and listening test was captured using a B&K head-and-
torso-simulator (HATS 5128-C) in an effort to capture
the same stimuli as was heard by listeners to maximise
the direct link between stimuli and listener responses
[17]. Using a HATS recording technique furthermore
allows capture of most audio product types in the same
audio format, which has many benefits including pre-
training of models across products types and using
transfer learning [18, 19, 5] techniques to allow further
fine-tuning to specific product types with smaller data
sets.

The recording process was handled by a custom Python
script, BenREC, which combines all audio clips in an
input folder into one .wav file, plays and records it
simultaneously, and splits each recording into separate
.wav files (for each original audio clip) based on either
automatically added pre-stimuli makers (e.g. a short
10 kHz burst or a short sweep) or cross-correlation
analysis of the original audio clip and the recording.
Using an automated script allowed efficient unmanned
capture of large amounts of audio.

5 Experimental setup

5.1 Product selection

Headphones was selected as the product category for
evaluation. The headphones were selected to generate a
broad spectrum of stimuli both in terms of overall audio
quality and in terms of various perceptual differences
(i.e. distortion, frequency characteristics etc.). In-ear,
on-ear, and over-the-ear headphones; the latter two in
both open-back and closed-back versions were included
in the study. An overview of the different product types
is shown in Table 1.
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Fig. 1: Illustration of the usage of sound clips per sample for. Left: one clip per sample as commonly employed.
Right: multiple clips per sample, as per pre-augmentation method.

Type Number

On-ear 4
In ear 8
Over-the-ear open back 1
Over-the-ear closed back 7

Table 1: Summary of employed headphone types.

A total of 20 headphones plus two anchor systems
were included - mid and low anchor. The mid anchor
system was generated using recordings of a poorly
performing headphone, which were degraded further
using dynamic compression, band-pass filtering and by
adding two resonances to create the low anchor.

5.2 Sample selection & clip extraction

Samples were selected to cover a wide range of musi-
cal genres and production styles, as well as to excite as
many perceptual differences as possible in the devices
under test. A total of 15 samples were included, cover-
ing female and male voices, contemporary pop, heavy
rock, classical, jazz, electronic, hip-hop, instrumental
music and known critical musical samples.

Extracted clips from samples typically vary in length
between 15-35s. For these experiments 15s clips were
carefully manually selected, to be representative, simi-
lar, perceptually stationary and loopable.

5.3 Assessors

Twenty of SenseLab’s trained expert assessors partic-
ipated in the study [20]. Each assessor attended two
sessions of two hours, including instructions, famil-
iarisation, breaks etc. Two assessors were female, 18

were male. The median age was 36.9 years, the mini-
mum and maximum age were 19.5 years and 58.8 years
respectively.

All assessors were normal hearing and regularly tested
as part of the routine of being employed in our trained
assessor panel.

5.4 Experimental setup

The test method and test design was configured in
SenseLabOnline which also handled all assessor in-
vitations, randomisation of stimuli presentation order,
audio playback, and data collection.

Assessors listened through Sennheiser HD650 head-
phones, connected to RME ADI-2 DAC sound cards.
The test took place in IAC listening booths with back-
ground noise levels ≤ NR15.

5.4.1 Post-processing of recordings

Recordings were processed 1) to remove the frequency
colouring of the HATS’ ear canal, 2) the influence of the
playback headphones used in the listening test, and 3)
to loudness align across headphones. The inverse filter
applied to compensate for the influence of the HATS’s
ear canal as well as the playback headphones was made
using the AKtools Matlab toolbox by Brinkmann and
Weinzierl [21]. A 16384-sample Minimum-phase FIR
filter with automatic time-alignment and 1/6-octave
regularisation of both input- and output frequency re-
sponse. The filter was designed to compensate within
the frequency range 16 Hz - 16 kHz and based on
multiple and repositioning of multiple models of our
Sennheiser HD650 headphones.

All recordings were analysed using ITU-R Rec.
BS.1770-3 [22] and adjusted to the same loudness level
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and lastly all audio files were renamed using the nam-
ing scheme condition_sample_system for automatic
upload in SenseLabOnline.

6 Full factorial experiment

A traditional full factorial test was designed and build
comprising: 23 systems x 15 samples = 345 unique wav
files. Due to the blocking of the experiment, we had
(20+4*3) systems * 15 samples * 2 groups/repetitions =
960 as input to the machine learning model. Each clip
was rated independently by two groups of assessors.

7 Sample augmentation design

For our sample augmentation experiment, we carefully
selected four clips from each of the 15 selected critical
audio samples. Each clip was recorded twice with a
headphone repositioning in-between to end up with
eight conditions per sample. The 20 products were
divided into four blocks and the panel of assessors di-
vided into four groups; which evaluated either different
clips or clips in different orders. Altogether this led
to the fractional factorial design illustrated in Table 2.
Note that this design deviated slightly from the descrip-
tion as clip 5 was replaced with clip 1 in Group 2 and
Group 3 in order to allow for comparison of assessor
performance between groups for this particular exper-
iment. This deviation is not part of the proposed pre-
augmentation method in general. The advantage over
the traditional full-factorial design is that this design
includes eight times the number of audio files without
an increase in test duration and with the potential of
being able to analyse data as if it was a full-factorial
design by considering clips from the same sample as
one.

8 Results

8.1 Assessor normalisation

Assessors typically use rating scales differently depend-
ing on their expectations and experience. This is well-
established and includes rating-effects related to level,
range, variability, etc. [23]. Due to the fractional-
factorial experimental design, assessors did not evalu-
ate the same stimuli between assessor groups, which
may increase the size of these effects. This is something
that is seen in the data (see Figure 2 (Left)). Conse-
quently, a rating normalisation was utilised.

Group 1
(n= 5 )

Group 2
(n= 5 )

Group 3
(n= 5 )

Group 4
(n= 5 )

Block 1:
Products 1-5 Clip 1 Clip 6 Clip 8 Clip 4

Block 2:
Products 6-10 Clip 2 Clip 1 Clip 7 Clip 3

Block 3:
Products 11-15 Clip 3 Clip 7 Clip 1 Clip 2

Block 4:
Products 16-20 Clip 4 Clip 8 Clip 6 Clip 1

Table 2: Example fractional design for sample aug-
mentation design of experiment. n refers to
the number of assessors.

Specifically the method described by Athar et al. [24],
which normalises data based on the original scale usage
range of each individual assessor and the scale usage
range of each set of headphones across all assessors.
The method assumes normal distributions. It does not
exactly normalise back into the original scale, but the
output range is similar. For this particular data set
the normalisation reduces the 95% confidence inter-
vals significantly, as depicted in Figure 2, and thereby
improves the statistical power of further analyses.

8.2 Overall results

The overall results are summarised in Figure 3 as nor-
malised mean Basic Audio Quality ratings of the head-
phones with 95%-confidence intervals. The headphone
means span the majority of the scale (which isn’t min-
max normalised), making it suited for machine learn-
ing. The majority of headphones have overlapping
mean ratings across the three data sets: PreAug-set1,
PreAug-set2, and Full (-factorial), suggesting that ef-
fect of pre-augment on ratings is minor, although the
differences in mean ratings are large enough to affect
system ranking.

The artificial AnchorMid system designed to anchor
scale usage at the mid section of the scale is degraded
too much - rated lower than any of the headphones and
could have been left out or replaced by either Beats
Studio 3 or Apple generic concha EarPods, which are
at approximately 50 and without influence from the
difference in clips between data sets.

8.3 Pre-augmentation influence on ratings

The ideal sought after state would be that the pre-
augmented data provides identical ratings to the full
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Fig. 2: Mean values with 95% confidence intervals of a representative subset of headphones and samples. Average
across assessors and clips. Colours represent the sample (a subset of eight selected here and separated using
random jitter). Left: Before normalisation. Right: After normalisation.
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Fig. 3: Mean ratings with 95% confidence intervals (barely visible) for the full-factorial data set ("Full") and the
pre-augmentation data set. The pre-augmentation data set was split into two subsets; Each comparable to
the full factorial data set.
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Df Mean Sq. F-value p-value

System 22 411895 8718.75 <2e-16
Sample 14 5804 122.85 <2e-16
System:Sample 308 770 16.29 <2e-16
Sample:Clip 90 483 10.23 <2e-16
Residuals 9146 47

Table 3: Mixed-effect ANOVA with Assessor as a ran-
dom effect and Clip nested within Sample.

factorial design, when averaged across the panel. i.e.
the inference on the mean should be identical between
clips, to enable us to analyse all clips as if they were
one, i.e. most or all of the clips’ confidence intervals
should overlap with the CIs of RefClip1. When we
study Figure 3 we can observe that overall there is
close similarity between the pre-augmented data and
the full factorial data, but they are not identical. This
difference can be further studied in Figure 4. The sta-
tistical influence of clips was investigated in a mixed
model ANOVA with assessor as a random effect and
Clip nested within Sample. The result, shown in Table
3, illustrates that Clips nested interaction with Sample
is highly significant, but that it’s influence (F-value) is
very minor in comparison to the main effects for Sys-
tem and Sample. Whilst this result deviates from the
expected, it remains to be seen whether this is an issue
in general. To confidently conclude upon this matte, a
larger experiment would be needed with more assessor
per group.

9 Machine learning

The main purpose of using pre-augmentation is to in-
crease the number of audio files available for training
of a machine learning model. To investigate the influ-
ence of this approach, machine learning models were
trained on all three data sets to test the hypothesis that
an increased amount of audio files will improve the
performance of a machine learning model.

The machine learning models were of the type full-
reference/intrusive, which utilise that the listening test
included comparison to reference, i.e. all models have
both a reference clip and a corresponding stimuli (head-
phone recording) as input. The models were trained
with supervised learning, using the normalised ratings
from the listening test as targets.
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Fig. 4: Comparison of the averaged ratings across sys-
tems for seven of the fifteen samples. RefClip1
is the average from the full factorial test and the
remaining clips are from PreAug-set1.

In the following subsections a deep-learning model is
described and its performance compared for the full-
factorial data set and the pre-aug data sets. A low-
complexity machine learning model was chosen to ac-
commodate the modest-sized data sets. This limits
overall performance to a point where other machine
learning approaches can outperform the model used,
but was found well-suited for evaluating the potential
of the pre-augmentation approach.

9.0.1 Common machine learning pipeline &
model

For each audio file, a log-mel-spectrogram is computed
with 32 mel-bands, a window length of 2048 samples
(46.44 ms), and hop length of 512 samples (11.61 ms)
between frames. The residual of the spectrogram was
computed by subtracting the spectrogram of the refer-
ence audio. This approach works when the data is well
time-aligned, which is a standard criteria for multiple
stimulus test types to allow instantaneous switching
between stimuli.

The machine learning models were implemented in
Python using the user-friendly Keras Deep-learning
API on top of TensorFlow. A model type of structure
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Fig. 5: Overview of the convolutional neural network
(CNN) employed

was chosen on the basis of approaches applied success-
fully in the literature to similar audio tasks [25, 26, 27],
i.e. using the residual spectrogram as input to a Convo-
lutional Neural Network (CNN), as illustrated in Figure
5. The CNN consisted of three convolutions blocks,
followed by three fully-connected layers. Each con-
volutional layer has eight channels and uses rectified
linear unit (ReLu) non-linearity activation functions,
while the last layer is a fully-connected layer with linear
activation.

The model performance evaluation was done with 20-
fold cross-validation, where folds were stratified on
system (headphone), such that stimuli from the same
system does not appear in both training- and test split.
In each fold, approximately 25% of the systems were
used as test data.

9.1 Performance comparison

The performance of the models trained on either the
full-factorial data set ("Full") or the pre-augmentation
data sets is presented in Table 4. All three data sets
have the same total number of perceptual evaluations
and the same systems and samples. "Pre-aug 1" was
evaluated by the same assessors as "Full", while "Pre-
aug 2" was evaluated by another group of assessors
without overlap. Pre-augmentation provides an average
18% improvement of prediction accuracy compare to
the full factorial experiment.

10 Discussion

The purpose of this study was to investigate how a tra-
ditionally designed perceptual audio evaluation might

Model Eval. RMSE Pearson Spearman

Full Clip 19.5±4.3 0.52±0.26 0.48±0.25
Full Sys 14.6±5.1 0.61±0.39 0.52±0.39

Pre-aug 1 Clip 16.2±4.9 0.66±0.24 0.64±0.24
Pre-aug 1 Sys 11.8±4.8 0.73±0.31 0.62±0.41

Pre-aug 2 Clip 15.4±4.3 0.71±0.21 0.65±0.22
Pre-aug 2 Sys 11.6±5.0 0.80±0.24 0.69±0.30

Table 4: Results of predictive models with root mean
square error (RMSE), Pearson-, and Spear-
man rank correlation coefficients with stan-
dard deviations.

be modified to better accommodate the data require-
ments of machine learning. Controlled laboratory lis-
tening tests are costly and thus reducing cost and com-
plexity is desirable.An important target with the pre-
augmentation concept was to improve the value of the
collected data for the machine learning purposes with-
out introducing extra complexity in the statistical anal-
ysis. The machine learning performance of input from
pre-augmentation vs a full-factorial design, is sum-
marised in Table 4: It indicates that an improvement
is obtained by using pre-augmentation for all perfor-
mance metrics. Thus using the same size of perceptual
evaluation data with pre-augmentation, it is possible
to increase the prediction performance using machine
learning. Even though the overall prediction perfor-
mance is insufficient for our application the improve-
ment is noteworthy and makes pre-augmentation worth
exploring further in future studies. The generally large
standard deviations is a consequence of the system-
stratified split into training and test subsets. With only
22 systems in total, the split can have a large effect on
performance, depending on which systems are miss-
ing in the training set, when assigned to the test set.
This variation does not seem to be reduced in the two
data sets with pre-augmentation, but a large perfor-
mance variation in standard deviation per model re-run
is observed making it difficult to conclude on without
additional data.

As discussed in section 8.3 pre-augmentation experi-
ments can be performed at the same size as traditional
listening tests, with n-times the number of audio files.
This yields a very significant improvement in machine
learning performance, discussed later in this section.
The presently proposed pre-augmentation design would
require further refinement to yield more stable and re-
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peatable results compared to traditional full factorial
experiments. For example, increasing the number of
assessors per clip, more broadly distributing the clips
across assessor groups and invoking a more elaborate
design of experiment might yield more robust results,
without a major cost/complexity penalty.

Furthermore, from the data we can see that not all clips
are equivalent. In some respects this is a benefit for
machine learning, but leads to less similar assessor data
compared to the full factorial, single clip design. On
the one hand we may seek to select more similar clips,
to strive towards closer similarity to the traditional full
factorial design results. Alternatively, we might con-
sider that selecting different clip types from a sample
beneficial to bring a more varied selection of audio into
the listening tests and for machine learning. This begs
the question of what is the ground truth data from a
listening test?

11 Conclusion

This study proposes a method for collecting perceptual
audio evaluation data requiring little extra effort in the
workflow of product evaluation, while optimising the
suitability of the data set for machine learning. It pro-
poses a well-defined method of recording stimuli suited
for most devices (e.g. headphones, hearables, hear-
ing aids, loudspeakers, advanced sound systems, etc.)
and conditions, while resulting in stimuli with identi-
cal binaural audio files. Furthermore, the novel con-
cept of pre-augmentation is introduced, which entails
using multiple clips from each included sample in a
fractional-factional experimental design, which avoids
the risks involved in traditional data augmentation for
regression problems. A workflow with an automatic
recording process is described, allowing recording and
post-processing of a large set of stimuli efficiently to
ensure a cost-effective method. An assumed benefit
of pre-augmentation of statistical analysis is that data
can be analysed as if all assessors evaluated the same
clip from each sample. This assumption is tested and
discussed and finally a simple machine learning model
is described and its modelling performance with and
without pre-augmentation presented. A small decrease
in modelling error (RMSE) and a larger increase in
modelling robustness was found as shown in Table 4.
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