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The purpose of this article is to detail and evaluate three alternative approaches to sound-
field visualization, which all employ the use of spatially localized active-intensity (SLAI)
vectors. These SLAI vectors are of particular interest, as they allow direction-of-arrival (DoA)
estimates to be extracted in multiple spatially localized sectors, such that a sound source
present in one sector has reduced influence on the DoA estimate made in another sector.
These DoA estimates may be used to visualize the sound-field by either: (I) directly depicting
the estimates as icons, with their relative size dictated by the corresponding energy of each
sector; (II) generating traditional activity maps via histogram analysis of the DoA estimates;
or (III) by using the DoA estimates to reassign energy and subsequently sharpen traditional
beamformer-based activity maps. Since the SLAI-based DoA estimates are continuous, these
approaches are inherently computationally efficient, as they forego the need for dense scanning
grids to attain high-resolution imaging. Simulation results also show that these SLAI-based
alternatives outperform traditional active-intensity and beamformer-based approaches, for the
majority of cases.

0 INTRODUCTION

Capturing a sound-field utilizing an array of micro-
phones, offers many advantages over using a single mi-
crophone. These advantages largely stem from the fact
that certain spatial attributes of the sound-field are encoded
within the array signals, whereby the spatial resolution of
this encoding is predominately influenced by the number of
microphones and their orientation. Essentially, while a sin-
gle sensor can be used to establish whether a sound source
is present in a sound scene, a microphone array can be used
to generate spatially selective filters (commonly referred to
as beamformers) or employed to extract meaningful spa-
tial parameters, such as the direction-of-arrival (DoA) of
sound sources. Beamformers are traditionally employed to
enhance a signal (e.g., speech) in the presence of interferers
and noise [1, 2], and may yield improved performance when

informed of spatial parameters and subjected to certain con-
straints [3, 4]. However, beamformers and spatial parame-
ters may also be utilized for parametric sound-field repro-
duction or sound-field visualization; the latter of which is
the primary focus of this work.

Many established sound-field visualization approaches
rely on evaluating a suitable localization function over a
dense scanning grid, which is selected to sample a par-
ticular spatial area of interest from the perspective of the
microphone array. For convenience, when utilizing spheri-
cal microphone arrays, these localization functions are of-
ten formulated in the spherical harmonic domain (SHD)
[1, 5]. Many of these functions rely on determining the
sound-field energy, or the likelihood of a sound source
being present, at each grid point. However, these ap-
proaches have an inherent limitation; they require the use
of dense scanning grids for high resolution imaging. In this
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article, alternative sound-field visualization approaches are
explored, which all utilize SLAI vectors. Essentially, these
are active-intensity (AI) vectors [6], which are estimated
after the sound-field has been subjected to a direction-
dependent weighting function. This approach allows for
DoA estimation within multiple spatially localized sectors,
whereby an estimate in one sector has reduced suscepti-
bility to interferers present in other sectors. Additionally,
these DoA estimates are continuous, and as such, they may
be quantized to a grid with much higher resolution than that
of a practical scanning grid. Once the DoA estimates have
been extracted from multiple sectors, sound-field visual-
ization may be subsequently established using one of the
following three approaches, which are detailed and evalu-
ated in this work:

I) Directly depicting the estimates as icons, with their
relative size dictated by the corresponding energy of
each sector [7].

II) Generating traditional activity maps via histogram
analysis of the DoA estimates [8, 9].

III) Using the DoA estimates to reassign energy and sub-
sequently sharpen traditional beamformer-based ac-
tivity maps [10].

This article provides background on SHD processing,
traditional sound-field visualization approaches, and SLAI
vectors (Sec. 1). It goes on to explain how array signals
may be spatially encoded into the SHD (Sec. 2). Following
this, Secs. 3 and 4 detail how the AI and SLAI vectors may
be obtained in the SHD, respectively. Sec. 5 explores the
three aforementioned approaches to sound-field visualiza-
tion, employing the DoA estimates extracted from multiple
SLAI vectors. This is followed by an evaluation of the ap-
proaches in Sec. 6 and conclusions, which are provided in
Sec. 7.

1 BACKGROUND

1.1 Spatially Encoding Microphone Array
Signals into Spherical Harmonic Signals

It is possible to derive spatial parameters and gener-
ate beamformers using microphone array signals directly.
However, this approach tends to lead to algorithms being
tailored for a specific array, as the array specifications be-
come an integral part of the algorithms [11]. Therefore, a
more flexible approach is to first transform the microphone
array signals into an array-independent domain. This is
popularly achieved by decomposing the sound-field into
orthonormal basis functions around the unit sphere, via a
spherical harmonic transform (SHT) [1]. Essentially, by
spatially encoding the microphone array signals into spher-
ical harmonic (SH) signals (also known as Ambisonic [12]
or B-Format signals), the array specifications are largely
abstracted away from the algorithms that utilize them.

There are two main approaches for performing this trans-
form. In the case of spherical and cylindrical arrays with
phase-matched sensors, analytical solutions are available

[13, 14] that describe how plane waves interact with the
array at specific frequencies. These formulae take into ac-
count certain physical aspects of the array design, such as its
radius and whether it has an open or rigid baffle construc-
tion. However, for atypical microphone array shapes and/or
mismatched sensors, for which no analytical solution can
be easily derived, the more generalized measurement-based
approach is more appropriate. This method requires the
measurement of impulse responses (IRs) for many direc-
tions on the surface of the array, in order to derive suitable
encoding filters [15–19].

1.2 Sound-Field Visualization in the SHD
Today, there are a multitude of algorithms formulated in

the SHD, with many spatial audio systems relying on beam-
forming as a means of reproducing or visualizing a captured
sound-field. Regarding the latter function, perhaps the most
trivial approach is to steer a beamformer and determine
its energy in multiple directions that surround a particular
spatial area of interest; an approach commonly referred to
as scanning beamforming. This direction-dependent beam-
former energy may then be presented as a 2-dimensional
image with a suitable color gradient, often described as
an activity map, which is a convenient representation for
depicting the relative acoustical energy for multiple direc-
tions. Bright spots in the activity map infer directions with
potential sound sources and/or reflections, which may be
extracted numerically via peak-finding. Naturally, this ap-
proach is only precise to the degree of separation between
the scanning grid directions, and thus, the computational
requirements can be significant when high precision is re-
quired.

One popular beamformer is based on a Plane-wave De-
composition (PWD) approach, whereby spherical harmon-
ics for certain directions on the sphere are used as the beam-
forming weights [20, 21]. However, this approach is inher-
ently limited by the spatial resolution of the input signals,
which can often be insufficient at lower orders and result
in blurred activity maps. Alternatively, signal-dependent
beamformers, such as the Minimum-variance Distortion-
less Response (MVDR) algorithm, can yield improved spa-
tial selectivity by adaptively placing nulls towards inter-
ferers. However, in general, these beamformers require in-
creased computation and can often be susceptible to coher-
ent interferers [22].

Traditional Wiener post-filters, formulated in the SHD
[23], may be employed to minimize the incoherent noise
present in the beamformer signal that can often result
in cleaner activity maps. Other post-filters, such as the
Cross-Pattern Coherence (CroPaC) algorithms [24, 25], are
also well suited to the task of improving beamformer per-
formance, especially in reverberant and/or noisy environ-
ments. These latter post-filters are also generally straight-
forward to implement, as they do not impose any assump-
tions regarding the source or interferers, nor do they require
any prior knowledge of the signal or noise statistics. Addi-
tionally, one may even directly utilize the energy of CroPaC
post-filters for visualization purposes, provided that an
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additional iterative side-lobe suppression operation is ap-
plied [26].

On the other hand, subspace methods, such as MUltiple
SIgnal Classification (MUSIC), may also produce high-
resolution activity maps. Rather than determining beam-
former signal energies, these methods operate by ascertain-
ing parameters that correspond to the likelihood of sound
sources being located at each scanning direction. However,
these approaches typically require source number estima-
tion [27, 28] and can also be sensitive to coherent interfer-
ers and reverberation. There also exist other subspace based
[29, 14] and maximum likelihood DoA estimators [30, 31],
which do not require scanning to estimate the DoAs of mul-
tiple sources; however, these approaches generally require
increased implementation and computational complexity
and are often unsuitable for real-time systems.

1.3 DoA Estimation Based on SLAI Vectors
One alternative approach to DoA estimation is to utilize

the active-intensity (AI) vector [6], which describes the flow
of acoustical energy. By making the assumption that the
direction opposite to this energy flow is the DoA of a sound
source, the approach represents a more computationally
efficient option when compared to the traditional activity
map and peak-finding based alternatives [32–34, 20, 35].
Furthermore, these DoA estimates are continuous, and thus
they may be quantized to a grid of much higher point density
than that of a practical beamforming or subspace scanning
grid.

Due to the relation between the AI vector and the per-
ceived DoA during sound-field reproduction, it became the
predominant spatial parameter for the spatial audio cod-
ing and reproduction framework, Directional Audio Cod-
ing (DirAC) [36, 37]. However, it was found that for sce-
narios where multiple sound sources overlap in both time
and frequency, the flow of energy would propagate from
a direction in-between the sources. Therefore, DirAC has
since been generalized to take advantage of the increased
spatial resolution of higher-order SH signals, introducing
the concept of SLAI vectors in [38, 39]. This higher-order
DirAC formulation extracts a separate DoA estimate at spa-
tially selective sectors surrounding multiple directions on
the sphere, through beamforming operations in the SHD.
Provided that sound sources are located in their own in-
dividual sector, this approach has been shown to be more
robust for reproduction purposes, subsequently resulting
in higher perceived spatial accuracy. The theoretical prop-
erties of SLAI for reference sound-field conditions were
further analyzed in [40].

1.4 Sound-Field Visualization Utilizing
SLAI-Based DoA Estimates

More recently, the SLAI approach has been explored for
computationally efficient sound-field visualization, which
is the main point of interest for this work. SLAI-based
sound-field visualization can be attained in a variety of
ways. One approach being to directly represent the sector
DoA estimates at multiple frequencies as different-colored

icons, with their relative size determined by the correspond-
ing sector energies [7]. This approach relies on fewer com-
putational resources, when compared to many traditional
activity map alternatives, and has the added benefit of being
able to depict estimates for multiple frequencies, simulta-
neously. The main downside being that the physical extent
of a sound source becomes more ambiguous, as one may
infer that a cluster of icons corresponds to a single large
source, rather than several point-like sources, or vice versa.

Alternatively, by performing histogram analysis on the
estimated DoAs, with a sufficiently long temporal window,
one may also generate more traditional activity maps [8, 9];
an approach which still retains much of the computational
benefits granted by the SLAI approach.

The SLAI approach may also be employed to sharpen
traditional beamformer-based activity maps by reassigning
the beamformer energies based on the corresponding DoA
estimates for each grid point [10]. This beamformer energy
may then be accumulated and quantized to a grid of much
higher resolution than that of the scanning grid, resulting in
a sharper image. In the trivial case of a single point source
in a free-field, the beamformer energy for all scanning grid
directions would be reassigned to the true source direction.

2 SPATIAL ENCODING

Before expanding upon the SLAI formulations, and the
subsequent steps required for sound-field visualization, the
microphone array signals must first be spatially encoded
into the SHD. Since this encoding is frequency-dependent,
the microphone array signals x(t) must first be transformed
into the time-frequency domain x̂(t, f ) by means of either a
short-time Fourier transform (STFT) or perfect reconstruc-
tion filterbank, where t and f refer to the down-sampled
time and frequency indices, respectively.

2.1 Encoding Based on Analytical Solutions
Consider a spherical array, denoted with Q microphones

at �q = (θ, φ, r) locations, where θ ∈ [−π/2, π/2] denotes
the elevation angle, φ ∈ [–π, π] the azimuthal angle and
r the radius. A SHT may then be employed to convert the
array signals, x̂ ∈ C

Q×1, into a set of SH signals for each
frequency band. The accuracy of this conversion depends
on the microphone distribution on the surface of the array,
the type of the array, and the radius [1]. The total number
of microphones defines the highest order of SH signals
L that can be estimated. Please note that the frequency and
time indices are omitted for the brevity of notation.

The SH signals can be estimated as

s = Wx̂, (1)

where

s = [s00, s1(−1), s10, ..., sL(L−1), sL L ]T ∈ C
(L+1)2×1, (2)

are the SH signals and W ∈ C
(L+1)2×Q is a frequency-

dependent spatial encoding matrix defined as

W = WlYe, (3)
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where Ye ∈ R
(L+1)2×Q is the SH encoding matrix, which

estimates the pressure on the surface of the sphere and Wl ∈
C

(L+1)2×(L+1)2
is an equalization matrix that eliminates the

effect of the sphere itself.
The frequency-independent SH encoding matrix can be

calculated as

Ye =
{ 1

Q YT uniform
Y† = (YTY)−1YT non-uniform,

(4)

where † denotes the Moore-Penrose pseudo-inverse opera-
tion and Y ∈ R

Q×(L+1)2
is a matrix containing SHs weights

for each microphone direction

Y(�q ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y00(�1) Y1(−1)(�1) . . . YL L (�1)
Y00(�2) Y1(−1)(�2) . . . YL L (�2)
Y00(�3) Y1(−1)(�3) . . . YL L (�3)

...
...

...
...

Y00(�Q) Y1(−1)(�Q) . . . YL L (�Q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where Ylm are the individual real-valued SHs of order
l � 0, degree m ∈ [− l, l] and microphone direction �q.
This double SH indexing (l, m) may also be expressed by
the single index k = l2 + l + m + 1, which is referred to
as the Ambisonic Channel Number (ACN) in Ambisonics
literature.

The equalization matrix can be defined as

Wl = diag{[w0, w1, w1, w1, . . . , wL ]}, (6)

where wl are order-dependent and frequency-dependent
equalization weights, which are the inverse of the theo-
retical modal coefficients bl

wl = 1

bl
, (7)

which take into account whether the array construction is
open or rigid and the directivity of the sensors (e.g., cardioid
or omnidirectional). In the case of a rigid baffle construc-
tion, these modal coefficients can also take into considera-
tion the frequency-dependent acoustical admittance of the
surface of the array and also the distance between the sur-
face of the array and the microphones in order to cater for
cases in which the microphones protrude from the surface
of the array. For more details on calculating these modal
coefficients, the reader is directed to [13, 14].

However, the problem with directly inverting the modal
coefficients in Eq. (7) is that the internal noise of the sen-
sors can be amplified significantly in practice, especially at
low frequencies and higher orders. Therefore, a regularized
inversion is often more preferable, such as the Tikhonov
approach [15]

wl = 1

bl

|bl |2
|bl |2 + λ2

, (8)

where λ is a regularization parameter that influences the
sensor noise amplification, allowing the user to make a
compromise between the accuracy of the transformation
and the increase in sensor noise. For details on some al-
ternative options for regularization and for calculating the

equalization matrix Wl , the reader is referred to [15, 41–43,
21, 44].

2.2 Arbitrary Encoding via Impulse Response
Measurements

The theoretical encoding approach is a convenient means
of extracting SH signals from microphone arrays, provided
that they employ phase-matched sensors in a spherical or
cylindrical arrangement. However, analytical scattering so-
lutions for other geometries do not exist [13], and the as-
sumption that the array utilizes phase-matched sensors may
not always be met. Therefore, in these cases, array response
measurements in free-field environments for several direc-
tions around the array must be obtained in order to derive a
suitable spatial encoding matrix. Such proposed solutions
are based on a regularized least-squares inversion of the ar-
ray responses in the space domain [15, 18] or the SHD [16],
based on a weighted singular value decomposition [17], or
a quadratically constrained least-squares solution [19].

3 ACTIVE-INTENSITY VECTOR ESTIMATION

The AI vector can be estimated from the zeroth and
first-order SH signals, which represent the pressure
and pressure-gradient signals, respectively [6]. The DoA
and the diffuseness estimates can then be derived utiliz-
ing the AI vector and the energy density at the recording
point. Estimating these parameters in such a manner rep-
resents a computationally efficient and convenient means
of acquiring information, utilized historically by DirAC for
parametric reproduction purposes [36].

The AI vector can be estimated as [6]

ia = �[pu∗], (9)

where � denotes the real operator; ∗ denotes the complex
conjugate operator; p is the sound pressure, estimated as the
omnidirectional signal p � s00; and u is the particle velocity,
which can be estimated using the pressure gradient signals
[45], assuming that the sound sources are received as plane-
waves, as1

u � − 1

ρ0c
√

3

⎡
⎣ s11

s1(−1)

s10

⎤
⎦ , (10)

where ρ0 is the mean density of the medium and c is the
speed of sound.

The DoA estimate γ is assumed to be in the opposite
direction to the AI vector

γDoA(θ, φ) = − ia
||ia|| . (11)

This approach provides one estimate of the DoA per time
and frequency index, which becomes problematic when
multiple sound sources have similar spectral content and are
active simultaneously. This is because in these scenarios,

1 Assuming ortho-normalized (N3D) real SHs with ACN in-
dexing. Omit the 1/

√
3 term if using the semi-normalized (SN3D)

convention.
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the DoA estimate will oscillate between the different sound
source directions. Furthermore, in stationary sound-fields,
and with sufficiently long temporal observation windows,
the AI DoA Eq. (11) is stable but points to a spatial weighted
average of the individual source DoAs, with the weights de-
pendent on the cross-correlation between the source signals
[46].

4 SPATIALLY LOCALIZED ACTIVE-INTENSITY

The above relations show that sound-field analysis based
on the AI vector does not require signals of order higher
than one. The SLAI-based analysis exploits the fact that if
SH signals of order L > 1 are available, then the sound-
field may be weighted directionally before the AI vector
is estimated. The simple principle of the SLAI is to com-
pute the normal AI vector after a directional weighting has
been applied to the sound-field. This approach preserves
contributions from the region of interest, hereby referred
to as a sector, while attenuating contributions from outside
that region. This directional weighting w(�) is in essence a
beamformer with its main lobe oriented towards the center
of the sector, and with its beamwidth approximately cov-
ering the sector area. To compute the AI vector for this
sector, one requires the pressure pw and velocity uw due to
the sound-field weighted by w(�), with the SLAI vector
calculated in a similar way to Eq. (9) as

ia,w = �[pwu∗
w]. (12)

The sector pressure signal is given simply as the sector
beamformer w(�) output, while the sector velocity signals
correspond to beampatterns of the following form, as given
in [38, 40],

⎡
⎣wx(�)

wy(�)
wz(�)

⎤
⎦ =

⎡
⎣w(θ, φ) cos φ cos θ

w(θ, φ) sin φ cos θ

w(θ, φ) sin θ

⎤
⎦ . (13)

This last relationship reveals that the sector veloc-
ity beampatterns correspond to the sector beampattern
weighted with three orthogonal dipoles.

Assuming that there are higher-order SH signals avail-
able L > 1, the next point of interest is to obtain the sector
pressure-velocity signals directly from them. This is per-
formed by means of beamforming matrices computed di-
rectly in the SHD and applied to the SH signals, in order
to determine the sector signals and, subsequently, the SLAI
vector

[
pw

uw

]
= WH

p,us. (14)

The following subsections describe various means of
calculating this beamforming matrix Wp,u ∈ R

(L+1)2×4 and
also provide some insights into the direction-dependent per-
formance of the DoA estimation.

4.1 Sector Design Using SHD Beamformer
Patterns

Beamforming in the SHD is equivalent to applying the
SH coefficients w of the beampattern w(�) as a weight-
and-sum operation on the SH signals

pw = wHs. (15)

The coefficients for certain beampatterns may be derived
analytically and, although the beampatterns do not need
to be axisymmetric, this section focuses on axisymmetric
beampatterns due to their design simplicity. Axisymmetric
patterns may be factorized into a pattern-dependent com-
ponent and an orientation-dependent component, such that
the kth term of the coefficient vector w is

[w(�0)]k = wlm(�0) = wlYlm(�0) (16)

where �0 is the main lobe’s orientation. Some useful ax-
isymmetric patterns that are suitable for the analysis are

wl = L!L!

(L + l + 1)!(L − l)!
cardioid (17)

wl = 1

(L + 1)2
hypercardioid (18)

wl = Pl (cos κL )∑L
l=0(2l + 1)Pl (cos κL )

max − rE (19)

where Pl are the Legendre polynomials and κL =
cos (2.407/(L + 1.51)) as given by [47]. Higher-order car-
dioids are defined here as patterns with a single rear null;
hypercardioids are normalized PWD beamformers that at-
tain the maximum directivity factor for a given order; and
max-rE are patterns that maximize the length of the inten-
sity vector in a diffuse field.

After the coefficients of the jth sector pattern w(� j )
have been obtained, the sector velocity patterns should be
computed. Since they correspond to multiplication of the
sector pattern with dipole patterns, their coefficients can be
expressed as a linear combination of the coefficients of the
sector pattern, as has been shown in [40]. Due to the fixed
nature of the dipole patterns, the sector velocity patterns are
given by the following relation

wi(� j ) = Aiw(� j ), with i = {x, y, z}. (20)

where Ai ∈ R
(L+2)2×(L+1)2

are matrices that linearly map
the coefficients of the sector and sector velocity patterns.
Since the sector velocity patterns are based on the products
of both sector and dipoles, their SH order is larger than
each of the original patterns and equal to the sum of their
orders. Since dipoles are of order L = 1, the sector velocity
patterns are one order higher L + 1 than that of the sector
pattern.

The matrices Ai are independent of the sector pattern and
can be pre-computed up to some maximum order of interest
[38, 40]. Their detailed derivation and structure is given in
[40]. Finally, the beamforming matrix for a single sector
oriented at �j is

Wp,u(� j ) = [ŵ(� j ), wx(� j ), wy(� j ), wz(� j )], (21)
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where ŵ(� j ) are the coefficients of the sector pattern when
zero-padded to order L + 1.

4.2 Sector Design Based on Arbitrary
Directional Functions

The above SHD-based sector design formulation rep-
resents an explicit solution with known properties, and as
such, the formulation relies on analytical descriptions of the
target sector patterns. One alternative approach, however,
is to approximate the sector patterns such that they mimic
arbitrary directional functions in a least-squares (LS) sense
[7]. This approach may accommodate a wider range of sec-
tor designs.

From henceforth, the Vector-Base Amplitude Panning
(VBAP) directional function [48] is employed as an ex-
ample; however, the principles may also be extended to
arbitrary functions or other panning methods. As before,
the look directions of the sectors are defined at the follow-
ing points: �j = (θj, φj), for j = 1, . . ., J, where J is the
total number of sectors. The VBAP gains g(� j ) ∈ R

1×ϒ are
then computed for a dense grid of Y points surrounding the
sphere, for each of the sector look-directions. These VBAP
gain patterns are then imposed onto zeroth and first-order
SH patterns Y(norm)

p,u ∈ R
4×ϒ , which are evaluated using the

same dense grid and normalized such that each component
max(|Ŷ |) = 1. The target pressure and velocity patterns
Tp,u(� j ) ∈ R

4×ϒ are then derived as

Tp,u(� j ) = G(� j ) � Y(norm)
p,u . (22)

where � denotes the Hadamard product, and G(� j ) =
[g(� j ); ...; g(� j ); ] ∈ R

4×ϒ is a matrix that consists of the
VBAP gains replicated for each of the SH components.

The sector beamforming weights may then be approxi-
mated in the SHD via a LS regression as

W(VBAP)
p,u (� j ) = Tp,u(� j )Y

†
LS, (23)

where YLS ∈ R
(L+1)2×ϒ are SHs of order L > 1. Note that

the more intricate the target pattern, the higher the order
of SH components are required to sufficiently approximate
them.

4.3 Directional Bias in the Presence of a Diffuse
Field

In the case of a single source in a free field, a sector’s
directional analysis will produce the correct DoA, even in
situations where the DoA is far outside the look-direction
of the sector. The only exception is when the source di-
rection coincides with a null of the sector pattern, in this
case the DoA is undefined. However, the presence of in-
terferers and diffuse noise will affect the estimated DoA
even for a dominant source. For the fundamental case of a
sound-field mixture, consisting of one plane wave source
of power Ppw and a diffuse-field of power Pd, a simple ex-
pression exists for the directional bias, which is detailed
in [40]. First, an assumption is made that the plane-wave
signal is incident from the DoA �0, with the sector di-
rected at �j; the angle between the two is given by α. The
direct-to-diffuse ratio � = Ppw/Pd, and the magnitude of

Fig. 1 An example of how one might depict the direction-of-
arrival (DoA) estimates for multiple frequency bands and sec-
tors utilizing the software implementation described in [7]. The
icons for different frequencies are distinguishable by their color,
whereas their relative energetic contributions to the sound-field
are indicated by their size.

the directional energy at the centroid of the sector pattern
K = ||ŵT(0,π/2)Azw(0,π/2)||, are calculated for the sec-
tor oriented at the top, in order to exploit its axisymmetry
and simplify the expression. The directional bias will al-
ways tend towards the center of the sector pattern and is
given by

δ(�, α) = arcsin

(
K sin α

4π�(�, α)

)
(24)

where � is defined as

�(�, α)

=
√

�2w4(α) + (K/4π)2 + 2�(K/4π)w2(α) cos α. (25)

This directional bias is illustrated in Sec. 6.1.

5 SOUND-FIELD VISUALIZATION UTILIZING
DOA ESTIMATES DERIVED FROM SLAI
VECTORS

5.1 Approach I: Sound-Field Visualization Based
on Directly Depicting the DoA Estimates

In [7], sound-field visualization based on directly depict-
ing multiple DoA estimates was explored, by employing
the generalized SLAI formulation of Eq. (23). The DoA
estimates for multiple frequency bands and sectors were
depicted using icons of different color, in a similar manner
as in [49]. The relative size of the icons were also influ-
enced by the sector energy, such that the DoA estimate
that corresponded with the highest sector energy, would be
represented by a larger icon; an example is shown in Fig. 1.

This approach to sound-field visualization has a number
of benefits when compared to its traditional activity map
counterparts. First, it allows the DoA estimates for multiple
frequencies to be depicted simultaneously, whereas activ-
ity maps are presented over only one specific frequency
range at a time. Furthermore, since the DoA estimates are
continuous, the method does not rely on dense scanning
grids; rather, the estimates can be quantized to the nearest
pixel, thus demanding fewer computational resources. The
primary downside, however, is that the physical extent of
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Fig. 2 Histograms of direction-of-arrival (DoA) estimates for a time window of 1 s for two incoherent (top) and two coherent sources
(bottom): (a), (d) using first-order signals to obtain the standard active-intensity (AI) vector and subsequent DoA estimate; (b), (e)
using Vector-Base Amplitude Panning (VBAP) patterns to generate six uniformly distributed spatially localized active-intensity (SLAI)
vectors; (c), (f) using Plane-wave Decomposition (PWD) beamforming uniformly around the array. The true source directions are
denoted with crosses.

sound sources becomes more ambiguous. The DoA esti-
mation performance of the generalized formulation of Eq.
(23) is evaluated in Secs. 6.1 and 6.2.

5.2 Approach II: Generating Activity Maps via
Histogram Analysis of DoA Estimates

The DoA estimates derived from SLAI vectors may also
be utilized to generate more traditional activity maps by
applying histogram analysis on the data [50]; provided that
the data is analyzed over a sufficiently long time window.
This approach retains much of the computational benefits
described in Sec. 5.1, while foregoing the ability to simulta-
neously depict the DoA estimates at different frequencies.
In this approach, at each time and frequency index only the
DoA of the sector with the highest energy is used in the his-
togram formulation. The selected estimates of a fixed time
window length, which slides forward one frame at a time,
form a 2-dimensional histogram and several examples are
shown in Fig. 2. The histograms are smoothed by applying
a circularly-symmetric Gaussian window as

hs(θ, φ) =
∑

i

∑
j

h(i, j)ws(θ − i,φ − j), (26)

where ws is the Gaussian window of zero mean and stan-
dard deviation (std) σs, h(θ,φ) is the original 2-dimensional
histogram and hs(θ, φ) is the smoothed variant.

In order to extract the DoA estimates, and assuming a
known number of sources, G, the histograms are processed
in an iterative fashion; such that for each iteration, g, the
highest peak of the smoothed histogram hg

s (θ, φ) is detected
and its index is identified as the DoA of a source

[θg,φg] = arg max
θ,φ

hg
s (θ, φ). (27)

The contribution of this source to the histogram is then
estimated as

δg = hs(θ, φ) � wC(θ − θg,φ − φg), (28)

where wC(θ, φ) is a second Gaussian window of zero mean
and std equal to σC. The contribution of the detected source
is then removed from the histogram, which is then subjected
to the next iteration

hg+1
s (θ, φ) = hg

s (θ, φ) − δg. (29)

The DoA estimation performance of this approach,
when subjected to multiple speech sources, is evaluated
in Sec. 6.3, alongside the traditional AI approach with
the same histogram analysis and the PWD activity map
approach.

5.3 Approach III: Sharpening Activity Maps
Based on Directional Reassignment

Another option for employing SLAI vectors was ex-
plored in [10], where the approach was used to sharpen
traditional PWD activity maps. The approach is, in essence,
greatly inspired by the time-frequency reassignment prin-
ciple; an operation that can attain high-resolution time-
frequency spectrograms, without having to resort to com-
puting Fourier transforms of much higher order [51]. In
a similar manner to the time-frequency reassignment ap-
proach, this method first generates a PWD activity map
but then reassigns the energies or amplitudes, for each of
the scanning grid points, to new directions. These new di-
rections correspond to the continuous SLAI-based DoA
estimates, which are quantized to a much higher-resolution
display grid. The approach can be realized through the fol-
lowing steps:
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Fig. 3 Third-order activity maps utilizing Plane-wave Decomposition (PWD) (left) and the directional reassignment approach upscaled
to 20th order (middle); both using a uniform scanning grid of 900 points. A 20th order PWD activity map is provided as reference (right).
Two free-field sound scenes are depicted with 4 (top) and 10 (bottom) sources, respectively. The true source directions are denoted with
crosses.

(a) Compute the spatially localized pressure and veloc-
ity signals as in Eq. (14), for every direction �j of a
low-density scanning grid.

(b) Derive the energy of the spatially localized pressure
signals to generate a base-line activity map; note that
when using the hypercardioid weights of Eq. (19),
this base-line is equivalent to a traditional PWD
activity map.

(c) Compute the SLAI vectors as in Eq. (12), and derive
the DoAs �j for each scanning grid direction.

(d) Reassign the sector energy based on the correspond-
ing DoAs.

This reassignment operation (d) may be conducted in
a variety of ways. The most computationally efficient ap-
proach is to quantize the DoA estimates to the nearest dis-
play grid points and subsequently accumulate the energy
of the spatially localized pressure signals for each point.
In the trivial case of a single plane wave source in a free-
field, the DoA estimates for all scanning grid directions
will be that of the true source direction regardless of the
beamformer look-directions. Therefore, the energy of all
the spatially localized pressure signals will be accumulated
at the same point [38]. In order to preserve the energy in
this case, i.e., for the peak in the reassigned activity map to
have the same energy as that of the PWD activity map, and
assuming a uniformly-distributed scanning grid, the sector
beamformers must be normalized to preserve energy as

βEP

J∑
j=1

|w(� j ,�)|2 = 1 with βEP = (L + 1)2

J
. (30)

Alternatively, one may also reassign by re-encoding the
PWD signals a j = wH(� j )s into a higher-order L̂ > L ,
and subsequently compute the activity map using the

traditional PWD approach on the resulting sharpened
SH signals sL̂

sL̂ =
J∑

j=1

a j yL̂ (� j ), (31)

where yL̂ (� j ) is the vector of SHs for the analyzed DoA.
This ultimately results in a smoother activity map, at the
cost of increased computation; although, it should be noted
that the SH weights for encoding may be generated off-
line in an initialization stage. Furthermore, in this case, the
sector beamformers should meet an amplitude-preserving
condition, such as

βAP

J∑
j=1

w(� j ,�) = 1 with βAP = 4π

J
. (32)

Some third-order examples of the PWD approach and the
reassignment method up-scaled to 20th order are presented
in Fig. 3, which utilized a 900-point uniformly distributed
scanning grid. It can be observed that for sources that are in
close proximity to each other, the energy tends to migrate
in-between them. However, the reassigned activity maps are
still generally closer to a PWD reference of much higher
order, as is further demonstrated in Sec. 6.4.

6 EVALUATION

6.1 DoA Estimation of a Single Source in a
Diffuse Field

To illustrate the direction-dependent performance of the
SLAI-based DoA estimation approach, as described in
Sec. 4.3, a white noise source was placed in a simulated
diffuse-field (SNR = 6 dB). This field was approximated
by 1442 uncorrelated white noise sources uniformly dis-
tributed around the sphere. The single white noise source
was then panned in each of the 1442 grid directions and
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Fig. 4 The Mean Estimation Error (MEE) averaged over 0.5 s when panning a single source around a sphere using a uniform grid of
1442 points in a diffuse-field (SNR = 6 dB), including the mean and standard deviations (a) when using the standard active-intensity
(AI) vector of Eq. (10) and (b), (c), (d) when employing 4, 9, and 16 uniformly distributed SLAI vectors using Eq. (23), with second,
third, and fourth-order signals, respectively. The sector directions are depicted with lines protruding from the origin. The mean and
standard deviations were as follows: no sectors: [14.61◦, 0.79], 4 sectors: [9.88◦, 2.02], 9 sectors: [7.37◦, 2.28], and 16 sectors: [6.42◦,
2.11].

the Mean Estimation Error (MEE) between the true source
direction and the estimated direction was derived as [52]

MEE = 1

NF

∑
f

cos−1(vT
f v̂f) (33)

where vf and v̂f are unit vectors for the true and estimated
DoAs, respectively; and NF = 128 is the number of fre-
quency bands used for the analysis.

Fig. 4(a) depicts the direction-dependent MEE for each
source direction when utilizing the standard AI vector to
derive the DoA estimate. It can be observed that the er-
ror is quite uniform, with a mean and standard deviation
of 14.61◦ and 0.79, respectively. Figs. 4(b)–(d) depict the
direction-dependent MEE when estimating the DoA using
the SLAI vectors of Eq. (23), for orders L = [2, 3, 4] and
S = L2 uniformly distributed sectors, respectively. Note
that the DoA estimate with the highest sector energy was
selected for the plotting. Although the variance is generally
higher, the SLAI-based DoA estimates yield lower error
on average, with the MEE minimally corresponding to the
center of each sector. It can be further observed that the
higher the order and the more sound-field segregation,
the more accurate the estimates become.

6.2 DoA Estimation of Multiple Sound Sources
in Simulated Environments

In order to investigate the DoA estimation performance
of the generalized SLAI approach using Eq. (23), when it
is presented with multiple sound sources in a more typical
environment, several simulations were performed using the
MCRoomSim ray-based multichannel acoustical modeler
[53]. The MediumRoom preset was selected for the first
simulation; this configures the room dimensions, absorp-
tion coefficients, and scattering coefficients to resemble a
typical 10 x 8 x 3 m rectangular office room with broadband
reverberation time (RT60) of approximately 0.3 s.

The receiver position was placed directly in the center of
the room, with the simulator quantizing and subsequently
convolving the received rays with a grid of measured IRs
of a real Eigenmike32; a rigid spherical microphone array

Fig. 5 The Mean Estimation Error (MEE) values when utiliz-
ing the spatially localized active-intensity (SLAI) approach with
different orders and number of sectors. The markers denote the in-
dividual direction-of-arrival (DoA) estimates per source, whereas
the lines denote the mean of the DoA estimates for each number
of sources (where applicable); adopted from [7].

with 32 sensors. This provided the 32 simulated microphone
array signals. Varying numbers of sound sources (between
1 and 8) were then introduced into the simulated room 1 m
from the receiver position. The microphone array signals
were encoded into SH signals using theoretical filters, as
described in Sec. 2, for each test case and were band-passed
to retain only frequencies between 1 and 5 kHz, where the
spatial performance is high [15].

For the following results, the MEE was averaged using
a weighted-sum over a 2 s window, for each DoA estimate
extracted from SLAI vectors, the weights for which were
derived from the normalized sector energies. Fig. 5(a) de-
picts the results of a MediumRoom simulation, where un-
correlated white-noise sound sources were introduced into
each sector one by one, up to the number of sectors utilized
for each processing order S = 2L. In Fig. 5(b), the same ap-
proach was employed using the 49 x 19 x 18 m ConcertHall
preset; with broadband RT60 of 2.4 s. Figs. 5(c)–(d) used
the same approach as Figs. 5(a)–(b), only the white-noise
sound sources were replaced by mono audio files, which
were (in the corresponding order of introduction): male
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speech, female speech, cello, trumpet, piano, birds with
background noise, clapping, and, finally, an acoustic guitar.
The sound files were all normalized to have identical peak
level.

For a single source, it can be observed in Figs. 5(a)–(d)
that the SLAI approach of Eq. (23) yields a reduced MEE
for all single source cases. This is because the sector-based
approach essentially provides some degree of dereverber-
ation, as the reflections and diffuse sound present in the
other sectors have reduced influence on the DoA estimate.
As the number of sources increases, it can be observed that
the general trend is an increase in the MEE, while on the
other hand, the higher the SH order and number of sectors,
the lower the MEE becomes. There are some outliers, such
as the test cases that employed four sources encoded into
second-order SH signals in Figs. 5(b)–(c), which performed
better than three sources. This could possibly be rectified by
rotating the sound-field, such that the reflections of interfer-
ing sound sources for each sector are shifted away from any
problematic reflecting surfaces. Furthermore, when com-
paring the DoA estimation performance between the white-
noise sources and the audio sound sources, the silent periods
in the mono audio may have led to the observable discrep-
ancy between them, since diffuse-field DoA estimates may
have been included into the weighted average.

6.3 DoA Estimation of Multiple Sound Sources
Utilizing the Histogram Approach

In the next simulation, the DoA accuracy of the histogram
approach described in Sec. 5.2, was evaluated with between
one and six simultaneous speech sources. For these results,
the SLAI design of Eq. (23) was employed, with a fixed
number of six sectors. A 5.5 x 6 x 3 m sized office room
with RT60 = 0.3 s was simulated also using MCRoomSim,
and a virtual Eigenmike array was placed in the center of
the room. The speech sources were then introduced into the
simulation, one meter away from the array in the center of
each sector. For the formation of the histograms, the fixed
length time window was set to one second, and the std
of the smoothing and contribution Gaussian windows was
σS = 10◦ and σC = 40◦, respectively. For each number of
sources, the MEE was evaluated in a similar manner as in
Eq. (33):

MEE = 1

NP NTG

∑
p,t,g

cos−1
(
vT

ptg v̂ptg

)
, (34)

where the mean is taken over all possible combinations of
the sources around the array NP, all time frames NT, and
all simultaneously active speakers G, using estimates that
exhibited a DoA estimation error lower than 15◦. Given that
the sources are at the center of each sector, the value NP

differs for each number of sources, defined as the binomial
coefficient NP =

(
6
G

)
.

In Fig. 6, the MEE results for the DoA estimation are
depicted when utilizing the SLAI vector approach and the
standard AI vector and PWD activity map approaches. The
different SNR conditions were attained via appropriate in-
troduction of additive Gaussian white noise into the sim-

Fig. 6 Mean Estimation Error (MEE) of histogram direction-of-
arrival (DoA) estimates for incoherent (I) and coherent (C) speech
sources and corresponding success rate scores in a simulated en-
vironment of RT60 = 0.3 s.

ulation. Also provided are tables with success rate scores
(SRS), which are the percentage of estimates where the er-
ror satisfied the threshold of 15◦. It is encouraged by the
authors that the MEE results should be interpreted along-
side these accompanying SRS. It can be observed that the
error of the AI approach is always greater than both the
SLAI and PWD approaches, as it also exhibits the worst
SRS. In the case of coherent sources, the AI method strug-
gles to attain estimates with an error lower than 50%. This
inability of the AI approach to properly address coherent
sources is also visually depicted in Fig. 2(d), where the
majority of the estimates tend to fall in between the true
position of the two coherent sources. In the same figure,
the PWD approach appears to correctly estimate the DoA
of both coherent and incoherent sources; however, it tends
to yield more noisy histograms when compared to the SLAI
approach. The superiority of the SLAI-based approach is
also reflected both in the MEE results, as well as in the SRS
values for all the test cases.

6.4 Sharpening of Traditional PWD Activity
Maps via Directional Reassignment

To evaluate the performance of employing SLAI-based
DoA estimates to sharpen traditional PWD activity maps,
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Fig. 7 The means and 95% confidence intervals of the root-mean-
square error (RMSE) values derived from the residual, which
corresponds to how dissimilar the output activity maps are, when
compared to the 20th-order Plane-wave Decomposition (PWD)
reference case; adapted from [10].

as described in Sec. 5.3, several sound scenes were syn-
thesized with between 1 and 6 incoherent noise sources at
various SNRs. These sound scenes were encoded into both
second and third-order. The PWD activity maps, both with
and without directional reassignment, were then generated.
Note that the reassignment was up-scaled to the 20th order
as in Eq. (31). These activity maps were then subtracted
from a 20th-order PWD activity map, which served as the
high-resolution reference case, and the root-mean-square
error (RMSE) of the residual was subsequently computed.
This process was repeated 100 times with randomly as-
signed source directions for each case. The means and 95%
confidence intervals for the RMSE at the various SNR val-
ues and number of sources are shown in Fig. 7.

It can be observed that the reassignment approach yields
a lower RMSE than the traditional PWD for the majority of
test cases, where the performance benefit of the reassign-
ment approach is inversely proportional to the SNR of the
scene. For negative SNR values, the RMSE increases more
drastically and eventually converges to that of the perfor-
mance of the PWD approach. Therefore, even in the worst
case scenario, the reassignment approach yields results that
are never inferior to the PWD method.

7 SUMMARY AND CONCLUSION

This article has detailed and evaluated three approaches
to sound-field visualization, which all employ the use of
spatially localized active-intensity (SLAI) vectors. These
SLAI vectors are simply active-intensity (AI) vectors
that are derived after the sound-field has been spatially
weighted. This subsequently biases the AI vector into favor-
ing energetic contributions made within a certain spatially
localized sector. Provided that sound sources and/or reflec-
tions can be segregated into their own sector, the approach
has been shown to be more robust than the traditional AI
approach.

Once a sound-field has been segregated and multiple
DoA estimates extracted from the SLAI vectors, the sound-
field may be visualized by either: (I) directly depicting
the estimates as icons, with their relative size dictated by
the corresponding energy of each sector; (II) generating
traditional activity maps via histogram analysis of the DoA
estimates; or (III) by using the DoA estimates to reassign

energy and subsequently sharpen traditional beamformer-
based activity maps.

Since the SLAI-based DoA estimates are continuous,
they may be quantized to a grid of much higher density
than would be practical for scanning-based alternatives.
Furthermore, as much of the required computations for
these approaches may be performed during an initializa-
tion stage, the run-time computational complexity remains
relatively low. Additionally, unlike many high-resolution
sound-field visualization alternatives, these approaches do
not require an estimation of the number of sources and make
no assumptions regarding the sound-field conditions. Fol-
lowing multiple evaluations comprising various simulated
acoustical environments it was found that the SLAI-based
approaches are more robust in identifying the DoA of mul-
tiple sound sources when compared to the traditional AI
approach. Finally, when compared to the PWD approach of
the same order, the reassignment approach yielded activ-
ity maps which more closely resembled the selected high-
resolution reference.

8 ACKNOWLEDGMENTS

This research has received funding from the Aalto Uni-
versity Doctoral School of Electrical Engineering and
the Academy of Finland project no 317341. This work
was also supported by the Italian Ministry of Eco-
nomic Development (MISE), FUND FOR THE SUSTAIN-
ABLE GROWTH (F.C.S.) under grant agreement (CUP)
B48I15000130008, project VASM (Vehicle Active Sound
Management).

9 REFERENCES

[1] B. Rafaely, Fundamentals of Spherical Array Pro-
cessing, vol. 8 (Springer, 2015).

[2] M. Brandstein and D. Ward, Microphone Arrays:
Signal Processing Techniques and Applications (Springer
Science & Business Media, 2013).

[3] S. Doclo and M. Moonen, “GSVD-Based Optimal
Filtering for Multi-microphone Speech Enhancement,” in
Microphone Arrays, pp. 111–132 (Springer, 2001).

[4] O. Thiergart, M. Taseska, and E. A. Habets, “An
Informed Parametric Spatial Filter Based on Instantaneous
Direction-of-Arrival Estimates,” IEEE/ACM Trans. Audio,
Speech and Lang. Proc. (TASLP), vol. 22, no. 12, pp. 2182–
2196 (2014).

[5] D. P. Jarrett, E. A. Habets, and P. A. Naylor, Theory
and Applications of Spherical Microphone Array Process-
ing (Springer, 2017).

[6] F. J. Fahy and V. Salmon, “Sound Intensity,” J.
Acoust. Soc. Amer., vol. 88, no. 4, pp. 2044–2045 (1990).

[7] L. McCormack, S. Delikaris-Manias, A. Farina, D.
Pinardi, and V. Pulkki, “Real-Time Conversion of Sen-
sor Array Signals Into Spherical Harmonic Signals with
Applications to Spatially Localized Sub-band Sound-Field
Analysis,” presented at the 144th Convention of the Audio
Engineering Society (2018 May), convention paper 9939.

850 J. Audio Eng. Soc., Vol. 67, No. 11, 2019 November



PAPERS SOUND-FIELD VISUALIZATION

[8] S. Delikaris-Manias, D. Pavlidi, A. Mouchtaris, and
V. Pulkki, “DOA Estimation with Histogram Analysis of
Spatially Constrained Active Intensity Vectors,” 2017 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 526–530 (2017).

[9] S. Delikaris-Manias, L. McCormack, D. Pavlidi,
and A. Mouchtaris, “Spatially Localized Direction of Ar-
rival Estimation,” European Congress and Exposition on
Noise Control Engineering (Euronoise), pp. 2549–2554
(2018).

[10] L. McCormack, A. Politis, and V. Pulkki, “Sharp-
ening of Angular Spectra Based on a Directional Re-
Assignment Approach for Ambisonic Sound-Field Visu-
alization,” ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pp. 576–580 (2019).

[11] H. L. Van Trees, Optimum Array Processing: Part
IV of Detection, Estimation, and Modulation Theory (John
Wiley & Sons, 2004).

[12] M. A. Gerzon, “Periphony: With-Height Sound Re-
production,” J. Audio Eng. Soc., vol. 21, no. 1, pp. 2–10
(1973).

[13] E. G. Williams, Fourier Acoustics: Sound Radiation
and Nearfield Acoustical Holography (Academic Press,
1999).

[14] H. Teutsch, Modal Array Signal Processing: Prin-
ciples and Applications of Acoustic Wavefield Decomposi-
tion, vol. 348 (Springer, 2007).

[15] S. Moreau, J. Daniel, and S. Bertet, “3D Sound Field
Recording with Higher Order Ambisonics—Objective
Measurements and Validation of Spherical Microphone,”
presented at the 120th Convention of the Audio Engineer-
ing Society (2006 May), convention paper 6857.

[16] C. T. Jin, N. Epain, and A. Parthy, “Design, Opti-
mization and Evaluation of a Dual-Radius Spherical Micro-
phone Array,” IEEE/ACM Trans. Audio, Speech and Lang.
Proc. (TASLP), vol. 22, no. 1, pp. 193–204 (2014).

[17] A. Politis and H. Gamper, “Comparing Modeled
and Measurement-Based Spherical Harmonic Encoding
Filters for Spherical Microphone Arrays,” presented at the
2017 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA) (2017).

[18] A. Farina, S. Campanini, L. Chiesi, A. Amendola,
and L. Ebri, “Spatial Sound Recording With Dense Mi-
crophone Arrays,” presented at the AES 55th International
Conference: Spatial Audio (2014 Aug.), conference paper
P-10.

[19] C. Schörkhuber and R. Höldrich, “Ambisonic Mi-
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