
Audio Engineering Society

Convention Paper 10377
Presented at the 148th Convention, 2020 June 2-5, Online

This convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention paper has
been reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review
Board. The AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-
lib), all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

SpiegeLib: An automatic synthesizer programming library
Jordie Shier1, George Tzanetakis1, and Kirk McNally1

1University of Victoria

Correspondence should be addressed to Jordie Shier (jshier@uvic.ca)

ABSTRACT

Automatic synthesizer programming is the field of research focused on using algorithmic techniques to generate
parameter settings and patch connections for a sound synthesizer. In this paper, we present the Synthesizer
Programming with Intelligent Exploration, Generation, and Evaluation Library (spiegelib), an open-source,
object oriented software library to support continued development, collaboration, and reproducibility within this
field. spiegelib is designed to be extensible, providing an API with classes for conducting automatic synthesizer
programming research. The name spiegelib was chosen to pay homage to Laurie Spiegel, an early pioneer in
electronic music. In this paper we review the algorithms currently implemented in spiegelib, and provide an
example case to illustrate an application of spiegelib in automatic synthesizer programming research.

1 Introduction

The use of sound synthesizers in the fields of mu-
sic composition, production, and performance is
widespread, but the task of programming a synthesizer
is complex and requires a thorough understanding of
technical details. It is not uncommon for a software
synthesizer to have 30+ parameters displayed on a user
interface (UI) and labelled using technical names [1].
Manually programming sounds using such a large set
of parameters is a daunting task. Synthesizer program-
ming is further complicated by the fact that modifica-
tions to parameters are often not intuitively reflected
in the end sonic result. This disconnect can be dis-
ruptive to the creative process. Automatic synthesizer
programming (ASP) is the field of research focused on
addressing these challenges in programming synthesiz-
ers.

Early ASP research emerged in the late 1970s with
work that focused on the use of analytic methods to
estimate the parameters for frequency modulation (FM)
synthesis [2]. That work was an example of synthesizer
sound matching in which a system estimates synthe-
sizer parameters to replicate a target sound. Since then
a large volume of work on synthesizer sound match-
ing has been published and has explored a variety of
synthesis techniques and algorithmic methods. One
popular approach is the use of evolutionary algorithms
[3, 4, 5, 6, 7, 8, 9, 10]. More recently, deep learn-
ing techniques have been explored [11, 12, 13]. Other
methods that have been studied include semantic de-
scriptions [14, 15, 16], interactive methods [17, 18, 19],
and sound matching with vocal imitations [20, 21].

A recent user study conducted by Kreković et al. con-
firmed the desire among synthesizer users for improved

Shier, Tzanetakis, and McNally SpiegeLib

means of working with their synthesizers [22]. While
recent research has produced promising results, auto-
matically programming a modern software synthesizer
still presents challenges. Current evolutionary tech-
niques face issues including time complexity [9], while
recent deep learning approaches have challenges in con-
sistently producing accurate reproductions [11]. The
desires expressed by the users in Kreković et al.’s study,
coupled with the need for further research and improve-
ment noted in the existing body of work, point to the
need for further development in ASP.

The work presented here attempts to continue this
development, and promote collaboration and repro-
ducibility in ASP research through the introduction
of spiegelib, an open-source library written in the
Python programming language. Vandewalle et al. ar-
gue that reproducibility in computational science re-
search increases the impact of a work and they pro-
vide a framework for evaluating the quality of repro-
ducibility [23]. The aim of spiegelib is to pro-
vide a platform for researchers of automatic synthe-
sizer programming to develop, test, and share imple-
mentations in a way that promotes reproducibility at
the highest level. spiegelib stands for Synthesizer
Programming with Intelligent Exploration, Generation,
and Evaluation Library. The name spiegelib was
chosen to pay homage to Laurie Spiegel, an early pio-
neer in electronic music composition. Laurie Spiegel is
known for utilizing synthesizers and software to auto-
mate certain aspects of the music composition process.
Her philosophy for using technology in music serves
as a motivation for the spiegelib software library:
"I automate whatever can be automated to be freer to
focus on those aspects of music that can’t be automated.
The challenge is to figure out which is which." [24]

The remainder of this paper is structured as follows:
Section 2 presents a survey of related work to provide
background for the algorithmic techniques included in
spiegelib as well as an overview of available open-
access ASP software, Section 3 provides an overview
of the spiegelib software library. An example case
illustrating the use of spiegelib in a research con-
text is presented in Section 4.

2 Related Work

This section provides a brief summary of the main algo-
rithmic methodologies that have been used in previous
ASP research, namely, optimization and deep learning

techniques. Other methods that have been used in ASP
research that are beyond the scope of this paper include
include fuzzy logic [25, 26], linear coding [27], and
query approaches [20]. An informal survey of open-
access software that supports reproducibility is also
included at the end of the section.

2.1 Optimization

The optimization approach was first introduced in 1993
with Horner et al.’s work on sound matching for FM
synthesis using genetic algorithms [3]. A genetic al-
gorithm (GA) is a method for solving an optimization
problem using techniques based on the principles of
Darwinian evolution, and is part of a broader class
of evolutionary algorithms [28]. In a GA, a potential
solution (an individual) is represented as an array of
bits. An initial set of individuals is randomly generated,
and then iteratively evolved using biologically inspired
processes including selection, breeding, and mutation.
Individuals are ranked using an evaluation function that
measures the f itness of a given solution. The objec-
tive of a GA is to minimize that value (or maximize it,
depending on the problem definition). The best candi-
dates are selected for further evolution until either an
optimal solution is found or a set number of evolutions
has been completed.

In the case of sound matching, the fitness of a potential
solution is determined by measuring the error between
a target sound and a candidate. Typically, an audio
transform or audio feature extraction is performed prior
to calculating fitness. The first works on synthesizer
sound matching with GAs used the Short Time Fourier
Transform (STFT) in the evaluation function [3, 29].
Mel-frequency Cepstral Coefficients (MFCCs), an au-
dio representation using a non-linear frequency scaling
that is more relevant to human hearing, have also been
used [6, 8, 30, 10]. Tatar et al. introduced the use of
a multi-objective GA for synthesizer sound matching
that used three different methods for calculating f itness
values: the STFT, Fast Fourier Transform (FFT), and
signal envelope [9]. Alternatives to GAs that have been
used for sound matching include Particle Swarm Opti-
mization (PSO) [7] and Hill-Climbing [8, 31].

Researchers have also used Interactive Genetic Algo-
rithms (IGAs) that allow users to interactively hear and
rate potential synthesizer patches [17, 18, 19]. In con-
trast to the sound matching case, the evaluation function
in an IGA relies on user feedback during each iteration

AES 148th Convention, Online, 2020 June 2–5
Page 2 of 10

Shier, Tzanetakis, and McNally SpiegeLib

as opposed to measuring error between a candidate and
a target.

Automatic programming using semantic sound descrip-
tions has also been explored, and is a further methodol-
ogy that has used GAs [16].

2.2 Deep Learning

Deep learning is subset of machine learning that uti-
lizes artificial neural networks to learn patterns in data
and make predictions based on those patterns [32].
Deep learning architectures contain multiple layers
comprised of simple non-linear modules. Through it-
erative training, the layers are able to extract features
from raw input data and learn intricate patterns in high-
dimensional data. These multi-layer architectures have
enabled deep learning models to excel at complex tasks
including image recognition, speech recognition, and
music related tasks such as audio source separation
[33].

In the context of an ASP sound matching experiment,
a deep learning model accepts an audio signal as input
and predicts synthesizer parameter settings to replicate
that audio signal. Audio signals are often preprocessed
using audio feature extraction or an audio transform.
Models are trained using a large set of example sounds
generated from a synthesizer and use the parameter
settings that generated a particular sound as the ground
truth. During training, the error between predicted
parameter settings and the actual parameter settings
(the ground truth) are used to evaluate how well the
model is learning and to iteratively update variables
within the model to improve performance.

Several researchers have explored the use of deep learn-
ing for ASP. Yee-King et al. reviewed several deep
learning architectures for FM synthesizer sound matc-
ing [11]. In their work, they compared multi-layer
perceptron (MLP), Long Short Term Memory (LSTM),
and LSTM++ networks. Barkan et al. explored sound
matching using convolutional neural networks (CNNs)
[12]. They framed the problem as an image classifi-
cation task and used the STFT to create spectrogram
images of target sounds to use as input to the CNNs.
Esling et al. recently presented a novel application
called FlowSynth that uses a generative model based
on Variational Auto-Encoders and Normalizing Flows
[13]. In addition to performing well on sound matching
tasks, they also showed that their approach supported
novel interactions including macro-control of synthe-
sizer parameters.

2.3 Software in ASP Research

In Vandewalle et al.’s paper on reproducibility in com-
putational sciences, they advocate providing other
researchers with "all the information (code, data,
schemes, etc.) that was used to produce the presented
results"[23]. Several authors of ASP research have
started to make their work open-access with source
code available online.

Martin Roth and Matthew Yee-King developed
JV stHost, a Java-based Virtural Studio Technology
(VST) plugin host that was published by Matthew
Yee-King [34] and was a component of SynthBot [6].
However, the code for SynthBot itself was not re-
leased. Matthew Yee-King also shared the source code
for EvoSynth, an application for interactive synthe-
sizer patch exploration [19]. A version of EvoSynth
is hosted online allowing for immediate experimen-
tation1. Kreković et al. released source code for
their MightyKnob system [16]. Esling et al. released
open-source code and a Max4Live2 application for
FlowSynth [13]. Yee-King et al. recently took initial
steps towards a software framework for ASP research
with the release of source code that provides function-
ality for generating research datasets and a set of al-
gorithms for parameter estimation [11]. Along with
that work they released the RenderMan3 library for
programmatically interacting with VST synthesizers
using the Python programming language.

spiegelib builds upon this work with the goal of
supporting and encouraging reproducibility within the
ASP research community. spiegelib is inspired by
the steps that Yee-King et al. took towards creating
a software library for ASP research and extends that
work with the inclusion of: an object-oriented API,
base classes for customization, more robust evolution-
ary techniques, basic subjective evaluation, complete
documentation, and packaging and delivery. It provides
a framework for authors to share implementations in
an open-access way that allows other researchers to
quickly recreate results using a clearly documented set
of freely-available tools.

1http://www.yeeking.net/evosynth/
2https://www.ableton.com/en/live/

max-for-live/
3https://github.com/fedden/RenderMan

AES 148th Convention, Online, 2020 June 2–5
Page 3 of 10

http://www.yeeking.net/evosynth/
https://www.ableton.com/en/live/max-for-live/
https://www.ableton.com/en/live/max-for-live/
https://github.com/fedden/RenderMan

Shier, Tzanetakis, and McNally SpiegeLib

Table 1: Algorithms currently implemented as classes in spiegelib

Algorithms in spiegelib
Feature Extraction Deep Learning Estimators Optimization Estimators

FFT MLP [11] Basic GA
STFT LSTM [11] NSGA III [9]
MFCC LSTM++ [11] Objective Evaluation
Spectral1 Conv6 [12] MFCC Evaluation

1 Spectral bandwidth, centroid, contrast, flatness, and rolloff.

3 Design of SpiegeLib

spiegelib is designed to be as extensible as possible
to allow researchers to develop and test new implemen-
tations of components for conducting ASP research.
Base classes with functionality for interacting with soft-
ware synthesizers, audio feature extraction, parameter
estimation, and evaluation provide an API to support
development of custom implementations that will work
with other components of the library. A number of util-
ity classes are also provided for handling audio signals,
generating datasets, and running experiments.

spiegelib is written in the Python programming
language and utilizes Python packages common in
research including numpy, scipy, tensorflow,
and librosa. spiegelib itself is a python pack-
age and is available through the Python Package
Index (PyPI) with pip4. All dependencies, except
for librenderman, are python packages available
through the PyPI and will be automatically installed by
pip. For more information on installation, system re-
quirements, and detailed library documentation, please
refer to the online documentation.5

A summary of the currently implemented algorithms
is shown in table 1. A brief overview of these com-
ponents and the main classes and functionalities of
spiegelib is provided in the following sections.

3.1 AudioBuffer

The AudioBuffer class is used to pass audio signal
signals throughout the library. It holds an array of
audio samples and sample rate information. Methods
of the AudioBuffer class provide functionality for
loading audio from a variety of file formats, resampling,
normalizing, time segmenting, plotting spectrograms,
and saving audio as WAV files.

4https://pypi.org/
5https://spiegelib.github.io/spiegelib/

3.2 Synthesizers

The SynthBase class is an abstract base class that
provides an interface for creating programmatic interac-
tions with software synthesizers. SynthBase stores
information and contains methods required for interac-
tion with other components in spiegelib, including
getting parameter lists, setting and getting patch con-
figurations, overriding/freezing parameters, triggering
audio rendering using MIDI notes, getting audio sam-
ples as AudioBuffers, and requesting randomized
patch settings. All patch settings are stored as a list
of parameter tuples which contain the parameter num-
ber and parameter value. All parameter values are
expected to be floating point numbers in the range [0.0,
1.0]. No requirement is made on how underlying syn-
thesis engines are implemented, however, inheriting
classes must provide parameter descriptions in a class
attribute during construction and must provide imple-
mentations for four abstract class methods related to
loading patches, randomizing patches, rendering audio,
and returning an AudioBuffer of rendered audio.

SynthVST is an implementation of SynthBase and
provides an interface for interacting with VST synthe-
sizers. SynthVST is a wrapper for the RenderMan
Python library developed by Leon Fedden in conjunc-
tion with research by Yee-King et al. [11].

3.3 Audio Feature Extraction

The abstract base class FeaturesBase provides
an interface for audio feature extraction tasks. The
getFeatures() abstract method must be overrid-
den in inheriting classes and is where feature extrac-
tion algorithms are run. FeatureBase also includes
functionality for normalizing results from feature ex-
traction. By default, data is normalized by removing
the mean and scaling to unit variance. Settings for nor-
malization can be saved from a set of data, reloaded,

AES 148th Convention, Online, 2020 June 2–5
Page 4 of 10

https://pypi.org/
https://spiegelib.github.io/spiegelib/

Shier, Tzanetakis, and McNally SpiegeLib

and applied to new feature extraction results to ensure
that normalization is carried out using the same pa-
rameters. Currently, implemented feature extraction
classes utilize the librosa library [35] and include
Mel Frequency Cepstral Coefficients (MFCC), Short
Time Fourier Transform (STFT), Fast Fourier Trans-
form (FFT), and a set of time summarized spectral
features (SpectralSummarized).

3.4 Estimators

All parameter estimation classes implement
the EstimatorBase abstract base class.
EstimatorBase is a minimal base class with
one abstract method, predict(), that has an op-
tional input argument. Implementations of estimators
are split into deep learning approaches and other
approaches including evolutionary algorithms. The
included algorithms do not represent a comprehensive
set of methods for ASP research but are meant to
cover common methods informed by previous work.
Six estimators are currently implemented and the
authors plan to add 5 more in the near future: a hill
climbing optimizer [11], a particle swarm optimizer
[7], additional configurations of 2D CNNs [12], a 1D
CNN for raw audio input [12], and a recent generative
approach [13]. The authors hope that other researchers
will add their new algorithms to the library as well.

3.4.1 Deep Learning Estimators

All deep learning models are implementations of
the TFEstimatorBase abstract base class which
utilizes the tensorflow6 and keras7 machine
learning libraries. TFEstimatorBase implements
EstimatorBase and provides wrapper functions
for setting up data for training and validation, train-
ing models, running predictions, and saving and load-
ing model weights. While these methods are de-
signed to help in handling of data typical to a syn-
thesizer parameter estimation problem, all methods
for a tf.keras.Model can be accessed directly
from the model class member. Classes that inherit
from TFEstimatorBase define models in an imple-
mentation of the buildModel() method which is
automatically called during construction in the base
class. This allows new models to be quickly designed,
switched out, and compared with minimal effort.

6https://www.tensorflow.org
7https://www.tensorflow.org/guide/keras

Fig. 1: Example of spiegelib performing a sound
match from a target WAV file on a VST synthe-
sizer. A pre-trained LSTM deep learning model
is used with MFCC input.

1 import spiegelib as spgl
2 import spiegelib.estimator.TFEstimatorBase
3

4 # Load VST and set parameters from JSON file
5 synth = spgl.synth.SynthVST(’./Dexed.vst’)
6 synth.load_state(’./dexed_simple_fm.json’)
7

8 # MFCC Audio Feature Extractor
9 ftrs = spgl.features.MFCC(normalize=True)

10

11 # Load saved normalization parameters
12 ftrs.load_normalizers(’./normalizers.pkl’)
13

14 # Load LSTM model from saved model file
15 lstm = TFEstimatorBase.load(’./fm_lstm.h5’)
16

17 matcher = spgl.SoundMatch(synth, lstm, ftrs)
18

19 target = spgl.AudioBuffer(’./target.wav’)
20 output = matcher.match(target)
21 output.save(’./lstm_predicted_audio.wav’)

Currently, implementations for a Multi-Layer Percep-
tron (MLP), Long Short Term Memory (LSTM), Bi-
directional Long Short Term Memory with Highway
Layers (HwyBLSTM), and a convolution network with
6-layers (Conv6) are included. An example code list-
ing of sound matching using a trained LSTM model is
shown in figure 1.

To save training and validation progress, the
TFEpochLogger class can be passed in as a call-
back during model training. TFEpochLogger stores
training accuracy and loss, and validation accuracy and
loss over training epochs in a dictionary object which
can be plotted after training.

3.4.2 Optimization Estimators

Two optimization estimators are currently implemented
and utilize the DEAP python library [36]. A basic GA
(BasicGA) is included as well as a multi-objective
non-dominated sorting genetic algorithm III (NSGA3).
Both GAs require feature extraction objects, or a list
of feature extraction objects in the case of the multi-
objective algorithm, which are used in the GA evalua-
tion function.

AES 148th Convention, Online, 2020 June 2–5
Page 5 of 10

https://www.tensorflow.org
https://www.tensorflow.org/guide/keras

Shier, Tzanetakis, and McNally SpiegeLib

3.5 Datasets

The DatasetGenerator class provides function-
ality for creating datasets of audio samples, feature
vectors, and associated parameter settings from a syn-
thesizer. An implementation of SynthBase and
FeaturesBase are passed in as arguments to the
DatasetGenerator constructor. To generate a
dataset, random patches for the synthesizer are created
and feature extraction is performed on the resulting
audio. In this way, datasets for training and validating
deep learning models, as well as datasets for evaluat-
ing sound matching experiments can be automatically
generated. External datasets can also be used within
spiegelib and the AudioBuffer class provides
support for loading folders of audio samples for pro-
cessing.

3.6 Evaluation

Objective evaluation of results can be carried
out by measuring error between audio samples.
EvaluationBase is an abstract base class for cal-
culating evaluation metrics on a set of target and pre-
diction data. A list of target values and lists of pre-
dictions for each target are passed into the constructor.
EvaluationBase provides functionality for calcu-
lating statistics on results, saving results as a JSON file,
plotting results in histograms, and calculating metrics
including mean absolute error, mean squared error, eu-
clidian distance, and manhattan distance. Inheriting
classes must implement the evaluate_target()
method which is called for each target and associated
estimations and is expected to return a dictionary of
metrics for each estimation. The MFCCEval class im-
plements EvaluationBase and calculates metrics
on MFCC vectors for targets and estimations.

Functionality for conducting subjective evaluation of
results is provided in the BasicSubjective class.
This class accepts a set of audio files and runs a locally
hosted server that generates a simple web interface for
listening to and ranking audio files in terms of simi-
larity or preference. For sound matching experiments,
audio targets can be passed in along with a set of pre-
dictions for each target, and a sound similarity test will
be generated with options for randomizing the ordering
of targets and predictions. Results can then be saved as
a JSON file.

4 Example Case

4.1 Dexed: FM Sound Matching

To illustrate the use of spiegelib in the context of
an ASP sound matching experiment, we present an
example study that compares six different parameter es-
timators acting on Dexed8, a VST software emulation
of the Yamaha DX7 FM synthesizer. The methodology
used for this experiment is modelled after Yee-King et
al.’s study on deep learning for automatic synthesizer
programming [11], but with a simplified synthesizer
configuration and a unique set of estimators. In align-
ment with Vandewalle et al.’s criteria for reproducible
research, implementation details, code, and datasets
are all available on the spiegelib online documen-
tation.9

The first step is defining the synthesizer setup and creat-
ing data for training deep learning models. Dexed has
155 parameters controllable through the SynthVST
class. A subset of nine of these parameters were used
in this experiment to turn Dexed into a simple two-
oscillator FM synthesizer. The SynthVST class pro-
vides methods for overriding and freezing parameters
as well as saving and loading parameter settings as
JSON files.

The DatasetGenerator class was then used to cre-
ate datasets for deep learning training. All deep learn-
ing models, except for the CNN, used a 13-band MFCC
calculated with a frame size of 2048 samples and a hop
size of 1024 samples. The input of the CNN was the
magnitude spectrum from a STFT, calculated using
an FFT with 512 bins and a hop size of 256 samples.
Using an instance of DatasetGenerator, 50,000
training examples and 10,000 validation examples were
generated by randomly sampling the nine parameters
from Dexed. Resulting feature vectors were normal-
ized by removing the mean and scaling to unit vari-
ance using methods within the FeatureBase base
class. Datasets and settings for normalization were then
stored as NumPy10 files for later use.

All deep learning models are defined in classes
within spiegelib and all inherit from
TFEstimatorBase. Models were trained us-
ing an Adam optimizer [37], batch sizes of 64, and

8https://asb2m10.github.io/dexed/
9https://spiegelib.github.io/spiegelib/

examples/fm_sound_match.html
10https://numpy.org/

AES 148th Convention, Online, 2020 June 2–5
Page 6 of 10

https://asb2m10.github.io/dexed/
https://spiegelib.github.io/spiegelib/examples/fm_sound_match.html
https://spiegelib.github.io/spiegelib/examples/fm_sound_match.html
https://numpy.org/

Shier, Tzanetakis, and McNally SpiegeLib

Table 2: Results from sound matching evaluation

Method Mean SD Min Max

MLP 8.55 6.77 1.92 34.12
CNN 7.88 4.26 2.68 20.89
LST M 6.12 3.76 1.20 19.36
LST M++ 4.91 6.50 2.12 21.51
GA 2.25 2.58 0.70 11.17
NSGAIII 0.81 0.89 0.001 3.06

Values shown are calculated from the mean absolute error
(MAE) calculated during MFCC evaluation. Smaller MAE
values indicate more similar matches. The NSGA III estima-
tor received the best scores, which are shown in bold font.

used an early stopping callback which halted training
if validation loss was stagnant for 10 epochs to prevent
overfitting. Logging of training and validation progress
was recorded using the TFEpochLogger class. The
loss function in all models measure the RMS error
between ground truth parameter settings and prediction
parameter settings.

Two GAs were used: a basic single-objective GA
(BasicGA) and a multi-objective NSGA III (NSGA3).
Evaluation functions for the GAs use audio feature ex-
traction and measure the mean absolute error (MAE)
between the target and individuals to calculate f itness.
The BasicGA used a 13-band MFCC in the evaluation
function and the NSGA3 used three different extractors:
a 13-band MFCC, STFT, and five spectral features.
Both genetic algorithms were run for 100 generations
for each sound target.

An evaluation dataset containing 25 random sounds
from the same nine-parameter Dexed configuration
was generated using the DatasetGenerator class.
All estimators were run on each one of the 25 target
sounds using the SoundMatch class. SoundMatch
is a functional class that uses an estimator to predict
synthesizer parameter settings for an implementation
of SynthBase in order to match a target sound. This
resulted in a set of audio files generated from Dexed
using the estimated parameters from each estimator run
on each of the 25 target sounds. These audio files were
then used for objective evaluation.

To evaluate to the resulting predictions the MFCCEval
class was used, which calculates error and distance
metrics on MFCCs of a target and prediction. Results
for mean absolute error (MAE) which have been sum-
marized using mean, standard deviation, minimum,

Fig. 2: Histogram shows the MAE values resulting
from MFCC evaluation run on a set of 25 sound
targets for all estimators. Lower MAE values
indicate a closer sound match.

and maximum, are shown for each estimator in table
2. Both GAs performed better than the deep learning
approaches with the NSGA III having the best over-
all score. For deep learning approaches, the LSTM++
model achieved the best mean score. Histograms of
the the MAE were also plotted for each estimator using
the plot_hist() method in EvaluationBase.
Histograms of the MAE for all predictions made by
all estimators are shown in figure 2. Spectrograms of
one target sound and sound match predictions made by
each of the estimators for that target are shown in figure
3. For this particular target, spectrograms reveal that
while the frequency and distribution of the harmonics
was relatively close for each estimation, all estimators
except for the NSGA III struggled with matching the
temporal envelope of the spectrum.

AES 148th Convention, Online, 2020 June 2–5
Page 7 of 10

Shier, Tzanetakis, and McNally SpiegeLib

Fig. 3: Spectrogram plots of a target sound and sound
match predictions made by each estimator. The
value next to the estimator name is the MAE
value from MFCC evaluation for that prediction
(lower MAE values indicate a closer match).

5 Future Work and Conclusion

Development of spiegelib is ongoing and a number
of expansions to the current library are planned. First,
we would like to continue to expand the number of
estimators available and plan on integrating the follow-
ing: a hill climbing optimizer [11], a particle swarm
optimizer [7], more 2D CNN configurations [12], a
1D CNN for raw audio input [12], and a generative
approach [13]. Second, we would like to expand on
the type of interactions available such as automatic pro-
gramming from vocal imitations [20] and interactive
methods. Finally, we would like to encourage develop-

ers and researchers from the automatic synthesizer pro-
gramming community to contribute to spiegelib.
Information on contributing is available online.11

This work has introduced spiegelib, an open-
source automatic synthesizer programming library.
spiegelib is an object-oriented library that was de-
signed with the goal of supporting development, col-
laboration, and reproducibility in the field. The library
includes implementations of classes for conducting
ASP research. These classes contain functionality for
interacting with VST synthesizers, extracting audio
features, creating datasets, estimating synthesizer pa-
rameters, and evaluating results. Six implementations
of deep learning and evolutionary parameter estimation
techniques based on previous work are included, with
more planned. An example case of an automatic synthe-
sizer sound matching study using the library was shown.
This example case, along with the supporting code and
data available online showcases how spiegelib can
be used to support reproducible research.

This work was supported by a NSERC CGS-M fel-
lowship. Thank you to Colin Malloy for his help with
testing.

References

[1] Rasmussen, C., Evaluating the Usability of Soft-
ware Synthesizers: An Analysis and First Ap-
proach, Master’s thesis, 2018.

[2] Justice, J., “Analytic signal processing in music
computation,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, 27(6), pp. 670–
684, 1979.

[3] Horner, A., Beauchamp, J., and Haken, L., “Ma-
chine tongues XVI: Genetic algorithms and their
application to FM matching synthesis,” Computer
Music Journal, 17(4), pp. 17–29, 1993.

[4] Mitchell, T. J. and Creasey, D. P., “Evolutionary
sound matching: A test methodology and com-
parative study,” in Sixth International Conference
on Machine Learning and Applications (ICMLA
2007), pp. 229–234, IEEE, 2007.

[5] Yee-King, M. J., “The evolving drum machine,”
in Music-AL workshop, ECAL conference, vol-
ume 2007, 2007.

11https://spiegelib.github.io/spiegelib/
contributing.html

AES 148th Convention, Online, 2020 June 2–5
Page 8 of 10

https://spiegelib.github.io/spiegelib/contributing.html
https://spiegelib.github.io/spiegelib/contributing.html

Shier, Tzanetakis, and McNally SpiegeLib

[6] Yee-King, M. and Roth, M., “Synthbot: an Un-
supervised Software synthesizer Programmer.” in
Proceedings of the International Computer Music
Conference, 2008.

[7] Heise, S., Hlatky, M., and Loviscach, J., “Au-
tomatic cloning of recorded sounds by software
synthesizers,” in Audio Engineering Society Con-
vention 127, Audio Engineering Society, 2009.

[8] Roth, M. and Yee-King, M., “A comparison of
parametric optimization techniques for musical
instrument tone matching,” in Audio Engineer-
ing Society Convention 130, Audio Engineering
Society, 2011.

[9] Tatar, K., Macret, M., and Pasquier, P., “Auto-
matic synthesizer preset generation with Preset-
Gen,” Journal of New Music Research, 45(2), pp.
124–144, 2016.

[10] Smith, B. D., “Play it Again: Evolved Audio
Effects and Synthesizer Programming,” in Inter-
national Conference on Evolutionary and Bio-
logically Inspired Music and Art, pp. 275–288,
Springer, 2017.

[11] Yee-King, M. J., Fedden, L., and d’Inverno, M.,
“Automatic Programming of VST Sound Synthe-
sizers Using Deep Networks and Other Tech-
niques,” IEEE Transactions on Emerging Topics
in Computational Intelligence, 2(2), pp. 150–159,
2018.

[12] Barkan, O., Tsiris, D., Katz, O., and Koenigstein,
N., “InverSynth: Deep Estimation of Synthesizer
Parameter Configurations From Audio Signals,”
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 27(12), pp. 2385–2396,
2019.

[13] Esling, P., Masuda, N., Bardet, A., Despres, R.,
and Chemla-Romeu-Santos, A., “Flow Synthe-
sizer: Universal Audio Synthesizer Control with
Normalizing Flows,” Applied Sciences, 10(1), p.
302, 2020.

[14] Ethington, R. and Punch, B., “SeaWave: A sys-
tem for musical timbre description,” Computer
Music Journal, 18(1), pp. 30–39, 1994.

[15] Johnson, C. G. and Gounaropoulos, A., “Tim-
bre interfaces using adjectives and adverbs,” in

Proceedings of the 2006 conference on New in-
terfaces for musical expression, pp. 101–102, IR-
CAM, 2006.

[16] Kreković, G., Pošćić, A., and Petrinović, D., “An
algorithm for controlling arbitrary sound synthe-
sizers using adjectives,” Journal of New Music
Research, 45(4), pp. 375–390, 2016.

[17] Johnson, C. G., “Exploring the sound-space of
synthesis algorithms using interactive genetic al-
gorithms,” in Proceedings of the AISB’99 Sympo-
sium on Musical Creativity, pp. 20–27, Society
for the Study of Artificial Intelligence and Simu-
lation of Behaviour, 1999.

[18] Dahlstedt, P., “Creating and Exploring Huge Pa-
rameter Spaces: Interactive Evolution as a Tool
for Sound Generation.” in ICMC, 2001.

[19] Yee-King, M. J., “The use of interactive genetic
algorithms in sound design: a comparison study,”
ACM Comput. Entertainment, 14(3), 2016.

[20] Cartwright, M. and Pardo, B., “SynthAssist:
Querying an Audio Synthesizer by Vocal Imita-
tion,” in Proceedings of the International Confer-
ence on New Interfaces for Musical Expression,
pp. 363–366, 2014.

[21] Zhang, Y. and Duan, Z., “Visualization and inter-
pretation of Siamese style convolutional neural
networks for sound search by vocal imitation,” in
2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp.
2406–2410, IEEE, 2018.

[22] Kreković, G., “Insights In Habits and Attitudes
Regarding Programming Sound Synthesizers: A
Quantitative Study,” in Proceedings of the 16th
Sound and Music Computing Conference, 2019.

[23] Vandewalle, P., Kovacevic, J., and Vetterli, M.,
“Reproducible research in signal processing,”
IEEE Signal Processing Magazine, 26(3), pp. 37–
47, 2009.

[24] Hinkle-Turner, E., Women Composers and Music
Technology in the United States: Crossing the
Line, Ashgate Publishing, Ltd., 2006.

[25] Mitchell, T. and Sullivan, C., “Frequency Modu-
lation Tone Matching Using a Fuzzy Clustering

AES 148th Convention, Online, 2020 June 2–5
Page 9 of 10

Shier, Tzanetakis, and McNally SpiegeLib

Evolution Strategy,” in Audio Engineering Society
Convention 118, 2005.

[26] Hamadicharef, B. and Ifeachor, E. C., “Intelli-
gent and perceptual-based approach to musical
instruments sound design,” Expert Systems with
Applications, 39(7), pp. 6476–6484, 2012.

[27] Mintz, D., Toward timbral synthesis: a new
method for synthesizing sound based on timbre
description schemes, Master’s thesis, Citeseer,
2007.

[28] Whitley, D., “A genetic algorithm tutorial,” Statis-
tics and computing, 4(2), pp. 65–85, 1994.

[29] Horner, A., “Wavetable matching synthesis of dy-
namic instruments with genetic algorithms,” Jour-
nal of the Audio Engineering Society, 43(11), pp.
916–931, 1995.

[30] Macret, M. and Pasquier, P., “Automatic design
of sound synthesizers as pure data patches using
coevolutionary mixed-typed cartesian genetic pro-
gramming,” in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Compu-
tation, pp. 309–316, ACM, 2014.

[31] Luke, S., “Stochastic Synthesizer Patch Explo-
ration in Edisyn,” in International Conference
on Computational Intelligence in Music, Sound,
Art and Design (Part of EvoStar), pp. 188–200,
Springer, 2019.

[32] LeCun, Y., Bengio, Y., and Hinton, G., “Deep
learning,” nature, 521(7553), pp. 436–444, 2015.

[33] Hennequin, R., Khlif, A., Voituret, F., and Mous-
sallam, M., “Spleeter: A Fast And State-of-the
Art Music Source Separation Tool With Pre-
trained Models,” Late-Breaking/Demo ISMIR
2019, 2019, deezer Research.

[34] Yee-King, M. J., Automatic sound synthesizer
programming: techniques and applications, Ph.D.
thesis, University of Sussex, 2011.

[35] McFee, B., Raffel, C., Liang, D., Ellis, D. P.,
McVicar, M., Battenberg, E., and Nieto, O., “li-
brosa: Audio and music signal analysis in python,”
in Proceedings of the 14th python in science con-
ference, volume 8, 2015.

[36] Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A.,
Parizeau, M., and Gagné, C., “DEAP: Evolution-
ary Algorithms Made Easy,” Journal of Machine
Learning Research, 13, pp. 2171–2175, 2012.

[37] Kingma, D. P. and Ba, J., “Adam: A method
for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

AES 148th Convention, Online, 2020 June 2–5
Page 10 of 10

	Introduction
	Related Work
	Optimization
	Deep Learning
	Software in ASP Research

	Design of SpiegeLib
	AudioBuffer
	Synthesizers
	Audio Feature Extraction
	Estimators
	Deep Learning Estimators
	Optimization Estimators

	Datasets
	Evaluation

	Example Case
	Dexed: FM Sound Matching

	Future Work and Conclusion

