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ABSTRACT

Different electrically-equivalent capacitors are known to impact the sonic signature of the audio circuit. In this
study, the non-linear behaviour of five different coupling capacitors of equivalent capacitance (marketed as "audio
capacitors"), one at a time, are characterised. A dataset containing the input and output signals of a non-linear
amplifier is logged, its audio features are extracted and the non-linear behaviour is analysed. Machine learning is
then applied on the dataset to supplement analysis of the Total Harmonic Distortion (THD). The five capacitors’
THD performance seem to fall into two categories: below 200 Hz, there is significant standard deviation of 14.1
dBc; above 200 Hz, the capacitors show somewhat similar behaviour, with only 0.01 dBc standard deviation. This
separation however, does not hold at regions below 0.2 V. A support vector machine model is trained and classifies
the five capacitors well above chance: the best classification at 84% and worst at 36%. The methodology introduced
here may also be used to meaningfully assess the complicated behaviour of other audio electronic components.

1 Introduction

Although it is possible to perform sonic manipulation
entirely within a Digital Audio Workstation (DAW),
many professionals still incorporate the use of analog
audio equipment in their set up – studio or otherwise.
It has been documented that analog audio circuit will
impart a "sonic signature" to the audio [1][2][3]. One
non-negligible aspect (amongst other parameters) of
the "sonic signature" is non-linear distortion.

The characteristics of non-linear distortion in analog
audio circuits can be attributed to many electronic com-
ponents or design choices in a circuit. One of the
components responsible is the coupling capacitor at the
output. In 1998, Hood [4] reported that it is probable
that capacitors will introduce waveform distortion into
any audio line, but direct measurements made at the

time did not have sufficient evidence. This neither im-
plies that measurements of the non-linear behaviour
cannot be quantified, nor does it comment on the per-
ceptual importance of the non-linearity. To help analog
audio circuit designers make decisions for the coupling
capacitor construction, this paper analyses the effect
that it has on the overall system non-linearity.

1.1 Background and Previous Work

Capacitors are used in many different parts of the audio
electronic design, such as High Pass Filtering (HPF)
or DC blocking. Gaskell [5] shows that it is possible
for university level sound recording students to discern
differences in capacitors using the "recordings of var-
ious solo instruments as well as several commercial
recordings frequently used in the students’ ear training
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classes". The different capacitors varied in Total Har-
monic Distortion plus Noise (THD+N) vs frequency,
mostly in the lower frequency ranges. In addition to
this, van der Veen and van Maanen [6] provide ana-
lytic expressions to the non-linearity of capacitors, for
a variety of circuit topologies. Dodds et al. [7] shows
that a trained panel of listeners with "critical listening
experience" is capable of discernment through detailed
test listening methodology (ITU-R BS.1116-1 [8]).

1.2 Objectives and Approach

The objective of this paper is to provide a characteri-
sation and analysis of the non-linear behaviour of cou-
pling capacitors. The (electrically equivalent) coupling
capacitor of the circuit will be varied, and the non-
linear performance of the different capacitor construc-
tion (materials, design, morphology, and other physical
specifications) will be compared. The analysis will be
further supplemented with machine learning, where a
feature map will be constructed by extracting differ-
ent audio features such as Total Harmonic Distortion
(THD), Spurious Free Dynamic Range (SFDR), SIgnal-
to-Noise And Distortion ratio (SINAD), and Signal-to-
Noise Ratio (SNR). Based on these chosen features, a
Support Vector Machine (SVM) model will be trained
to identify capacitors used in the non-linear circuit. The
analysis and classification of the dataset will indicate
difference in the non-linear behaviour across different
capacitors construction.

2 Methodology

2.1 Specifications of the Test Circuit

The test circuit (Figure 1, adapted from [9]), was cho-
sen to demonstrate changes in the non-linear character-
istics of the system1 when the coupling capacitor con-
struction is different and, was prepared and housed in a
metal chassis to isolate from external electromagnetic
interference. This circuit was chosen as it is known to
exhibit non-linear distortion [10].

1Anecdotally, the author of this paper is able to discern differ-
ences between the capacitors. However, perceptual discernment is
not within the scope of our investigation.

Figure 1: Schematic of the circuit with the capacitor
under test in red.

The component specifications of the circuit are Rin =
8.2 kΩ, Ra = 100 kΩ, Rk = 1.2 kΩ, Ck = 33 µF , Cout =
0.33 µF , Rload = 100 kΩ, B+ = 250 VDC, Vacuum
Tube = ECC83/12AX7. Using a Norman Koren SPICE
model [11] for the ECC83/12AX7, the transconduc-
tance (gm) for this single ended [9] amplifier is 1.876
mS with an amplification factor (µ) of 93.5. With a
SPICE simulation, the HPF frequency calculated and is
below the range of the test conditions (20-20,000 Hz).

2.2 Details of the Capacitors Under Test

The five capacitors chosen for characterisation are all
marketed and labelled as "audio capacitors" that have
been rated at 0.33 µF with a tolerance of ±1%. To
ensure that the test variables were electrically identi-
cal, any variance in the capacitance, equivalent series
resistance (ESR), or equivalent series inductance (ESL)
were compensated (until ±0.01% variance achieved)
with the use of a low valued capacitor, resistor, or induc-
tor. The manufacturer datasheet (if provided) contains
only limited information about the capacitor’s construc-
tion, as detailed in Table 1.

Table 1: Capacitor labels and plot colours for Figure 2
to 5.

Capacitor Plot Colour

Capacitor A Paper in oil, Tin Foil Red
Capacitor B Paper in wax, Aluminium Foil Green
Capacitor C Plastic, Metalized Foil Blue
Capacitor D Oil, Metal Foil Cyan
Capacitor E Metalized Polypropylene Magenta

The five capacitors were placed one at a time as Cout ,
as seen in Figure 1, and the test circuit was measured
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using sine wave signals generated from the function
generator of an Digilent Analog Discovery 2 from 50
mV to 600 mV (10 mV intervals) at each frequency of
20 to about 20,000 Hz (see eq. (11)). Both the input
(oscilloscope channel 1) and output (oscilloscope chan-
nel 2) of the Digilent Analog Discovery 2 were logged
on a computer. The input signals were checked for
distortion and noise to ensure optimum test conditions.
Features such as THD, SFDR, SINAD, and SNR were
extracted from the output signals to obtain a feature
map for the SVM model.

2.3 Feature Extraction and Support Vector
Machine Model

THD, SFDR, SINAD, and SNR [12][13][14] are de-
fined in this paper, respectively, as:

T HD=

√
(PF2)2 +(PF3)2 +(PF4)2 +(PF5)2 +(PF6)2

PF1
,

(1)

where F1 is the fundamental, PF1 is the power of the
fundamental, and n in Fn identifies the nth harmonic,

SFDR =

√
(PFx)2

PF1
, (2)

where PF1 is the power of the fundamental and PFx is
the power of the greatest non-harmonic component,

SINAD = 10log10
PF1 +PN +PD

PF1
, (3)

where PF1 is the power of the fundamental, PN is the
power of noise, and PD is the power of all harmonics
of the signal, and

SNR =
Psignal

PN
, (4)

where Psignal is the power of the signal and PN is the
power of noise.

The features are then normalised using a Kaiser-Bessel
window function [15]:

L.sinh(β .
√
(1− (L f/α)2))

I0.β (β .
√
(1− (L f/α)2))

(5)

where I0 is the modified Bessel function of the first
kind, L is the window duration, and β = πα , where α

is a non-negative real number that determines the shape
of the window.

An SVM model was then trained using this multi-
dimensional dataset to identify the capacitors used in
the non-linear circuit. The SVM model was chosen as
it is a model capable of handling higher input dimen-
sions, and, no dimensionality reduction was applied as
it may risk information loss [16]). The SVM model,
trained with a Gaussian Radial Basis Function (RBF)
kernel (eq. 10) was chosen to reduce computation time
and can be expressed in the following form:

Given a training set of n labeled examples,

St = (x(t),y(t)),where t = 1, ...,n, (6)

and parameters of a classifier (θ ,θ0). The distance of
each training point to the decision boundary can be
measured by:

γ
(t)(θ ,θ0) =

y(t)(θ · x(t)+θ0)

||θ ||
(7)

Optimising to maximise the minimum distance to the
boundary, we can formulate the primal and dual opti-
misation as follows:

(primal) min
1
2
||θ ||2 (8)

subject to y(t)(θ · x(t)+θ0)≥ 1, where t = 1, ...,n.

(dual) max
n

∑
t=1

αt −
1
2

n

∑
t=1

n

∑
t ′=1

αtαt ′y
(t)y(t

′)K(x(t) · x(t ′))

(9)

subject to αt ≥ 0, where t = 1, ...,n.

The Gaussian Radial Basis Function (RBF) kernel [17]
used is:

K(x,x′) = exp

[
− ||x−x′||2

2σ2

]
(10)

where σ is a free parameter and ||x− x′||2 is the Eu-
clidean distance.
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3 Results and Discussion

Although different audio features (THD, SFDR,
SINAD, SNR) are collected, we will mainly focus on
THD as it is a familiar (and an intuitive) feature of
audio analysis. This allows for the reader to have a bet-
ter understanding of the inter-capacitor performance.
This will be followed by a presentation of the inter-
feature scatter plots will be used to demonstrate the
complicated behaviour of the relationships among the
features and the choice for including machine learning
as a supporting strategy for audio analysis.

3.1 Analysis of THD

Figures2 2, 3, 4 show the THD (dBc) values across
frequency (Hz) and input amplitude (V). The plot was
generated from a dataset of 48000 data points, logged
in Section 2.2.

The geometry in Figure 2 above is complicated, and
can be described somewhat as a section of a saddle
surface (cf. catenoid). While the capacitors display
similar contours in general, there is noticeable distinc-
tiveness among the surfaces. The top figure in Figure
2 is dominated by Capacitor A (red) on the top sur-
face but, interrupted or dappled indicating surprising
complicated behaviour (non-smooth) of the THD val-
ues across both frequency and input amplitude: the
irregularity of colours is due to the different surfaces in-
terweaving as values cross over each other. The colour
on the top surface corresponds to the capacitor with the
highest THD at that given frequency and input ampli-
tude. On the underside however, Capacitor E (magenta)
occupies the largest area associated with less interrup-
tion (in contrast to the top plot), indicating persistently
lowest THD values across frequencies and input ampli-
tudes sampled.

Above 200 Hz, the overall THD response of the system
sampled across frequency and input amplitude is com-
plicated, and there is no clear distinction among the
five capacitors. Below 200 Hz however, the standard
deviation of THD among the five capacitors is 14.1 dB
while the standard deviation of THD above 200 Hz is
0.01 dB; this strongly contrasting behaviour motivates
us to further analyse frequency regions below 200 Hz.

2All coloured plots in this paper will be available at
https://christopherclarkesutd.github.io/ . The online plots will also
allow for features such as rotation and zoom to provide more clarity,
and facilitate more contribution from better insight.

Figure 2: Surface plot2 of THD (dBc) over input am-
plitude (V) and frequency (Hz) (legend indicated in
Table 1). The non-homogeneous colours indicate inter-
mingling surfaces which are capacitors with the highest
THD values at the given frequency and input amplitude.
The bottom plot is the same dataset as the top plot
but rotated to show the underside. Here, Capacitor
E (magenta) mostly dominates, indicating rather less
intermingling of the surfaces.

Figure 3: Surface plot2 of the THD within 20-200 Hz
(legend indicated in Table 1). Showing separation of
surfaces which are then depicted in detail in Figure 4.
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Figure 3 replots the 20-200 Hz frequency region. Below
200Hz, separate surfaces are observed that converge
at about 200 Hz (depending on the input amplitude).
There is an observable structure with sharp upward
slope at low frequencies. A similar behaviour was
reported earlier in [18], where capacitors with different
electrode materials were sampled across the frequency
range with 1 VRMS. Capacitor B (green plot) shows the
highest THD for this frequency region.

The distinct surfaces also show a difference across input
amplitude. In the upper group of surfaces of Figure
3, the group’s trend maintains the slope of increasing
THD with increasing amplitude, while the lower group
of Figure 3 shows a decrease in gradient of THD at the
region of 0.5 V.

Figure 4: A slice of the surface plot2 in Figure 3 sam-
pled at 0.5 V (top) and about 100 Hz (bottom) (legend
indicated in Table 1). Clear separation of Capacitors A,
B, D in one group (red, green, cyan), and Capacitor C,
E (blue, magenta) in another group.

Figure 4 shows a slice of Figure 3 at 0.5 V in the upper
plot, and a slice of Figure 2 at about 100 Hz. This plot

further demonstrates the separation and convergence of
the surfaces, highlighting the clear separation of Capac-
itors A, B and D (red, green, cyan) in one group, and
Capacitors C and E (blue, magenta) in another group.
The discontinuities in the lowest frequencies indicate
further complicated behaviour in the THD. The lower
plot shows the similarity in the THD values, which in-
dicates a rough equivalence at lower input amplitudes.
The lower figure in Figure 4 shows the separation of
surfaces along the input amplitude, and is sampled at
about 100Hz. In the region below 0.2 V input ampli-
tude, the THD values are not as separated as before and
have an inconsistent distribution. This shows substi-
tutability across capacitors if design specifications are
within this amplitude range and THD.

3.2 Inter-feature complexity and the Motivation
for Machine Learning

While THD alone shows many interesting and distin-
guishing behaviours between capacitors, this is merely
one aspect of characterizing capacitors. In the context
of characterising inter-capacitor non-linear behaviour,
more audio features are required to provide a complete
picture of the system’s characteristics at a given fre-
quency and input amplitude. However the inclusion
of more audio features, such as SFDR, SINAD, and
SNR (cf. Section 2.3), greatly increases the complexity
of visual assessment. A representative sample subset
of characteristic plots are shown in Figure 5. These
plots illustrate the difficulty and limitations of visual in-
spection to assess and separate the performance of the
system with the change in capacitors. To meaningfully
address the complexity of such rich multidimensional
data (and to get around the limitation of visual inspec-
tion), a machine learning approach is incorporated; the
SVM model proposed will provide greater understand-
ing of the multidimensional data.

3.3 Support Vector Machine Classification

The results in Figure 6 were obtained from a slightly
reduced dataset of 40,040 data points of the original
dataset, with 8,008 for each capacitor. This reduction
was to exclude frequencies where the THD calculation
would return the results of aliased signals due to the
nature of sampling rates. A random set of 70% of
the data was selected to be used for training the SVM,
while the remaining 30% was used as the test set.
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Figure 5: An indicative subset of inter-feature plots
present the infeasibility of visual analysis in multidi-
mensional data prompting the use of SVM (legend
indicated in Table 1).

The confusion matrix in Table 6 indicates that we have
successfully separated capacitors A, B, C, D, and E;
Capacitor D and Capacitor E were best classified at
84% and 74% respectively, while the poorest classifi-
cation was observed for Capacitor C at 36%, however
this result is still above chance (20%).

In the classification of Capacitor C, the SVM model
misclassified 33% of the test data as Capacitor B. Over-
all results could have been improved if there was less
misclassification in Capacitor C. This also suggests that
there could be similarity between Capacitors B and C,
indicating substitutability between these two capacitors,
if so required. This claim, however, requires further
investigation.

The results are also in agreement with [5], [7], and
[18], demonstrating that there is an empirical differ-
ence in system performance with varying capacitor
construction. In [5] and [18], the varying capacitors
provided differences in the system responses. The mea-
surements made in this paper provide an extension, in
both frequency and input amplitude, to the reported
measurements in the aforementioned works. These dif-
ferences support the listening test results in [7], as the
participants demonstrated discernment.

3.4 Further Use of the SVM Model

The SVM model proposed enables the analog audio
circuit designer to gain insight on the behaviour of
different capacitors in the system. For example, if a

Figure 6: The confusion matrix for the separation of
the test dataset used for SVM. The poorest performing
is the classification of Capacitor C, which can some-
times be misclassified as Capacitor B.

designer wanted to check for similarities between two
coupling capacitors (of different construction), capaci-
tors could be tested using this methodology to check for
misclassification in the confusion matrix. If misclassi-
fication is present, that would imply that the capacitors
are similar in non-linear behaviour.

4 Conclusion

A methodology to analyse audio electronic circuit per-
formance under varying capacitor construction is pro-
posed. A circuit was chosen to meet the requirements
of producing non-linear distortion. A dataset is ob-
tained by sampling the system with sine waves at dis-
crete points along the frequency spectrum and across
a range of input amplitudes. Audio features, such as
THD, SFDR, SINAD, and SNR, were extracted from
this dataset. The THD results are visually analysed
to understand THD behaviour at different regions of
frequency and input amplitude. To cope with the com-
plexity and richness of data, however, an SVM model
was trained with the multidimensional dataset. The
separability of capacitors in a system from their empir-
ical features is shown. Further work will be put into
improving the success ratio through optimisation of the
machine learning model.
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Here, we demonstrate a method to analyse non-linear
behaviour in coupling capacitors. The separability in
the machine learning model informs the similarities and
differences in the overall performance of the system
when the capacitors of different construction are used.
Above 200 Hz, the capacitors show somewhat similar
behaviour, with only a 0.01 dBc of standard deviation
in Total Harmonic Distortion. Figure 2 shows that Ca-
pacitor A (red) occupies the largest area on the top
surface of the plot and Capacitor E (magenta) occupies
the largest area on the bottom surface of the plot, indi-
cating the highest THD and lowest THD respectively.
Below 200 Hz, there is a greater standard deviation of
14.1 dBc, indicating a greater difference in non-linear
behaviour. In addition to that, at the region of lowest
frequencies, there are points of discontinuities. Visual
examination of the surfaces show two separated groups,
with three capacitors (Capacitors A (red), B (green), D
(cyan)) in one group and two capacitors (Capacitors C
(blue), E (magenta)) in another group. With increasing
amplitude, there is separation in the rate of the increase
of the THD. This separation however, does not hold at
the region below 0.2 V, where THD values are incon-
sistently distributed. A support vector machine model
is trained (70% to 30% train to test split), and classifies
the five capacitors above chance; the best classification
at 84% and worst at 36%.

The method described allows the analog audio cir-
cuit designer to gain a meaningful understanding of
the changes in the complicated non-linear multidimen-
sional characteristics of the system. This impacts the
sonic signature of the equipment. With characterisa-
tions of more capacitors with different construction,
perhaps a database could be developed for analog de-
sign to supplement existing SPICE simulations and
Monte Carlo analyses – giving us a better understand-
ing of what contributes to sonic signatures (perceptual
and/or electronic) of different audio electronic devices.
This database could be extended to include other fac-
tors such as mechanical resonance [7] and other com-
ponents such as resistors, inductors, transformers, tran-
sistors, and vacuum tubes.

Further work can also be done to assess other mod-
els. This work is an ab initio investigation towards the
understanding of the methodology applied, and thus,
only an SVM was used. Moving forward, investiga-
tions of different machine learning topologies, varying
the amount of audio features and understanding which

features hold more significance will be conducted, and
reported.
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Appendix

Logarithmic spacing of sampled frequencies

The spacing of the frequencies was optimised to pro-
vide granularity at lower frequencies, as pilot studies
showed a region of interest between 20-200 Hz. 78 of
the 150 frequencies are below 200 Hz.

Frequencies are described with the expression:

For the nth frequency Fn,

Fn = exp

[
0.0658n

]
+20 (11)
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