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ABSTRACT

The timbral analysis from spectrographic features of popular music sub-genres (or micro-genres) presents unique
challenges to the field of the computational auditory scene analysis, which is caused by the adjacencies among
sub-genres and the complex sonic scenes from sophisticated musical textures and production processes. This
paper presents a timbral modeling tool based on a modified deep learning natural language processing model. It
treats the time frames in spectrograms as words in natural languages to explore the temporal dependencies. The
modeling performance metrics obtained from the fine-tuned classifier of the modified Deep Bidirectional Encoder
Representations from Transformers (BERT) model show strong semantic modeling performances with different
temporal settings. Designed as an automatic feature engineering tool, the proposed framework provides a unique
solution to the semantic modeling and representation tasks for objectively understanding of subtle musical timbral
patterns from highly similar musical genres.

1 Introduction

Popular music is signified by its timbre: the sound-
scape that defines its culture which can be best observed
from the timbral factors including the arrangement of
musical instrumentation, compositional patterns, vo-
cal techniques, and mixing/production processes [1–8].
Because of the complex integration of these factors,
observing sub-genre timbral signatures directly from
mixed-down audio is challenging [2, 3]. Figure 1 shows
several spectrograms plotted from popular song seg-
ments from typical sub-genres. While listening to these
songs, we can readily hear the emotion and style con-
nected to their sub-genres. However, when we look at

their “busy” spectrograms, the cognition of emotions
and stylistic patterns (audio-induced structures from
our subjective perception) are very difficult to be at-
tached (located and interpreted) from the spectrogram.

When applying conventional musical timbre analyses
tools [9–13] to popular sub-genres, most existing genre-
discriminatory spectrographic features cannot represent
the sub-genre differences under the umbrella of popu-
lar music. Existing timbral features are adequate for
distinguishing musical genre categories with broader
stylistic separation margins such as the contrast be-
tween classical and popular music [11, 12]. Figure
2 shows the spectrograms from several typical classi-
cal music sub-genres. All these spectrograms are very
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different from popular music genres in the spectral
energy distribution and in the regularity of rhythmic
patterns [2, 3]. Popular music shows more noise-like
spectral energy distribution as an evenly spread of sonic
energy across frequency bands, while classical music
shows stronger energy concentration at lower frequen-
cies [9, 10]. Popular music spectrograms show more
steady energy components over the time, while classi-
cal music can be quiet for a moment and then active for
another moment. Of course, popular music is strongly
correlated with strong and regular beat patterns, as se-
quentially repeating cells observed in the spectrogram
[2, 3].

Timbral descriptors derived from these spectrographic
signatures are strongly effective for categorizing
“broad” genres [14–21]. But when we apply them to
sub-genres, their discriminative functions no longer
work. Timbral pattern differences among popular mu-
sic or classical music sub-genres (differences among
sub-figures inside Figure 1 or Figure 2) are more diffi-
cult to be quantified with existing timbral descriptors
because the sub-genres are continuously evolving and
absorbing each others [22–24]. The differences among
sub-genres are more nuanced and ambiguous and thus
a different set of timbral analyses tools is essential for
understanding more subtle timbral information struc-
tures.

To capture the timbral differences among sub-genres,
we implement a framework to sample successive spec-
tral templates from audio and train a modified deep
natural language processing model to represent the
timbral information encoded in a sequence of spectral
templates. The timbral pattern from the spectrogram
is sampled as successive timbral templates with fixed
time lengths (e.g., 5 seconds or 10 seconds). These
timbral templates serve as the basic processing unit for
timbral pattern recognition because humans can reli-
ably identify popular music sub-genres from this time
span. These timbral templates are treated as natural
language sentences or segmented paragraphs and the
short-time frames (spectral analysis windows) inside
each template are treated as words. Then we use the
sub-genre categories as the training labels to a natural
language processing model to understand the semantic
mapping between sequences of spectral energy distri-
bution in spectrogram time frames and the sub-genre
labels.

We select the Bidirectional Encoder Representations
from Transformers (BERT) natural language process-

Fig. 1: Spectrograms of song segments from typical
popular music sub-genres. The spectrograms
from these sub-genres are highly similar.

ing model for its lightweight processing and high pre-
dictive analysis performance on many information re-
trieval tasks [25]. BERT is a pre-trained model that
is fine-tuned to implement different natural language
processing tasks (More details in Sec. 2.1). For our
study, we pre-train a modified BERT model to cap-
ture the cohesiveness of short popular music sequences
and fine-tune the model for a sub-genre classification
task. The result section shows that we achieve high
performance predictive analysis metrics for this seman-
tic mapping task. We conduct three experiments with
different combinations of Short-time Fourier transform
(STFT) window size and sequence length: 1) 1,024
window size, 5s sequence; 2) 1,024 window size, 10s
sequence; 3) 2,048 window size, 10s sequence. These
experiments show that the modified BERT model suc-
cessfully absorbs and represents the timbral pattern
connected to popular music’s sub-genres.

The proposed framework does not depend on manually
crafted timbral features, instead, it utilizes the auto-
matic feature engineering capacity of the deep natural
language processing model to form semantic links di-
rectly from spectrographic energy distributions. The
strong predictive analysis results as reported in the
following result section demonstrate the effectiveness
on the semantic mapping and related representational
learning tasks. Our proposed framework provides a first
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Fig. 2: Spectrograms of audio segments from typical
classical music sub-genres. These spectrograms
are very different from the spectrograms of pop-
ular music.

step towards understanding the sub-genre differences
in the popular music. Different from existing timbral
descriptors that focus on the global timbre (without con-
sidering the temporal evolution of spectrographic fea-
tures in music phrase time span), our proposed frame-
work is based on sequential modeling and emphasizes
the temporal aspects of “dynamic” timbre and thus pro-
vides an unique tool for a microscopic investigation
of timbral nuances connected to musical concepts and
human music cognition.

2 Methods

2.1 Using Deep Natural Language Model for
Musical Timbral analyses

The BERT language representation model [25] and
other Transformer-based models [26, 27] achieve state-
of-the-art results on multiple language tasks. The es-
sential component of these models is the Transformer
encoder which aggregates the input sequence based on
the "similarities" among elements that constitute the
sequence [28]. Unlike the recurrent neural network
(RNN) sequential encoder that requires data processed
in order, the Transformer encoder combines the input

elements based on their linear mappings with the At-
tention mechanism [28]. With layers of Transformer
encoders learning subtle characteristics of natural lan-
guages, the model preserves the horizontal concurrent
processing that facilitates computations.

As words appear consecutively in natural languages,
musical events occur sequentially in music perfor-
mances to convey information. The Transformer struc-
ture has been recently adapted in the cutting-edge mu-
sic generation models such as Music Transformer [29]
and Jukebox [30]. Both models use Transformer with
autoregression to generate music. It is reasonable to
use the previous information during the generation pro-
cess since music is delivered in sequence. However,
for understanding music, both previous and further in-
formation should be considered because the elements
in a music sequence are cohesive. The consideration
leads to the use of the BERT model which incorporates
context from both directions for our study. We hypoth-
esize the music recognition will substantially benefit
from the concurrent use of the two directions.

2.2 Audio-Based Representation of Music

An essential choice to make in music studies is the rep-
resentation of the music. The aforementioned Music
Transformer model processes the MIDI data of piano
performances [29]. The symbolic MIDI data provides
accurate control information and it can be used to rep-
resent music with instruments which timbres are well
defined. However, it does not provide enough infor-
mation when representing popular music that involves
intricate sounds and effects. The other aforementioned
model, the Jukebox model, embeds raw audio data into
segments of discrete vectors [30]. The embedding ac-
tion of the Jukebox model is reminiscent of the STFT
process in a way that each dimension of the vector
space encodes a certain aspect of the raw audio seg-
ment.

Noticing the similarity in the embedding, we ques-
tion if the STFT coefficients as input can replace the
word embedding in the original BERT model. Words
in natural languages do not have inherent represen-
tations that describe their relationships among each
other. The word embedding makes it possible to as-
sign high-dimensional numerical vectors to words in
a natural language through some analysis of their co-
occurrences [31]. The BERT model utilizes such an
embedding to further quantify the association among
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words in sentences. Short-time segments of music, on
the other hand, may not need an embedding process
like the word embedding, since they have inherent rep-
resentations in the frequency domain. There is a large
body of research that studies the use of STFT for music
classification and similarities [32–35].

2.3 Preprocessing Steps and Configurations

We collected 23,634 songs from five popular music sub-
genres in MP3 format (alternative: 3,394; electronica:
4,368; pop: 5,318; rap: 5,113; rock: 5,441), resampled
them to 8,000Hz and applied STFT. For experiment 1
and 2, we selected window size 1,024 (about 128ms)
which generates 513 coefficients in magnitude for each
window, and there is no overlap between adjacent win-
dows. We ignored the DC components and used the
sets of 512 coefficients (15.6-8,000Hz) as the elements
for each input sequence. For experiment 3 with win-
dow size 2,048 (about 256ms), we got sets of 1,024
coefficients (7.8-8,000Hz) as sequence elements. The
sets of coefficients are also the labels for the masked
language modeling (MLM) pre-training task.

2.4 Modifications of the BERT Model

Our model is modified based on the Huggingface Trans-
formers BERT implementation [36]. We eliminated the
word embedding and fed STFT coefficients into the
Transformer encoders directly with the position embed-
dings. For experiment 1, each input sequence includes
40 sets of coefficients (about 5s) and one set at the be-
ginning with 512 same values. The value chosen, 1.6,
is the average of all coefficients from the dataset. The
beginning set corresponds to the classification token
([CLS]) that is added in front of every input example for
the original BERT model [25]. The sequence hop size,
which is the distance from the start of one sequence
to the start of the next sequence, has 20 elements that
is about 2.5 seconds in time. Similarity, the inputs
of experiment 2 are 81-element sequences (about 10s)
with 20-element (about 2.5s) sequence hop size, while
the inputs of experiment 3 are 41-element sequences
(about 10s) with 10-element (about 2.5s) sequence hop
size.

The hidden size, which is the dimension of the Trans-
former encoder layer, is the number of STFT coeffi-
cients (512 for experiment 1 and 2; 1,024 for experi-
ment 3). The intermediate size, which is the dimen-
sion of the Feed-Forward layer, is twice the number of

STFT coefficients, and it corresponds to the window
size (1,024 for experiment 1 and 2; 2,048 for experi-
ment 3). For all three experiments, the number of the
attention heads for each attention layer is 4, and the
number of hidden layers is 4.

2.5 Pre-training with the MLM Task

For experiment 1, we obtained a dataset with shape
2,257,370 × 41 × 512. For experiment 2, the dataset
shape is 2,197,447 × 81 × 512, and for experiment 3,
it is 2,197,447× 41× 1,024. With each experiment we
used 7/8 of the dataset to conduct the pre-training with
the MLM task. Following the original MLM paradigm
[25], we chose 15% of the element positions at random,
and if one element was chosen, we would: mask it
at 80% of the time; replace it with a random selected
set of STFT coefficients from the pre-training dataset
at 10% of the time; keep it unchanged at 10% of the
time. The pre-training loss is the average of the squared
Euclidean distance between outputs and targets for the
masked elements.

We trained the model with 1,024 batch size and 50
epochs, and applied the Adam optimizer (β1 = 0.9,
β2 = 0.999) with learning rate 1×10−4 which in-
creases from 0 over the first 3,500 steps and decreases
linearly to 0 after that.

2.6 Fine-tuning with the Sub-Genre
Classification Task

For each experiment we split the remaining 1/8 data
into training and testing datasets with 4:1 ratio, and
did a fine-tuning sub-genre classification task. As with
the original BERT text classification, the output corre-
sponding to the first element was fed into an extra clas-
sification layer with weights W ∈ R5×hidden_size, where
5 is the number of sub-genres.

The sub-genre classification training was conducted
with 128 batch size and 100 epochs. The learning rate
is 5×10−5, and the number of warmup steps is 500.

We did the testing using the rest of the sequences and
reported the confusion matrices. The metrics of each
genre were calculated from the confusion matrices with
the following formulas:
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Accuracy =
T P+T N

T P+FP+T N +FN

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F1 = 2× Precision×Recall
Precision+Recall

TP - True Positive, FP - False Positive, TN - True
Negative, FN - False Negative.

3 Results

Figure 3 shows the pre-training loss (average of the
squared Euclidean distance for the masked elements)
versus the number of epochs for the three experiments.
The loss of the 2,048 window size experiment is about
twice the loss of each 1,024 window size experiment.
Figure 4 shows the fine-tuning classification training
loss (cross entropy loss) versus the number of epochs
for all three experiments. From the figure we can see
the experiment of 10s sequences with window size
2,048 has the fastest convergence while the experiment
of 5s sequences with window size 1,024 has the slowest
convergence.

Table 1 lists the confusion matrices of the fine-tuning
classification testing for the three experiments.The
shortened keys alter. and elec. represent Alternative
and Electronica respectively. From the metrics tables 2
to 6, we can see that the model has the best performance
on Rap among the five genres. The average accuracy
reaches to 94.5% with 2,048 window size and 10s se-
quence length. The Rap minimum metrics show that
distinguishing Rap from Electronica is not as good as
distinguishing Rap from other genres. The model’s sec-
ond best classified genre is Electronica, which average
accuracy reaches to 89.8% with 2,048 window size and
10s sequence length. Both Rock and Alternative reach
to more than 80% average accuracy for 5s sequences
with 1,024 window size and for 10s sequences with
2,048 window size. The model’s ability to separate
Rock from Alternative decreases when choosing 1,024
window size and 10s sequence length. The pop genre
classification performs the worst among the five gen-
res, and Rock and Alternative are the most confusing
genres with Pop.

Fig. 3: Pre-training loss versus number of epochs. We
observe satisfactory convergence of the training
process for all model configurations.

Fig. 4: Fine-tuning classification training loss versus
number of epochs. We observe satisfactory
convergence of the fine-tuning process for all
model configurations.

4 Discussion

The model has the best performance when classifying
Rap, which corresponds to the human perception that
Rap is more distinguishable than other genres for its
intensive vocals and well-structured beats. Rap also
has very different instrumental selections/arrangements
from the other music genres . For example, the melodic
part of Rap is usually the repetition of a simple mono-
phonic tune or parallel tunes without harmonic sup-
porting relationships, and there is no structural voice-
leading features between instruments [1, 6]. These
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factors contribute to the directness of the Rap’s stylistic
taste and discriminate it from the other genres.

The Rap genre is sometimes confused with the Elec-
tronica genre. This might be due to the fact that the
musicians in both genres usually borrow from each
other in instrumentation and compositional concepts.
Actually, many composers and producers are comfort-
able at both genres. Recently these two genres share
a lot of music instruments and production tools (drum
machines, sequencers, etc.) in a process of mutual ab-
sorption [2, 3]. In Electronica, synthesizers are usually
used in a slightly different way to produce futuristic
sounds, which can be easily picked up by human lis-
teners for the timbral innovation [5]. In contrast, Rap
usually applies established (or familiar) presets (sound
generation and modification routines stored as a pre-
defined program in instruments or software) [22, 23].
However, because many of these futuristic or familiar
sounds are generated from the same instrument using
similar signal paths, the stylistic differences are too
nuanced to be automatically discovered by machine
learning systems. For these two genre categories, a
musical feature based approach or its hybrid implemen-
tation with automatic feature engineering approaches
might be more appropriate.

The alternative music is typically regarded as more
eclectic, original, or challenging than most popular mu-
sic, and it is often distributed by independent record la-
bels [37]. The difference between the alternative music
and the mainstream music such as pop and rock could
be subtle, and sometimes cannot be perceived through
the auditory features [22, 23]. Alternative is a rather
dynamic genre because other genres are consistently
absorbing new sonic elements from the experimental
dimensions of Alternative [2]. In fact, many innovative
aspects from earlier Alternative have become familiar
sound features in the other genres. Many Alternative
songs acquired the genre label at the specific time of
their productions and could be labeled into other gen-
res if produced today [22, 23]. Of course, Rock is a
genre that is open for sonic innovations (adapting new
instruments, absorbing new musical concepts, etc.) and
the experimental elements of Alternative always influ-
ence Rock immediately, which causes their myriads of
stylistic similarities [4, 8]. The results reflect the diffi-
culty of distinguishing Alternative from Rock, and it is
interesting to note that the performance gets worse for
10s sequences than 5s sequences with 1,024 window
size.

In future studies, we could examine more combinations
of different window sizes and sequence lengths, and
search for the optimal temporal settings. We could also
test the model with more layers. In our current study
we only use 4 hidden layers to obtain a reasonable train-
ing time, while the original BERT models have deeper
structures (BERTBASE has 12 layers and BERTLARGE
has 24 layers). Moreover, the BERT model aggregates
the information of an input sequence based on the "sim-
ilarities" among elements. Although STFT indicates
certain relationships in the frequency domain, it does
not consider the musical harmony. It is difficult to as-
sign the harmonic distances manually, but we could
add an embedding layer to capture the harmonic and
some hidden features. Another consideration is how
to define elements. In this study, we arbitrarily choose
1,024 and 2,048 window sizes which do not have "se-
mantic" meanings. In the future, we could use notes or
beats to separate the musical elements, which would
make them more comparable with the words in natural
languages.

In addition, we would like to extend the framework
to more sub-genre or micro-genre categories. For
example, classical genres also present many similar
challenges for works composed at adjacent but style-
defining time period, such as musical impressionism
as “searching for new sound”. More subtle differences
between composers or performers present more sophis-
ticated challenges to our proposed framework. Another
future research direction could be to explain the insights
learned from (or the patterns embedded in) the trained
deep learning models. Recent works in deep learn-
ing based representations provide “inside-the-black-
box” approaches that can summarize the automatically
learned features into explicit feature descriptors. A
combination and comparison of conventional musi-
cal timbral descriptors with learned feature descriptors
could also be an interesting research topic for further
understanding deep learning based timbral models and
the timbral semantic mappings.

5 Summary

The sub-genres inside popular music are highly simi-
lar in spectrographic features but strongly perceptible
from human cognition. Conventional timbral analy-
ses tools for broad genre categories cannot capture the
subtle differences among these sub-genres. In this pa-
per, a sequential timbral pattern modeling framework
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based on the deep learning natural language processing
model is presented. We modified the BERT language
representation model and applied it to music. Each mu-
sical "sentence" is composed of "tokens" that are STFT
coefficients. After pre-training and fine-tuned classifi-
cation training with different "token" sizes (128ms and
256ms) and "sentence" lengths (5s and 10s), we ob-
tained best average classification accuracies as follows:
85.8% for Alternative, 89.8% for Electronica, 80.8%
for Pop, 94.5% for Rap and 82.9% for Rock.

The future works related to this paper are exploring
more temporal and structural configurations, extending
the framework to more sub-genre categories, studying
the insights learned from the trained deep learning mod-
els, and integrating the learned feature descriptors with
conventional musical timbral descriptors.

Table 1: Genre Classification Confusion Matrices.

true predicted (w1024 seq5s)
alter. elec. pop rap rock

alter. 2491 1104 1616 269 2171
elec. 844 8416 1503 959 712
pop 1121 1493 5449 800 2713
rap 210 982 1011 9622 312

rock 1532 555 2972 236 6752
predicted (w1024 seq10s)

alter. 3823 2341 4094 501 5603
elec. 469 10340 1724 891 660
pop 491 813 3933 490 1813
rap 108 957 858 9272 232

rock 474 262 1268 144 3375
predicted (w2048 seq10s)

alter. 675 226 273 56 567
elec. 937 9952 1532 939 735
pop 1615 1689 7273 1068 4429
rap 299 1300 906 14345 417

rock 862 262 965 86 3528
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Table 2: Metrics for Alternative. (Acc. - Accuracy, Prec. - Precision, Rec. - Recall)

w1024 seq5s w1024 seq10s w2048 seq10s

min max avg min max avg min max avg

Acc. rock: 71.4% rap: 96.2% 81.7% rock: 54.2% rap: 95.6% 74.0% rock: 74.6% rap: 97.7% 85.8%
Prec. rock: 61.9% rap: 92.2% 74.5% pop: 88.6% rap: 97.3% 91.0% pop: 29.5% rap: 69.3% 46.1%
Rec. rock: 53.4% rap: 90.3% 68.4% rock: 40.6% rap: 88.4% 59.8% rock: 54.3% rap: 92.3% 73.2%
F1 rock: 57.4% rap: 91.2% 71.3% rock: 55.7% rap: 92.6% 71.0% pop: 41.7% rap: 79.2% 55.8%

Table 3: Metrics for Electronica.

w1024 seq5s w1024 seq10s w2048 seq10s

min max avg min max avg min max avg

Acc. pop: 82.2% rock: 92.3% 87.4% alter.: 83.4% rock: 93.7% 88.4% pop: 84.2% rock: 93.1% 89.8%
Prec. pop: 84.9% rock: 93.8% 89.2% alter.: 81.5% rock: 97.5% 90.8% pop: 85.5% alter.: 97.8% 92.3%
Rec. pop: 84.8% rock: 92.2% 89.4% pop: 85.7% alter.: 95.7% 91.9% pop: 86.7% rock: 93.1% 90.6%
F1 pop: 84.9% rock: 93.0% 89.3% alter.: 88.0% rock: 95.7% 91.2% pop: 86.1% rock: 95.2% 91.4%

Table 4: Metrics for Pop.

w1024 seq5s w1024 seq10s w2048 seq10s

min max avg min max avg min max avg

Acc. rock: 68.2% rap: 89.3% 78.5% alter.: 62.8% rap: 90.7% 77.2% rock: 66.7% rap: 91.6% 80.8%
Prec. rock: 64.7% rap: 84.3% 76.1% alter.: 49.0% rap: 82.1% 69.1% elec.: 82.6% alter.: 96.4% 89.0%
Rec. rock: 66.8% rap: 87.2% 78.8% rock: 68.4% rap: 88.9% 82.3% rock: 62.2% rap: 87.2% 78.1%
F1 rock: 65.7% rap: 85.8% 77.5% alter.: 63.2% rap: 85.4% 74.0% rock: 72.9% alter.: 88.5% 82.8%

Table 5: Metrics for Rap.

w1024 seq5s w1024 seq10s w2048 seq10s

min max avg min max avg min max avg

Acc. pop: 89.3% rock: 96.8% 93.1% pop: 90.7% rock: 97.1% 93.7% elec.: 91.6% alter.: 97.7% 94.5%
Prec. elec.: 90.9% rock: 97.6% 94.5% elec.: 91.2% rock: 98.5% 94.9% pop: 93.1% alter.: 99.6% 96.5%
Rec. pop: 90.5% alter.: 97.9% 94.0% elec.: 90.6% alter.: 98.8% 94.6% elec.: 91.7% alter.: 98.0% 95.2%
F1 elec.: 90.8% alter.: 97.6% 94.3% elec.: 90.9% rock: 98.0% 94.7% elec.: 92.8% alter.: 98.8% 95.8%

Table 6: Metrics for Rock.

w1024 seq5s w1024 seq10s w2048 seq10s

min max avg min max avg min max avg

Acc. pop: 68.2% rap: 96.8% 82.2% alter.: 54.2% rap: 97.1% 78.8% pop: 66.7% rap: 97.3% 82.9%
Prec. pop: 71.3% rap: 95.6% 83.3% alter.: 37.6% rap: 93.6% 70.0% pop: 44.3% rap: 89.4% 75.7%
Rec. pop: 69.4% rap: 96.6% 85.0% pop: 72.7% rap: 95.9% 87.3% pop: 78.5% rap: 97.6% 87.4%
F1 pop: 70.4% rap: 96.1% 84.1% alter.: 52.6% rap: 94.7% 76.0% pop: 56.7% rap: 93.3% 80.2%
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