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ABSTRACT 
The purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in 
the allophone classification process. A list of words including aspirated and non-aspirated allophones 
pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones 
extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images 
and used as input to train the Convolutional Neural Networks. Various settings of the spectral representation are 
analyzed to determine adequate option for the allophone classification. Then, testing is performed on the basis of 
non-native speakers’ utterances. The same approach is repeated employing learning algorithm but based on 
feature vectors. The achieved classification results are promising as high accuracy is observed. 

1 Introduction 
Speech recognition is still the most important 
research related to human-machine communication. 
It is predicted that approximately 50% of search 
queries will be provided with voice in the future, the 
same concerns communication with a mobile phone, 
laptop, machine, robot, etc. However, before this 
aim is achieved, more research is needed that 
includes all aspects of speech production and 
perception. Such analyses may also be supported by 
machine learning as a tool for human assisted 
evaluation, e.g. applications checking the subject’s 
pronunciation. These aspects refer to processes such 
as speech recognition based on phonemes or, even 

more necessarily, on allophone models being a 
foundation of words and sentences properly 
synthesized. The presented study is dedicated to 
recognition of aspirated and non-aspirated 
allophones. An allophone may be defined as a 
semantically non-contrastive positional or contextual 
variant of a particular phoneme. It should be noted 
that the phonetic phenomenon of aspiration is 
selected as particularly difficult to Polish learners of 
English. Therefore, a set of English words, selected 
with regard to aspiration phenomena particularly 
difficult for Polish learners, was recorded. 
Recordings encompass speech of 9 native English 
speakers and 9 non-native English speakers.  
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The proposed approach involves both convolutional 
neural networks (CNN) classification based on 
spectrograms, processed for that purpose and 
exported as images to the CNN input and a learning 
algorithm utilizing feature vectors. For the CNN-
based classification a two-dimensional 
representation of speech feature space is employed 
and  makes the allophonic samples more populated 
than in the case of one-dimensional feature vectors.  
It should be remembered that machine learning 
needs pre-processing and parameterization as the 
first steps of speech recognition processes. 
Therefore, this study addresses these issues by 
demonstrating methods of extracting a two-
dimensional representation of speech dedicated to 
allophone evaluation, even though CNNs  may act as 
a feature extractor themselves. We propose an 
approach that may be referred as "fingerprinting", 
used with success within the Music Information 
Retrieval (MIR) field, mainly for music or music 
genre recognition. Contrarily, for the learning 
algorithm audio parameters based on the MPEG 7 
standard as well as features found in the MIR area 
are utilized.  
The results included in this work can support 
English language education within tools that would 
automatically evaluate quality pronunciation with a 
focus on particular phenomena and related 
allophones. Recent studies on automatic quality of 
allophones/phonemes evaluation utilize speech 
recognition technology, (i.e. creating speech 
databases, feature extracting, machine learning) [1-
5] and to less extent concentrate on the phenomenon 
mechanism.  
In our study we decided to take a hybrid approach to 
feature extraction and machine learning as a tool for 
human-assisted evaluation. Using various audio 
features to determine whether allophone is 
pronounced correctly or not may potentially lead to 
identification what causes the mistake. 
Objectivization of the phonology phenomena 
evaluation results by correlating it with feature 
vectors may also enable to automatically recognize 
proper/improper target pronunciation. 

2 Allophonic material 
In the presented study, authors focus on the 
phenomenon of aspiration.  

Aspiration of voiceless stop consonants is 
represented using the parameter of VOT (Voice 
Onset Time), which is defined as the time interval 
between the burst that marks the stop release and the 
onset of periodicity that reflects laryngeal vibration 
[6]. Polish and English differ in their 
implementation of VOT in cuing the contrast 
between /b, d, g/ and /p, t, k/. Polish uses pre-voicing 
or negative VOT values for voiced /b, d, g/ and 
short-lag VOT values for voiceless /p, t, k/ [7]. On 
the other hand, English contrasts short-lag VOTs for 
voiced /b, d, g/ and long-lag VOTs for voiceless /p, 
t, k/ [6,8]. Long VOTs in English voiceless stops are 
temporal representation of what is traditionally 
known as aspiration. Polish learners transfer 
pronunciation habits from their native language and 
do not produce sufficiently long VOT in English /p, 
t, k/ [9]. The consequence is that their /p, t, k/ in 
English have short-lag VOTs and, as a result, are 
perceived as voiced /b, d, g/ by native speakers of 
English. Aspiration occurs immediately before a 
stressed vowel; therefore information regarding 
energy distribution within the allophone is crucial. 
This information can potentially be extracted from 
visual representation such as spectrograms utilized 
in the presented study. 
The experiment performed consisted of two stages. 
In part I a set of 30 words including aspirated and 
non-aspirated variants of plosive phonemes  /p, t, k/ 
was used. Nine native speakers (6 male and 3 
female) were asked to pronounce the words. In 
addition, parameterization of the recorded speech 
signals is performed using selected features.  
Additionally in part II six words including aspirated 
/p, t, k/ was recorded by nine non-native speakers. 
Collected data are evaluated by the phonology 
expert with regard to the aspiration phenomena. 
Allophones, edited from speech of non-native 
English speakers are also evaluated by the 
phonology expert to check whether results of 
automatic evaluation based on the machine learning 
meet subjective expertise. The second set was 
collected to investigate the predictive properties of 
the implemented analyses. 

3 Experiment I 
Different acoustic features have been proposed to 
separate speech units. Based on our experiments 
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carried out in the context of allophones, we can state 
that using standard speech parameters along with 
descriptors from the music area, the phoneme 
recognition accuracy is better, regardless of singular 
and specific features of voice exhibited by a speaker 
[10,11]. That is why the MPEG 7 standard-based 
features, as well as features derived from the MIR 
domain, are used in this research [12,13]. As already 
mentioned, aspiration occurs immediately before a 
stressed vowel. Therefore information regarding 
energy distribution within the allophone is crucial. 
Our initial investigations of phonological processes 
show that in order to determine aspiration of 
voiceless stop consonants, the parameters include 
energy measures of temporal distribution should be 
used [14]. The description of the features chosen for 
this research is included in the summary below. A 
list of these features is given in Table 1.  
 

Table 1. A list of features used for the automatic 
evaluation of aspiration.  

The parameters no. 1-3 refer to the time domain and 
are widely used in the speech analysis. The first of 
them (number of samples) indicates the number of 
the samples included in the allophone. Root Mean 
Square (RMS) Energy gives a mean energy in the 
analyzed signal frame. Temporal Centroid is the 
time average over the signal energy envelope. The 
parameters no. 4-6 are also time domain 
representation but they are not extensively used 
because they were invented quite recently. These 
dedicated parameters proposed by Kostek and her 
coworkers [13] are the number of samples exceeding 
levels RMS, 2xRMS, 3xRMS.  
Before the feature calculation starts, the speech 
signal is divided into short-time segments, the  
length of which is an integer power of 2. We use this 
approach, which is typical for an audio analysis and 
signal analytics, in order to get more accurate 
information.  
 

Techniques of allophone classification 
Denote by L – the number of allophones in training 
set. Let 
xl = xl1, xl2,..., xld{ }    (1) 
be the d-dimensional feature vector of the l-th 
allophone (l=1...L), and 
c = c1,c2,...,cK{ }   (2) 
the set of class labels to which these allophones 
belong. 
Consider a feature vector of the test allophones set 
which does not have a class label: 
x = y1, y2,..., yd{ }  (3) 
Our goal is to build a classifier to assign its 
unknown class label. In the experiment, two 
classical machine learning algorithms to compare 
classification rates are used. First of them is the 
Naive Bayes classification method based on Bayes 
theory [16]. The probability that a phoneme with 
feature vector y belongs to class ck (k=1...K) is: 

P(ck | y) =
P(y | ck )P(ck )

P(y)
  (4) 

As we see from Eq. (4), the class condition density 
P(y|ck) needs to be estimated. In this paper, Gaussian 
kernel density estimation is used. According to this 
theory, we obtained that: 
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where  is the bandwidth for control of the 
smoothness of the density curve [17], N – the 
number of phonemes in class ck. The test data are 
assigned to the class with the maximum class 
probability. 
The second classification algorithm employed is k-
Nearest Neighbors (kNN) [18], based on Euclidean 
distances among the elements of the test and training 
datasets. The Euclidean distance between the l-th 
allophone of training set and the unlabeled allophone 
of the test set is defined as: 

P(y, xl ) = (xli − yi )
2

i=1

d
∑  (6) 

The optimum number of nearest neighbors is 
established by performing a series of preliminary 
tests. 
The feature vector listed in Tab. 1 was calculated for 
each analyzed sample. The average parameter values 

1 Number of samples 
2 RMS Energy  
3 Temporal Centroid (TC) 
4 Number of samples exceeding  RMS 
5 Number of samples exceeding   
6 Number of samples exceeding   
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normalized to the range [0,1] are included in Fig. 2 
for aspirated and non-aspirated allophones. 
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Figure 1. The normalized values of parameters for 

aspirated and non-aspirated allophones averaged for 
all speakers (aspirated allophones are marked with a 
circle, non-aspirated ones are denoted with a cross) 

The feature automatic classification was performed. 
Naive Bayes and kNN algorithms to compare 
classification rates were used. In order to verify the 
statistical significance of our calculations the cross-
validation technique is used. The data are partitioned 
into 9 equally sized segments, each consisting of one 
speaker's utterances. In the process, 9 iterations are 
performed. Within each iteration, the training of 
classifiers on the allophones of 8 speakers is 
performed, and estimation of system accuracy on the 
basis of the speech of the held-out speaker is 
obtained. The average results of allophones 
classification with regard to the aspiration for all 
plosive allophones and each allophone group 
separately are presented in Table 2.  
 

Alloph
one 

Naive Bayes kNN 
Mean STD Mean STD 

/p/ 87.78 13.944 83.33 14.142 
/t/ 90.00 13.229 91.11 11.667 
/k/ 86.67 14.142 88.89 13.642 
All 87.78 11.902 90. 37  9.196 

Table 2. The results of accuracy [in %] of 
classification of aspirated and non-aspirated 

allophones. 
 

A possibility of classification of detection of 
aspirated vowels with the use of convolutional 
neural networks (CNN) was the next step of the 
research. An architecture proposed in the previous 

work of authors was employed for this task [19]. An 
architecture of the network was optimized by adding 
layers of networks until the speed of convergence 
measured in terms of speed of the loss decreasing 
rate, where the loss is a measure of an error between 
desired answers and ones obtained from the CNN. 
Additionally, dropouts were used to increase 
generalization abilities of the network [20]. Adam 
optimizer algorithm was employed as a learning rate 
adjustment procedure [21]. The input data were 270 
samples containing allophones with and without 
aspiration (135 examples of each). Examples were 
pre-processed by calculation of spectrograms. Each 
of examples was padded to the length of samples. 
Spectrogram was calculated with the use of 
Hamming window and with the overlap factor of 
0.75. The length of a single frame assigned to a time 
step of a spectrogram was 128 samples. The input 
for the network consisted of two channels. The one 
calculated as an absolute value of a spectrogram  
(amplitude spectrogram denoted as sabs) calculated 
as 
sabs = abs(s)    (7) 
and a value of phase (phase spectrogram denoted as 
sphase) calculated according to the following formula: 
sphase = tan

−1(s) .   (8) 
In both formulas s denotes complex-valued 
spectrogram. Then, both spectrograms were 
normalized by division of their standard deviation 
and subtraction of their mean value. An example of 
a pair of spectrograms is depicted in the Fig. 3. 
The network was trained for 20 epochs and 200 
examples were used as a training set and 70 were 
used as a validation set. The process of training was 
repeated 100 times to derive mean measures of 
performance. Learning rate was set to 1e-3, the 
batch size was 20. Examples were assigned to 
training and validation set in a random way. To 
assess the uncertainty of outcomes, a confidence 
interval for mean accuracy of classifier was 
calculated according to the following formula 

fconf = tα /2 (n−1)
σ
n '

,   (9) 

where fconf is a confidence coeficient, α is a 
significance level which in case of our study was 
assumed to be 0.05, σ is standard deviation and n is a 
number of samples used for calculation of the mean. 



Piotrowska et al. Aspirated and Non-aspirated Allophone Classification 

 

AES 145th Convention, New York, NY, USA, 2018 October 17–20 
Page 5 of 7 

A mean confidence interval can be then calculated 
from the following equation 
xm ∈ x ± fconf '    (10) 
 

 
 

 
Figure 3. A pair of spectrograms calculated for one 
of the examples from the database of allophones. 

 

 
 

Figure 4. The structure of the CNN used in our 
study. 

where xm is a true mean of variable x and x  is an 
estimate of a mean calculated as an arithmetic mean 

of samples – in our case, accuracies from 100 
allophone classification experiments.  
The mean accuracy obtained in experiment repeated 
100 times is 0.844. The confidence interval 
calculated for this case is (0.818; 0.869), the 
standard deviation is equal to 0.128. The worst 
accuracy was 0.414 and the highest value of 
accuracy was 0.986. 

4 Experiment II 
To further investigate the predictive properties of an 
automatic classifiers, classification of another set of 
114 examples of allophones was performed. All of 
them were examples of allophones with aspiration. 
Occurrence of aspiration was also subjectively 
assessed by a group of phonology experts.  
The result of allophone aspiration recognition based 
on feature extraction and machine learning approach 
is given in Table 3. 
 

 Naive 
Bayes kNN 

Accuracy 65 69 
 

 Table 3. The results of automatic evaluation of 
aspirated allophones pronunciation, in [%]. 

 
We also tried to employ CNN model used for 
classification to perform analogous task and discern 
examples in which aspiration was really introduced 
by a speaker from ones which do not have such. 
The CNN classification was performed 10 times 
with CNNs connected to accuracies greater than 
92% and 10 networks of such type were used. The 
only modification with respect to the previous 
design of network was lowering the learning rate to 
the value of 1e-4 and increasing number of learning 
epochs from 20 to 50. Then, a percentage of 
classification errors was assessed. Results were 
analyzed with the use of formulas 9 and 10. Also, 
Pearson correlation factor was calculated for a series 
of answers obtained from CNNs and given by the 
experts. The calculation was performed accordingly 
to the formula 11 [22]. 

r(x, y) = cov(x, y)
σ xσ y

   (11) 
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where r(x,y) is a Pearson correlation factor 
calculated for a pair of vectors x and y. Standard 
deviations of these vectors are denoted as σx and σy 
respectively.  
 
The CNN network error rate was on average 41.6% 
when compared to answers provided by experts. The 
confidence interval for the error rate is 
correspondingly 39.8% and 43.4%, and for 
correlation between CNN and experts’ answers it is 
0.076 and 0.170. The mean accuracy of the base 
dataset is 91.4%.  

5 Conclusions 
Automatic classification of aspirated and non-
aspirated /p, t, k/ allophones returned good results. 
High accuracy (91%, 90% and 84%) was achieved 
for all tested methods (respectively for kNN, Naive 
Bayes and CNN). 
The analysis presented in this paper shows the 
potential for automated evaluation of pronunciation 
focused on phonological aspiration challenge for 
non-native speakers.  
We achieved accuracy of 69% with kNN in the 
second part of the experiment, where we aimed for 
automatic evaluation of the correctness of aspiration 
for non-native speakers. The CNN was able to label 
correctly approximately 60% of examples in the 
second stage of experiment, however more research 
performed on larger database is needed in future to 
fully explore possibilities of such classification. The 
architecture of network presented in our paper may 
however serve as a starting point for such research. 
All these remarks can lead to the conclusion that the 
approach proposed can be utilized in the automatic 
recognition of allophones and in future can be 
potentially used for automatic pronunciation 
evaluation. 
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