
Audio Engineering Society

Convention e-Brief 590
Presented at the 148th Convention

2020 June 2 – 5, Online

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its presentation,
and the AES takes no responsibility for the contents. All rights reserved. Reproduction of this paper, or any portion thereof, is
not permitted without direct permission from the Audio Engineering Society.

HOAST: A Higher-Order Ambisonics Streaming Platform
Thomas Deppisch1, Nils Meyer-Kahlen2, Benjamin Hofer3, Tomasz Łatka4, and Tomasz Żernicki4

1Institute of Electronic Music and Acoustics, University of Music and Performing Arts, Graz, Austria
2Aalto Acoustics Lab, Department for Signal Processing and Acoustic, Aalto University, Espoo, Finland
3Hofer Web Solutions, Graz, Austria
4Zylia Sp. z o. o., Poznań, Poland

Correspondence should be addressed to Thomas Deppisch (thomas.deppisch@student.kug.ac.at)

ABSTRACT
The availability of free, user-friendly software tools as well as affordable hardware is boosting interest in higher-order
Ambisonics productions not only in research communities, but also in the fields of Pro Audio and Virtual Reality.
However, there is no practical solution available for presenting such productions publicly in a web browser. The
largest commercial platforms, for example, are limited to first- or second-order binaural playback. We introduce
the higher-order Ambisonics streaming platform HOAST, a new 360◦ video-platform, which allows for up to
fourth-order Ambisonics audio material. Apart from implementation details of state-of-the-art binaural decoding
and acoustic zoom, this contribution describes the current state of multichannel web audio and related challenges.

1 Introduction

To the best knowledge of the authors, there are currently
four 360◦ video web-players supporting first-order Am-
bisonics (YouTube, VeeR, SamsungVR and the open-
source player Video.js with the plug-in videojs-vr) and
one player supporting up to second-order Ambisonics
(Facebook). We introduce the HOAST (Higher-Order
Ambisonics STreaming) platform1, a browser-based
multimedia platform for 360◦ videos with up to fourth-
order Ambisonics audio content, featuring the dedicated
open-source HOAST360 audio/video web-player2.
In section 2 we motivate key points of the implementa-
tion by reviewing in-browser audio processing via the
Web Audio API and investigating multichannel support
of audio codecs for four browsers on two different op-
erating systems. In section 3 we discuss all parts of

1https://hoast.iem.at
2https://github.com/thomasdeppisch/hoast360

the implementation, focusing on audio processing and
two key features, which are the acoustic zoom and the
specific binaural decoding approach.

2 Current State of Web Audio

2.1 Web Audio API

Audio processing in web applications can be performed
efficiently via the Web Audio API, which is imple-
mented in all major browsers3 and provides high-level
access to browser-specific and highly-optimized pro-
cessing routines such as convolutions. It establishes a
modular audio routing graph inside an audio context,
which defines parameters such as a global sample rate
to ensure seamless interaction between the process-
ing modules. The Web Audio API provides source

3https://caniuse.com/#search=web%20audio%20api

https://hoast.iem.at
https://github.com/thomasdeppisch/hoast360
https://caniuse.com/#search=web%20audio%20api

Deppisch et al. HOAST

Windows 10 MacOS 10.14
Codec Firefox Chrome Edge Firefox Chrome Safari
WAV 32 31 31 32 31 32
FLAC 8 8 8 8 8 8
AAC 6 8 8 8 8 8

VORBIS 8 31 31 8 31 -
OPUS 32 31 31 32 31 -

Table 1: Maximum supported number of channels for multichannel audio files using different audio codecs. Tested
on Windows 10 and MacOS 10.14 with Firefox 74.0, Chrome 80.0.3987, Safari 13.1 and Edge 80.0.361.

nodes for audio synthesis and integration of external
audio signals into the audio routing graph, process-
ing nodes for various common audio processing tasks,
and a destination node connecting the audio routing
graph to an audio output device. Custom processing
nodes running on the audio rendering thread can be
added using AudioWorkletNodes in combination with
AudioWorkletProcessors. The AudioWorklet interface
supersedes the deprecated ScriptProcessorNode inter-
face, which is likely to cause audio glitches as it is
running on the main thread and might interfere with
other tasks. AudioWorklets not only support custom
processing in JavaScript but also routines written in
(or compiled to) WebAssembly, which aims at running
code in a browser at native speed. However, at the time
of writing, AudioWorkletNodes and AudioWorkletPro-
cessors are only supported in recent versions of Chrome
and are not running on a realtime priority thread which
can cause glitches4. In our tests, enabling the exper-
imental Chrome flag #audio-worklet-realtime-thread
suppresses the glitches. However, due to the limited
support, we currently do not use AudioWorklets in our
audio/video player.
When dealing with spatial audio technologies, the abil-
ity to do simultaneous processing of a large number of
audio channels is essential. Web Audio API specifica-
tions5 demand a minimum number of 32 channels to be
supported in each audio node by the individual browser
implementations. To the best knowledge of the authors,
all current Web Audio API implementations establish a
32-channel limit which in turn limits Ambisonics audio
processing within the Web Audio API to fourth order.

2.2 Audio Codecs

For use within the HOAST platform, a suitable audio
codec has to be chosen. The ideal codec for up-to-fourth-

4https://bugs.chromium.org/p/chromium/issues/
detail?id=813825

5https://www.w3.org/TR/webaudio/

order Ambisonics streaming should support efficient
(lossy) compression, up to 25 channels per file and
should be playable in all common browsers. Unfortu-
nately, no such codec is available at the moment. To
investigate the supported number of channels, a small
test application6 is created. It allows to try the playback
of different audio codecs in a browser. The results are
displayed in table 1.
For audio files used with HOAST, the OPUS codec was
chosen as it is the lossy codec supporting the highest
number of channels per file across all tested browsers
except Safari. While lossy audio coding generally de-
teriorates sound quality and spatial imaging, Narbutt
et al. [1] showed that OPUS with 32 kbps per channel
leads to good sound quality and excellent localization
accuracy in context of third-order Ambisonics.

3 Implementation

3.1 Adaptive Streaming

For use within an audio/video streaming platform, adap-
tive streaming technologies such as MPEG-DASH or
HLS are desirable as they ensure smooth playback
by segmenting content and automatically adapting the
bitrate to match the available bandwidth of the user.
For HOAST, MPEG-DASH was chosen as streaming
technology as it is codec-agnostic and available imple-
mentations support favorable video and audio codecs
such as VP9 and OPUS delivered inside the WebM
container. MPEG-DASH support is enabled in HOAST
via integration of dash.js7, the MPEG-DASH reference
client implementation provided by the DASH industry
forum.

6https://thomasdeppisch.github.io/
MultichannelAudioCodecBrowserTester/audioCodecTest.
html

7https://github.com/Dash-Industry-Forum/dash.js

AES 148th Convention, Online, 2020 June 2–5
Page 2 of 5

https://bugs.chromium.org/p/chromium/issues/detail?id=813825
https://bugs.chromium.org/p/chromium/issues/detail?id=813825
https://www.w3.org/TR/webaudio/
https://thomasdeppisch.github.io/MultichannelAudioCodecBrowserTester/audioCodecTest.html
https://thomasdeppisch.github.io/MultichannelAudioCodecBrowserTester/audioCodecTest.html
https://thomasdeppisch.github.io/MultichannelAudioCodecBrowserTester/audioCodecTest.html
https://github.com/Dash-Industry-Forum/dash.js

Deppisch et al. HOAST

MediaElementAudio-
SourceNode

HTML	audio	element

dash.js	media	player

MPEG-DASH	audio
stream

rotator

zoom

binaural	decoder

AudioDestinationNode

video	player
FOV

2	ch

25	ch

25	ch

25	ch

25	ch

25	ch

25	ch

Fig. 1: Audio signal flow in HOAST, supporting up to
fourth-order Ambisonics (25 audio channels).

3.2 Audio Signal Flow

To support up to fourth-order Ambisonics content in
Firefox andChromium-based browsers, the audio data is
served in 25-channel OPUS files. For HOAST, we pack-
age the OPUS files in a WebM container for streaming
with MPEG-DASH. On client side, the DASH stream is
received via dash.js and sent to an HTML audio element,
cf. figure 1. The decoded audio signals from the HTML
audio element is then included into the Web Audio API
audio context via a MediaElementAudioSourceNode.
The Ambisonics audio stream is forwarded to custom
processing nodes for Ambisonic rotation and acoustic
zoom (cf. section 3.3). These are based on nodes
provided by JSAmbisonics [2] and implement matrix
products by utilizing GainNodes of the Web Audio API.
Binaural decoding filters (cf. section 3.4) are convolved
with the Ambisonics multichannel signal using Web
Audio API convolver nodes, which provide a convo-
lution routine at native performance. In the end, the
two-channel binaural audio stream is sent to the client
audio hardware via the AudioDestinationNode.

3.3 Zoom

Ambisonic zoom is a combination of spatial windowing
and warping. These spatial transformations are based
on decoding the scene to a dense set of points, which

are weighted and changed in angle before re-encoding
to Ambisonics [3]. Decoding the scene to the grid of
t-design points with coordinatesΘP , spatial windowing
using the diagonal matrix G and re-encoding to the new
points Θ̂P is expressed as

T (α) = Y (Θ̂P(α)) G(α) Y (ΘP)
T . (1)

As these steps do not depend on the signal, they can be
computed offline, resulting in one (N +1)2 ×(N +1)2
zoommatrixT for every step in a set of zoom factors α ∈
[1,2.5]. During playback, the correct matrix is loaded
depending on the current zoom factor and multiplied
with the Ambisonics signal χ(t),

χzoomed(t) =T (α)χ(t) . (2)

When no zoom is applied, a range of ±60◦ of a spherical
video is visible. A zoom factor of α = 2 indicates that
the range has reduced to ±30◦. Figure 2 shows t-design
grid and field-of-view (FOV) before applying the spatial
transformations (a), after reducing the FOV (b) and after
warping (c) for a zoom factor of α = 1.8.
The warping function (cf. figure 3) describes the change
in angle of a t-design point before re-encoding and is
chosen in a such away that the points in the new, reduced
field of view are warped away from the view direction,
only so much as that they resemble the original FOV.
Since zooming is always done with respect to the view
direction, the function can be described in terms of
the angle between the point and the view axis. If all
points are on the surface of a unit sphere and have
Cartesian coordinates (xp,yp,zp), the angle to the view-
axis is computed as θp = arccos(xp). After the warping
function is applied to obtain the new angle θ̂p, the
warped points will be on a a greater circle of unit radius,
which intersects both the x-axis and the point before
warping, i.e. they will keep their angle ν = atan2(zp,yp)
to the x-y-plane. The new Cartesian coordinates are
then obtained by

x̂p = cos(θ̂p), (3)

ŷp =

√
1− x̂2

p /(1+ tan(ν)2) · sign(yp), (4)

ẑp = ŷp tan(ν) . (5)

3.4 Binaural Decoding

The Ambisonics binaural decoder creates a two-channel
binaural audio stream from the multichannel Ambison-
ics stream. Binaural audio uses HRTF-based (head-
related transfer function) localization cues to allow

AES 148th Convention, Online, 2020 June 2–5
Page 3 of 5

Deppisch et al. HOAST

(a) pre zoom (b) reduced FOV

(c) post zoom
Fig. 2: Distortion of FOV due to acoustic zoom, zoom

factor α = 1.8.

Fig. 3: Nonlinear warping function in comparison to
min(θp,180), zoom factor α = 1.8.

the perception of audio sources from arbitrary direc-
tions using regular headphones. A common approach
consists of decoding the Ambisonics scene to a set
of virtual loudspeakers and convolving each virtual
loudspeaker signal with an HRIR (head-related impulse
response) corresponding to the direction of the virtual
loudspeaker, before summing up all the signals for the
left and the right ear, respectively [4]. More recent
approaches [5][6] avoid this intermediate step and in-
stead solve a least squares (LS) optimization problem
to create decoding filters ωLS applied directly in the
Ambisonics domain

ωLS = argmin
ω
| |YΥω− hΥ | |

2
2 . (6)

Here, ωLS holds the (N + 1)2 decoding filters, mini-
mizing the least squares error between the HRTF mea-
surements in hΥ and the spherical harmonics in YΥ
evaluated at all HRTF directions of the measurement
grid Υ. For HOAST, we used a set of P = 2702 HRTFs,
measured with the KU 100 dummy head in directions
arranged according to a Lebedev grid [7]. As the sim-
ple approach described by equation 6 only gives good
solutions for unpractically high Ambisonic orders (e.g.
N > 20), we implemented the magnitude least squares

(MagLS) approach proposed in [5]. In a nutshell, this
solution reduces the large required spatial resolution
for representing HRTFs by finding an optimal phase
yielding an improvedmagnitude match for high frequen-
cies. For low frequencies, the least squares solution is
applied.
It can be observed that decoding using an anechoic
decoder often times leads to internalized sound events,
when compared to listening to an Ambisonics produc-
tion in a room. Rudrich and Frank [8] showed that
additional room reflections can increase externalization
and demonstrated that even a simple room model de-
coded in first-order Ambisonics can create this effect.
Taking into account results about externalization [9]
and the effects of BRIRmodifications with respect to ex-
ternalization and timbre [10], we generated a first-order
Ambisonics impulse response using the image source
model. It is applied to the first-order decoding filters
via convolution, yielding a total length of 2048 samples.
The decoding filters for the higher-order components
remain at a length of 256 taps.

3.5 Video Rendering

For video rendering, the open-source HTML5 video
player framework Video.js8 is used. In combination
with the videojs-contrib-dash plug-in9 it allows to re-
ceive and play back MPEG-DASH audio/video streams.
For support of 360◦ equirectangular video content and
dual-mono video content for head-mounted devices
(HMDs), the custom videojs plug-in videojs-xr10 is
developed. It is based on the videojs-vr11 plug-in but
uses the new WebXR API, replacing the WebVR API
used in videojs-vr. A polyfill makes HMDs usable in
recent Firefox and Chromium-based browsers although
not all of them support WebXR natively yet. Note
that currently WebXR needs to be enabled explicitly in
Chromium-based browsers via enabling flag #webxr,
setting the WebXR runtime via #webxr-runtime and
disabling #xr-sandbox. Internally, the video is rendered
via the JavaScript 3D library three.js which itself uses
a WebGL renderer. Support of further 360◦ and HMD
formats in videojs-xr is planned for the future.

3.6 Website Implementation

In order to manage the media files and embed the
custom-made media player, a web application was

8https://videojs.com/
9https://github.com/videojs/videojs-contrib-dash
10https://github.com/thomasdeppisch/videojs-xr
11https://github.com/videojs/videojs-vr

AES 148th Convention, Online, 2020 June 2–5
Page 4 of 5

https://videojs.com/
https://github.com/videojs/videojs-contrib-dash
https://github.com/thomasdeppisch/videojs-xr
https://github.com/videojs/videojs-vr

Deppisch et al. HOAST

developed. On the backend side it allows basic CRUD
(Create, Read, Update, Delete) tasks of the data in the
underlying database. This database holds two main
models: one for the meta data of the media files and
another for the so called "channel", i.e. the owner of the
media files. For the implementation the python-based
web framework Django was chosen, since it provides an
automatic and easy-to-configure admin interface. The
frontend is based on the popular, responsive Bootstrap
toolkit. It provides the user an intuitive interface to sort
the available media by Ambisonics order or channels.
Upon media selection, the associated meta data is
retrieved from the backend and displayed together with
the embeddedHOAST360media player. Currently, only
the applicationmaintainers are allowed tomanagemedia
files. However, the platform can easily be extended
with a user management system and a media submission
process for other community members at a later point.

4 Conclusion and Outlook

We showed how dynamic higher-order Ambisonics pro-
cessing and binaural rendering can be done in a web
browser. With the HOAST platform, we provide a
platform for sharing dynamically-rendered higher-order
Ambisonics audio content. The audio content can be
accompanied by 360◦ video to be played back in the
browser, where the FOV is controlled via the mouse,
or via HMDs. In case of audio-only content, a 360◦
heatmap video is added. The simultaneous audio and
video rendering is computationally demanding, which
may lead to poor performance on weak computers. This
problem will be tackled in the future by implementing
custom processing in WebAssembly, which is unfor-
tunately not yet well supported in browsers. As first
successful experiments were already carried out, we are
confident to be able to offer higher-order Ambisonics
live streaming with HOAST360 soon.

Acknowledgment

This work was partly funded by the vice rectorate for
research of theUniversity ofMusic and PerformingArts,
Graz, within the framework of a knowledge transfer
project.

References

[1] Narbutt, M., O’Leary, S., Allen, A., Skoglund,
J., and Hines, A., “Streaming VR for immersion:

Quality aspects of compressed spatial audio,” in
23rd International Conference on Virtual System
& Multimedia, pp. 1–6, IEEE, Dublin, 2017.

[2] Politis, A. and Poirier-Quinot, D., “JSAmbisonics :
A Web Audio library for interactive spatial sound
processing on the web,” in Proceedings of the
Interactive Audio Systems Symposium, September,
2016.

[3] Kronlachner, M. and Zotter, F., Spatial trans-
formations for the enhancement of Ambisonic
recordings, Master’s thesis, University of Music
and Performing Arts, Graz, 2014.

[4] Noisternig, M., Sontacchi, A., Musil, T., and
Holdrich, R., “A 3D Ambisonic Based Binaural
Sound Reproduction System,” in Audio Engineer-
ing Society Conference: 24th International Con-
ference: Multichannel Audio, The New Reality,
2003.

[5] Schörkhuber, C., Zaunschirm, M., and Höldrich,
R., “Binaural Rendering of Ambisonic Signals
via Magnitude Least Squares,” Proceedings of the
DAGA, pp. 339–342, 2018.

[6] Zaunschirm, M., Schörkhuber, C., and Höldrich,
R., “Binaural rendering of Ambisonic signals by
head-related impulse response time alignment
and a diffuseness constraint,” J. Acoust. Soc. Am.,
143(6), pp. 3616–3627, 2018.

[7] Bernschütz, B., “A Spherical Far Field
HRIR/HRTF Compilation of the Neumann KU
100,” Proceedings of the DAGA (German Annual
Conference on Acoustics), pp. 592—-595, 2013.

[8] Rudrich, D. and Frank, M., “Improving Exter-
nalization in Ambisonic Binaural Decoding,” in
Proceedings of the DAGA German Annual Con-
ference on Acoustics, pp. 1466–1469, 2019.

[9] Catic, J., Santurette, S., and Dau, T., “The role
of reverberation-related binaural cues in the exter-
nalization of speech,” J. Acoust. Soc. Am., 138(2),
pp. 1154–1167, 2015.

[10] Giller, P. M., Wendt, F., and Höldrich, R., “The
influence of different BRIR modification tech-
niques on externalization and sound quality,” Pro-
ceedings on the Spatial Audio Signal Processing
Symposium, 2019.

AES 148th Convention, Online, 2020 June 2–5
Page 5 of 5

	Introduction
	Current State of Web Audio
	Web Audio API
	Audio Codecs

	Implementation
	Adaptive Streaming
	Audio Signal Flow
	Zoom
	Binaural Decoding
	Video Rendering
	Website Implementation

	Conclusion and Outlook

