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ABSTRACT

Sound field recording with arrays made of omnidirectional microphones suffers from an ill-conditioned problem
due to the zero and small values of the spherical Bessel function. This article proposes a geometric design of
a microphone array for broadband two dimensional(2D) sound field recording and reproduction. The design is
parametric with a layout having a discrete rotationally symmetric geometry composed of several geometrically
similar subarrays. The actual parameters of the proposed layout can be determined for various acoustic situations to
give optimized results. This design has the advantage that it simultaneously satisfies many important requirements
of microphone arrays such as error robustness, operating bandwidth, and microphone unit efficiency.

1 Introduction

The importance of sound field recording in the audio
industry has been increasing recently. Using wave field
synthesis techniques [1], an auditory scene within a
space can be reproduced and manipulated to deliver
highly realistic perceptual experiences. A sound field
is usually recorded by recording sound pressure values
with omnidirectional microphones at several sampling
positions within a volume of space. If appropriate
sampling positions are selected, then it is sufficient to
reconstruct sound pressure values throughout the whole
volume using only the sounds recorded at sampling po-
sitions [2] [3]. The reconstruction procedure is briefly
summarized as follows: first project the recorded sound
pressures onto a suitable mode domain (e.g., spherical
or cylindrical harmonic domain) to form a vector of
harmonic coefficients, then use it to derive pressure
values of non-sampling positions within the volume.

In such applications, sounds may originate from any

direction. Therefore, isotropic geometries are usually
favored over linear ones, such as circular and spherical
designs [4]. In these designs, microphones are arranged
in a uniform or nearly uniform manner on a circle or a
sphere. However, when these designs are used to record
an actual sound field, the mode domain projection be-
come erroneous at some frequencies. This is because,
in some frequency bands, these designs are prone to
error due to the zero points in their mode functions.
The mode functions are Bessel functions for circular
arrangements and spherical Bessel functions for the
spherical arrangements. The zeros of mode functions
for circular arrangements are depicted in Fig. 1(a).
This problem is also known as the Bessel zero problem
or the forbidden frequency problem [4] [5]. There are
several ways of dealing with the Bessel zero problem,
which require either redundant microphone units [6]
(Fig. 1(b)), cardioid microphones (Fig. 1(c)) [7], or a
rigid baffle [8]. In many situations, these approaches
are not feasible due to cost or physical limitations. On
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the other hand, the Bessel zero problem is only a special
case of a much more general problem. Such generaliza-
tion has been considered by Rafaely [9]. In his work,
he considered the problem caused by Bessel zeros as
a consequence of an ill-conditioned inverse problem.
The ill-conditioning makes the sound field reconstruc-
tion process extremely sensitive to errors and noises.
Measurement noise is usually unavoidable (e.g., inher-
ent sensor noise, environmental noise). Moreover, it
is difficult to perfectly set up the physical array; the
coordinates of microphone units may drift from the
theoretical positions, due to imperfect placement or
limited manufacturing accuracy. These errors will be
magnified by the reciprocal of small values of the mode
function in the reconstruction/reproduction procedure,
causing a serious numerical problem. Therefore, dur-
ing the design stage, instead of simply avoiding the
zeros in Bessel functions, it is preferable to consider
the problem in the form of maximizing error robust-
ness. Therefore, the design process of a sound field
recording array can be considered as an optimization
problem. The goal of the optimization is to distribute
microphone units in the space in which the resulting
sampling geometry has the best or approximately best
error robustness. Relevant constraints such as the size
of the microphones, the maximum acceptable condi-
tion number within the frequency of interest, and the
isotropy of the array should also be considered. Fur-
thermore, appropriate regularization is required. In this
article, we use spatial resolution control to achieve the
regularization.

The proposed design constructs a sound field record-
ing array by combining multiple concentric circular
arrays, in which microphone units are distributed in
an equiangular manner with respect to the global ori-
gin. Comparing the proposed array designs with the
conventional circular array, better overall condition can
be achieved with ordinary pressure microphones and
heuristic parameters. Further improvements can be
obtained by using optimized parameters.

This article is organized as follows. The introduction
describes the Bessel zero problem in sound field recon-
struction. The following section explains the funda-
mental signal processing steps with circular or spher-
ical harmonics. In the next three sections, the first
proposes a parametric set of properties for constructing
error-robust geometries. The second addresses how to
apply spatial resolution control to the transformation
matrices of proposed geometries. The third section
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Fig. 1: Maximum value of mode functions for different
arrays, max b, (kr,), for various array designs.
q

Black areas indicate minuscule values below
60dB. The wavenumber range in the figure cor-
responds to the frequency range of 0 — 8kHz.

explains the optimization process including the con-
straints proposed in the previous sections and shows
some exemplar optimized parameters. The subsequent
analysis section compares the proposed design with
conventional designs and the last section concludes the
article.

2 Signal Processing in Spherical
Harmonics Domain

Conventional sound field recording and reconstruction
can be achieved by obtaining the cylindrical or spher-
ical harmonic coefficients of the sound field. In the
case of a circular array, if the condition of the Shannon—
Nyquist sampling theorem holds [10], the coefficients
amn can be found by sampling the pressure of the sound
field p with Q sampling points, then removing the ra-
dial dependent mode function, b, (kr), with a,, divided
as follows [9]:
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< 79 ) m*
amn(k) = Zf) Wyn (eqa¢q)7 |m\ <n. (1)
q=

In (1), k is the wavenumber, where k =27 f /c;, ¢y is the
sound speed, and f is the frequency. In the case of an
open spherical array with omnidirectional microphones,
b, (kr) is the spherical Bessel function, r is the radius,
and Y;"*(0,,¢,) is the spherical harmonic of degree
m and order n [5]. Alternatively, if a height-invariant
sound field is assumed and the array is circular, then
the spherical harmonics are replaced by cylindrical
harmonics Cy,(¢,) as follows:

S Pk (}" ) (Pq)
amn(k) =
(k) qg;) by (kr)

The step of dividing b,(kr) in (1) and (2) is some-
times referred to as mode compensation [11]. The
division causes a numerical problem if b, (kr) is nearly
zero (Bessel zero problem). The process of estimat-
ing au, (k) can be extended to deal with noncircular
or nonspherical arrays. Again, if the condition of the
Shannon-Nyquist sampling theorem holds, even if the
elements of an array do not have a common radius, the
sampled pressure field can be expressed as

Cn(9g); lml=n.(2)

N n
P(rq,0q,04) = Z Z A (k)b (krg )Y, (64, ).
n=0m=—n
3)
In this case, the estimated spherical harmonic coeffi-

cients a,,, can be obtained by applying a transform
matrix to the sampled pressure field p as follows:

Amn (k) = B]ipky

pk(r07607¢0)a

pi(r1,01,01),

Pk = 7L:Q_17 (4’)

pi(re, bLy o)
bo(kro)Yy (60, ¢o) by (kro)Y (60, 90)
B, — . .

b (k)Y (61, 01)
)

bo(er)Y(.)O(euq)L)

In (4), py is the measured vector of the sampled pres-
sure field p at wavenumber k. The division in the mode
compensation step is replaced by a pseudoinverse BZ in
(4). To obtain an accurate result, the transform matrix
By, must be invertible and well-conditioned. The con-
dition of By, can be measured by its condition number
K (By), where

G (By)
k(k) = ||Bi|| - |B]|| = (6)
In (6), || - || denotes the /2-norm, and o, G are the small-

est and the largest singular values of By, respectively.
The condition number x indicates that if there is an er-
ror or perturbation in the measured vector, the error will
be amplified by a factor of k [12]. A smaller condition
number indicates better condition and, thus, stronger
error robustness. If x is very large, then the matrix
is considered as ill-conditioned. The error-robustness
analysis of circular and spherical arrays based on the
condition number was reported in detail in [4]. To
obtain a well-conditioned By, the geometry of the sam-
pling points must enable the sampling of a sufficient
number of independent modes within the volume of
space, while the sampling weights for the modes should
be within an order of magnitude. This agrees with the
‘inconsistent’ requirement of compressed sensing [2].

A conceptual workflow of sound field recording and
reconstruction is presented in Fig. 2. The multichan-
nel signal recorded by the array is first transformed by
an STFT (short-time Fourier transform) then an SHT
(spherical harmonic transform), as in (1). The SHT can
be replaced by a cylindrical transform if a 2D case is
assumed, as in (2). Then transform matrices are gener-
ated from the array geometry information and a spatial
resolution control is applied to each STFT bin. The
mode compensation block multiplies the pseudoinverse
of transformation matrix to the recorded signal and
outputs the harmonic coefficients, a,,,. The harmonic
coefficients obtained from the recording can be used to
generate drive signals according to the actual speaker
array configuration. The drive signal can be generated
by applying the inverse of the speaker response or other
existing algorithms [1] [13] [14].

3 Geometry Design

As described in previous sections, the design of the
geometry is a constrained optimization problem. The
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Fig. 2: Block diagram of the signal processing work-
flow.

optimization process searches for a distribution of mi-
crophone units within a volume of space such that the
resulting transform matrices are well-conditioned and
all constraints are satisfied. Unfortunately, such an
optimization problem is in general a nonsmooth quasi-
convex problem [15], for which it is difficult to apply
conventional gradient-based optimization algorithms.
Moreover, the solution space is so large that utilizing
metaheuristic algorithms also becomes impractical.

The solution space can be reduced by restricting how
the array is constructed. Since the sound field recording
array is preferably isotropic and the signal processing
operates in the spherical/cylindrical harmonics domain,
it is reasonable to construct the array as several concen-
tric isotropic subarrays with the microphone units of
the whole array distributed in an equiangular manner.
With this construction, the number of parameters can
be greatly reduced such that the new solution space
is sufficiently small, therefore the use of metaheuris-
tic algorithms becomes feasible. The extra constraints
mentioned in the previous section are applied during
the optimization process. Such constraints include the
minimal distance between microphone units due to
physical limits and the maximum tolerance of worst-
case condition within the frequency range of interest.
Utilizing the optimized sampling geometry with suit-
able regularization, sound fields can be recorded and
reconstructed with satisfactory accuracy.

To summarize, the proposed set of geometric designs
possess the following properties:

Geometrically similar subarrays The array is com-
posed of several geometrically similar subarrays, each

consisting of multiple microphone units. Any two sub-
arrays can be made to coincide by scaling, rotation, and
reflection. Arrays created in this manner have discrete
rotational symmetry.

Equiangular distribution All the microphone units
become uniformly distributed when projected onto a
circle centered at the origin. This arrangement helps re-
duce the complexity of signal processing and provides
downward scalability.

Arithmetically progressive radii The radii of the
subarrays form a generalized arithmetic sequence. Ac-
cording to our experimental results, radii in an arith-
metic progression achieve slightly better matrix condi-
tion than those in logarithmic or geometric sequences,
which appeared in previous works [16] [17]. In the
experiment, we assume that 128 microphones are used,
then we find the optimal common difference and the
optimal common ratio for arithmetic and geometric
progressions, respectively. However, further investiga-
tion is required to establish whether the optimality of
arithmetic progression is a general phenomenon.

Some examples of proposed designs can be seen in
Fig. 3. In Fig. 3(a), the design is composed of 128
microphone units, which are grouped into eight circular
subarrays with each subarray having 16 microphones.
It can be seen from Figs. 1(d)-1(f) that the zeros of
Bessel functions are eliminated within 0 — 8kHz. The
radii of neighboring subarrays form a generalized arith-
metic sequence. It is also possible to distribute the
microphones in other ways such as four subarrays with
32 microphones each or 64 subarrays with two mi-
crophones each. Figure 3(b) shows another possible
distribution of microphone units, which also consists
of eight circular subarrays, but three pairs of subarrays
have the same radii with different rotation angles. The
angle of rotation of the subarrays may be arbitrary, such
as in Figs. 3(c) and 3(d). However, all the microphone
units are placed in an equiangular manner.

The strength of the proposed design is the capability of
performing error-robust broadband sound field record-
ing with omnidirectional microphones and no redun-
dant units located in the same direction. The multi-
subarray design allows higher angular sampling density
without using very small microphone units.
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(a) Vortex (b) Floral
(¢) Random 1 (d) Random 2

Fig. 3: Some examples of proposed designs (Q = 128).

4 Spatial Resolution Control

According to (4), the transform matrix By, is frequency-
dependent due to its mode function b, (kr). At low
frequencies, the value of the mode function approaches
zero when the order n increases; this phenomenon can
be observed in Fig. 1. This indicates that the transform
matrix is overdetermined. Inverting an overdetermined
matrix should only involve its prominent components,
otherwise the inversion is ill-conditioned. Spatial reso-
lution control trims the rows of the transform matrix,
reducing its spatial resolution in exchange for obtain-
ing a well-conditioned pseudoinverse, Bz. This can be
interpreted as a variant of TSVD (truncated singular
value decomposition) regularization. The main differ-
ence is that TSVD operates in a matrix’s left-singular
domain, while spatial resolution control operates in the
spherical or cylindrical mode domain. It has also been
recommended in multiple papers [4] [11] that choosing
an appropriate spatial resolution for different frequen-
cies can result in better robustness.

In the cases of a Bessel or spherical Bessel function,
these functions quickly approach zero after their order n
surpasses a threshold, ng(kr). The selection of the spa-
tial resolution is the same as determining the threshold
value ng(kr). If no(kr) < Nurr = [ (Q—1)/2], then the
spherical or cylindrical harmonic terms between ng (kr)
and N, do not significantly contribute to the sound
field reconstruction. Omitting these negligible terms
in the reconstruction stage improves the condition of

the transform matrices with the loss of only a marginal
amount of information. Therefore, we can now con-
struct the spatial-resolution-controlled transformation
matrix B}, which contains only the first no(k x max(r))
rows of the original By, (introduced in (4)). The function
no(kr) can be defined in many ways. One straightfor-
ward definition is ng(kr) = pkr, where p is 1 [4] or 1.1
[11]. Another possible definition, which determines ng
according to the p-norm of b, (kr), is proposed here:

- X0 [15a (k)1
no(kr) =inf S5 ————==>p,[p|<1,1<p<2.
n Y5 [bn(kr)|l p -

The threshold value p in (7) is preferably close to 1 and
p is 2. All the figures in this paper related to spatial
control use the definition of ng in (7). The effect of
spatial resolution control will be discussed in section 6.

5 Parameter Optimization

As described in section 3, it is difficult to utilize a
gradient-based algorithm to minimize the condition
number of matrix in general. Therefore, the differential
evolution algorithm is used [18]. Although differen-
tial evolution is not guaranteed to deliver an optimal
solution, it has been widely used for nonsmooth and
constrained optimization [19].

The optimal values of the actual parameters of the pro-
posed design are determined on the basis of these con-
straints:

Number of microphone units Q
This determines the possible numbers of subarrays.
For example, if 24 microphones are used, then it is
possible to have 1, 2, 3, 4, 6, 12, or 24 subarrays.

Operating frequency range fiin, fimax
The conditioning of transform matrices with re-
spect to this frequency range will be examined in
the optimization process.

Diameter of microphone unit Dy,
This defines the minimal magnitude of the com-
mon difference in the generalized arithmetic se-
quence for subarray radii. The minimal difference
between the radii of neighboring subarrays can be
represented as

AES 145t Convention, New York, NY, USA, 2018 October 17 — 20
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Upper bound of condition number Kqy

This is the highest acceptable condition number
within the operating frequency range. Empirically,
if the condition number is larger than 100, the
matrix inverse will become ill-conditioned, and
thus unstable. However, in some cases, if multi-
collinearity is undesirable, k., should be set to
around 30 [20].

With the above constraints, the next step is to find the
optimal values of the number of subarrays S, the radius
of each subarray r = [ro,1,...,7s—1], and the angle of
rotation of each subarray ¢ = [¢o, 91, ..., Ps—1]. With
these parameters, the actual geometry can be derived.

The optimal parameter set POQP, = {S,r,¢} is the one
minimizing the average condition number of the trans-
form matrices By within [fuin, finax] Subject to the con-
straints of D,,, and K;,,y.

A prototype microphone array based on the layout de-
picted in Fig. 3(a) (Vortex) was built. It is composed of
128 omnidirectional electret condenser microphones,
each with a diameter of 2.1cm. The array aims to oper-
ate within 0-8kHz frequency range, which is the crucial
band for sound localization in the human auditory sys-
tem [21]. The upper limit of the matrix condition num-
ber is set to 30. In accordance with these conditions,
an approximately optimal parameter set is found.

An actual sound field recording experiment using the
prototype array was conducted in an audio room of size
5.4m X 6.7m x 3m. The measured sound pressure
and reconstructed sound field are respectively shown in
Figs. 4 and 5. The background noise is approximately
—30dB and the room is reverberant. The spatial resolu-
tion control is applied in the reconstruction stage and
the threshold ng is determined by (7). Since r in (7)
is the radius of the largest subarray, the area with the
approximately correct reconstruction should roughly
lies within the outer circumference of the array.

The array in Fig. 3(b) (Floral) is another approximately
optimal solution if subarrays can have the same radius.

In addition to Vortex and Floral, two other designs
are shown, referred to as Random 1 (Fig. 3(c)) and
Random 2 (Fig. 3(d)). These two designs have the same
parameters as Vortex but the rotation angles of their
subarrays are randomized. These designs do not result
from any optimization but are merely examples to show
how the parameters may affect the condition numbers
of the transform matrices, which will be discussed in
the next section.

~ N\ .t 'o [
- AR F ] . AN ? [J
. .- oo
LA & . -~
.. 4
£, $e -
f=1041Hz f = 3305Hz

Fig. 4: Measured pressure values. A speaker is located
Im away in front of the array (i.e. speaking
from the top of the figure). The side length of
the grid is 0.5m.

f=1041Hz

f=3305Hz

Fig. 5: Sound field reconstructed from the measured
pressure values.

6 Error Robustness Analysis

The error robustness of an array geometry is indicated
by the average of condition numbers of its transform
matrices. The condition numbers can be decreased by
reducing the spatial resolution, in other words, reduc-
ing the number of modes contained in the transform
matrices. In this section, we will first examine the error
robustness of several array geometries, then investigate
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Fig. 6: Condition number between 0 and 8kHz for dif-
ferent microphone arrays. (a) Condition num-
ber curves when the spatial resolution is fixed
at N = 6, (b) condition number curves when
the spatial resolution is frequency-dependent,
where the spatial resolution is determined by
N = no(kr) as in (7).

how the number of usable modes changes when the
upper limit of the condition number decreases.

6.1 Effectiveness of Spatial Resolution Control

The effect of spatial resolution control is crucial in low-
frequency bands. Since in low-frequency bands, the
sound field complexity is limited [3], removing exces-
sive dimensions in overdetermined systems improves
the system condition. The condition number curves of
various arrays before and after spatial resolution control
are shown in Fig. 6. As can be seen from the figure, if
no spatial resolution control is applied, the condition of
transform matrices at low-frequency bands is extremely

—— Random 1
—-- Random 2
——- Vortex
----- Floral

10°

102

Condition Number

PRI

1 T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Fig. 7: Condition number plot within 0-8kHz for the
designs in Fig. 3 in the case of controlled spatial
resolution.

poor (Fig. 6(a)). Fig. 6(b) shows that after spatial reso-
lution control is applied, the condition number for most
of the frequency bands is controlled within 30 for all
arrays except the circular array. The ill-condition of
the circular array is caused by the Bessel zero problem,
which is an inherent property and cannot be solved by
spatial resolution control. Although the ill-condition of
the circular array may be improved by ordinary regu-
larization, the information of absent modes cannot be
recovered, therefore the reconstructed sound field will
lack some modes at these frequencies.

6.2 Effect of Angular Rotation

According to (4), in contrast to the conventional cir-
cular array, the mode function of the proposed design
is coupled with spherical/cylindrical harmonic coeffi-
cients within the transform matrices. According to our
preliminary observation, the local optimum evaluated
by metaheuristic algorithms appears to favor those with
lower discontinuity in the angular domain.

As shown in Fig. 7, the example from Fig. 3(b) (Flo-
ral) has the lowest discontinuity and the best average
transform matrix condition among the four arrays in
Fig. 3. On the other hand, the microphone placement
of Fig. 3(a) (Vortex) has a larger radial difference every
eight units, therefore the condition is slightly worse.
The performance of random placements is even worse,
probably due to the higher discontinuity. Despite the
experimental observation, the effect of this coupling
requires further investigation.
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Fig. 8: Effective cylindrical harmonic order of various
2D arrays with spatial resolution control ap-
plied (Kax = 30).

6.3 Effective Order in Mode Domain

To compare the performance between the proposed
geometries and conventional circular arrays, we require
a feasible performance measure. In this section, we use
the effective order of a matrix to act as the performance
measure.

We know that if the upper limit of the condition num-
ber K. 1s fixed, then the rank of the transform ma-
trix pseudoinverse B}E indicates the amount of recover-
able information contained in the matrix. In cylindri-
cal/spherical domain processing, the rank of the trans-
form matrix is related to order. A higher order means a
larger reconstructible area, more modes are required at
a higher frequency to achieve the same reconstructible
area. However, if some of the modes are missing in the
regularized pseudoinverse, even if the matrix rank is
high, the reconstructed sound field is still incomplete.
In this case, the effective order of this matrix should
be regarded as the lowest order of the missing modes
minus one. Otherwise, the effective order is equal to
the maximum order among the modes.

The effective order of various 2D arrays within the
0 — 8kHz frequency range is plotted in Fig. 8. In the
figure, the proposed geometries (Vortex, Floral) clearly
have higher effective order than the circular array on
average within this frequency range. The circular array
is strongly affected by the Bessel zero problem and
therefore has a low effective rank in several frequency
bins. A dual circle solves the problem but requires
twice the number of microphone units. Note that the
effective orders of the proposed arrays rapidly decrease

outside of the range of frequency of interest, while
the effective orders of circular and dual circular arrays
continually repeat their own behavior in Fig. 8.

Although the Vortex geometry slightly outperforms
Floral geometry, the Floral geometry seems to be more
resilient when the upper limit of the condition number
becomes tight, as shown in Fig. 9. This indicates that
if the recording environment is noisy or the SNR of
the microphones is low, the Floral geometry may be a
more suitable choice.
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(a) Vortex, k =27 f/c, f: 0—8kHz
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(b) Floral, k = 27f/c;, f: 0— 8kHz

Fig. 9: Applicable cylindrical harmonic orders of pro-
posed arrays within frequency range 0 — 8kHz
under different x;,,,, constraints.

7 Conclusion

In this article, in accordance with the relationship be-
tween the Bessel zero problem and error robustness [9],
we proposed a parametric geometry design of 2D ar-
rays with strong error robustness that can achieve better
sound field recording than the conventional circular or
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dual circular array in terms of the reconstructible area
over a broad frequency range.

The design constructs an array with multiple circu-
lar subarrays in such a way that all the microphones
are equally distributed in the angular domain with the
radii of the subarrays forming a generalized arithmetic
sequence. The parameters of such an array are de-
pendent on several predetermined constraints, and the
approximate optimal parameters can be found by using
metaheuristic algorithms.

An actual prototype device was built and a prelimi-
nary sound field recording experiment was conducted.
The performance in a practical environment will be
evaluated in detail in future.

Since the design introduces coupling between the ra-
dial and angular components, the effect of such cou-
pling should be investigated in future. It would also
be valuable to develop source localization and tracking
algorithms based on the proposed geometries.
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