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ABSTRACT

Optimal design of acoustic loudspeaker design elements, such as waveguides and phase plugs, often requires
extensive experience by the designer. Numerical simulations and optimization algorithms can aid in reducing
the design-test-optimize cycle that is traditionally applied. A general mathematical framework for numerical
optimization techniques is introduced and three algorithms of design optimization are reviewed: parameter
optimization, shape optimization, and topology optimization. This paper highlights strengths and drawbacks of
each method with the use of real-world design of a waveguide and two phase plugs. Where possible, the results are
confirmed with prototypes and measurements. The work shows that excellent results can be achieved in just one
design iteration with the help of numerical optimization methods.

1 Introduction The design process often requires the iteration of simu-
lation and adaptation of the geometry. Such is certainly
1.1 Background the case when optimizing acoustic elements because

the measure of directivity is directly linked to the ge-
ometry. Sometimes a loudspeaker designer can refer
to analytical solutions to determine the optimal design,
but such solutions are not always available, particularly
when the geometry at hand cannot be described by ba-
sic shapes such as spheres, boxes, cylinders etc. The

Loudspeaker design has made tremendous progress us-
ing numerical simulations in the past several decades.
The availability of easy-to-use software with graphi-
cal user interfaces and predefined physics setups has
advanced the types of numerical simulations that loud-
speaker designers employ to improve their products. ; )
Finite Element Models (FEM) have led to accurate .demgner then often needs to start Wlth a pest guess and
models predicting acoustic diffraction and directiv-  iterate through several loops of simulation and geom-
ity of speaker cabinets and waveguides [1], acoustic etry adaptation untll.a satls:factory solution is found.
impedance of horns [2], turbulence studies in port tubes Thanks to m.ode'rn simulation softw.are. an.d ce'lpab.le
[3], breakup modes of diaphragms [4], transducer lin- hardware, th1§ k}nd of "manual” optlmlza'tlon is still
ear and nonlinear behavior [5, 6, 7, 8], and many other faster than building prototypes and measuring them.

applications [9]. Numerical optimization methods can aid the designer
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by systematically finding geometries that are closer to
the optimal design. It is the intention of this work to
describe 3 optimization strategies that can be used in
loudspeaker design. These three strategies are:

1. Parameter Optimization
2. Shape Optimization
3. Topology Optimization

The requirements, strengths and drawbacks of each
methods are illustrated with practical examples. But
first we need to define a general optimization problem
statement.

1.2 General Optimization Problem Definition

The general aim of an optimization algorithm is to find
the set of control variables that maximize or minimize
a real scalar function. (For the sake of brevity, we will
stick to minimization problems in this work, as any
maximization problem can easily be transformed into a
minimization problem by taking the inverse or negative
of the optimization function.) To formalize this general
description we need some definitions:

* Objective function F(q): The objective function
(also called target or cost function) is the measure
that is to be optimized. It returns a scalar value

¢ Control variables q: Control variables are the vari-
ables that the algorithm is iteratively varying in or-
der to find the mimimum of the objective function.
The set of variables that optimizes F is defined as

q.

* Constraints G(q): The searchable space for the
optimal control variables can be restricted by the
vector-valued expression G. A set of q that does
not violate any constraints is called a feasible set
C.

In mathematical terms, the optimization problem is
then defined as :

Find q such that

{q—rrgnF(q)
C={q:1b <G(q) <ub}

ey

where Ib and ub are the vectors containing the lower
and upper bounds of G(q).

This general description applies to all three optimiza-
tion strategies mentioned above. Where they differ is in

the choice of control variables q and how they are tied
to the geometry definition. In the following sections,
there will be a description of each method followed by
a loudspeaker design example.

2 Parameter Optimization

Parametric Computer Aided Design (CAD) allows for
the quick variation of geometries by keeping certain
key dimensions as variables. Such key dimensions can
be point coordinates, line lengths, radii, coefficients
of polynomials, spline parameters, etc. For example,
a simple conical diaphragm can be dimensioned para-
metrically by its diaphragm depth d, thickness ¢, inner
radius R;, and outer radius R,, or - alternatively - by
d, t, R;, and flare angle a. It is up to the designer to
determine how to best parameterize the geometry.

It is always advisable to map the parametrization with
control variables that take on values between 0 and
1 (or sometimes between -1 and 1). For example, if
the outer diameter of the diaphragm above can vary
between R™" and R, then the linear mapping

R{:eas _ R:)nin +QR0 (R:)nax 7Rz1in) : ar, c (0’ 1) (2)

uses the control variable gg, to define all feasible outer
radii. In the optimization of the above cone, we can
then define the optimization control variables q as

q:[qthqtaqR,'ang)]T (3)
and the constraints become simply
0<q<l “)

This change of variables from design parameters to con-
trol parameters is not required, but the normalization
can benefit stability and performance of the optimiza-
tion algorithms [10].

During the optimization run, the algorithm continu-
ously updates the control parameters in order to achieve
a better optimization. At each iteration, the geometry
gets updated, which requires a meshing step before
the FEM simulation can be run. This step adds more
computational cost, but it makes the geometry handling
fairly straightforward. As long as the geometry genera-
tion does not fail after parameter updates, the meshing
step is typically unproblematic. It is the designer’s duty
to ensure that the geometry generation behaves properly
for all feasible parameter combinations. The parameter
optimization flow chart is shown in Figure 1. A notable
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Fig. 1: The flow chart for parameter optimization in-
cludes a meshing step at each iteration.

drawback of the re-meshing at each iteration is the fact
that the solution of the previous iteration is not directly
available. The previous solution is necessary to analyti-
cally calculate the sensitivity of the objective function
with respect to control parameters, i.e. the gradient of
the objective function with respect to control param-
eters is not explicitly available. Therefore, parameter
optimization is typically restricted to gradient-free op-
timization algorithms to update the parameters. A full
review of gradient-based and gradient-free optimiza-
tion algorithms is not within the scope of this work,
but the interested reader can find a thorough discus-
sion in [11]. For the example below, we employed the
Nelder-Mead algorithm [12] as it is implemented in the
optimization module of the COMSOL Multiphysics
software [13].

2.1 Example: Compression Driver Waveguide
With Smooth Off-Axis Behavior

High-frequency waveguides are typically used to con-
trol the directivity properties of high-frequency compo-
nents in loudspeakers. For this example, we optimize
an in-wall speaker waveguide that is coupled to a high-
frequency compression driver of type JBL 2409H. The
target is to achieve horizontal and vertical beamwidths
of over 100°. Additionally the far-field SPL at off-axis
angles should drop monotonically and smoothly.

2.1.1 Geometry Setup & Parameterization

Depth, width and height of the waveguide are fixed at
50 mm, 320 mm, and 170 mm respectively. The throat
exit of the compression driver is 14.4 mm in diameter
and the waveguide should have symmetry with respect
to the horizontal and vertical planes. What remains
is to define the waveguide surface in a way that can
be described with a set of parameters. For this we

IS il

T [ e
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SECTIO -0

Fig. 2: Horizontal (red), vertical (yellow), and oblique
(blue) cross sections that parameterize the
waveguide. Throat diameter as well as outer
diameter in horizontal and vertical direction are
fixed.

define three cross-sectional splines: one in horizontal
direction, one in vertical direction and one at the 45°
direction (refer to Figure 2). The outer end point in
the 45° direction is allowed to vary between a diameter
of 170 mm < D¥ . <240 mm. Each cross section
is described by a cubic Bezier curve defined by four
points (see Figure 3). Start point and end point are
defined by waveguide depth, throat diameter, and outer
diameter. We parameterize the two remaining points
by the two parameters L; and L,. The two points are
chosen such that the throat is tangential to the axial
direction and the mouth ends up tangential to the baffle
surface.

2.1.2 Objective Function

As stated above, the aim of this waveguide is to have
wide beamwidths and smooth off-axis response. For
this purpose we define far-field SPL targets relative
to on-axis in the 20° and 60° directions, A20(f) and
A,-60( /) that are linear in a log-frequency plot as shown
in Figure 4. At 10 kHz, Agy should be -6 dB and Ay
should be -0.9 dB. The slopes of the target lines in Fig-
ure 4 are yet unknown. To deal with these unknowns, it
is possible to add additional design parameters and let
the optimization algorithm find the best solution. One
way to parametrize the target curve is by defining the
relative SPL at 1 kHz. The equation for the target lines
in Figure 4 thus become:

Ai(f) = mj*logo(f) — C; ®)
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Throat L
axis

Dtnroat

Fig. 3: The cross section curves are parameterized by
cubic Bezier curves. The first and last point are
given by throat diameter, waveguide depth and
outer diameter respectively. The remaining two
points are parameterized by the two lengths L;,
and L,.
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Fig. 4: The off-axis target relative to on-axis at 20°
(blue) and 60° (green). At 10 kHz Ago is -
0.9 dB, and Ago is -6 dB. The values at 1 kHz
are taken as additional design parameters.

with

m; = A;(10kHz) — A;(1kHz) (6)
C; = Ai(10kHz) — 4% m; (7

for i = 20,60. Once the design parameters are cho-
sen, we can write the objective function F(g) as the
sum of the errors between simulated off-axis responses
Ai(q, f) and target off-axis responses A;(f)

M ~
Flg)=) (]Azo(q,ﬁn)—Azo(fm)y’
m=1
+ [8c0(a, fn) ~ Ao (F)]")  (®)

Here, M is the number of frequencies, f,,, that are
simulated, and p is an error tuning parameter. If p

is equal to 2, then (8) is simply least a squares error
between target and simulated off-axis responses. If
p is chosen to be a larger number, then frequencies
with larger errors are penalized with more weight than
frequencies with smaller errors. For this example, we
set p = 4 to put more emphasis on reducing large peaks
in the error between target and simulation.

To finalize the setup, appropriate limits are needed
for the design parameters. During the optimization,
the design parameters are also normalized to control
parameters as shown in (2). The complete list of design
parameters is given in Table 1. The simulation ran
from 1 kHz to 10 kHz in 11 logarithmically-spaced
frequency points.

2.1.3 Simulation Setup

Due to symmetry of the problem, only a quarter
of the model needed to be simulated. COMSOL
Multiphysics’[13] CAD generating capabilities are not
powerful enough to generate the lofted surface needed
for this problem, but the LiveLink to SolidWorks allows
for a two-way link between SolidWorks [14] and COM-
SOL. The FEM model was setup to have the mouth
of the waveguide terminate into an infinite baffle. At
some distance to the waveguide we employed a per-
fectly matched layer to simulate an infinite 27 environ-
ment. The mesh used quadratic elements with at least
six elements per wavelength at 10 kHz. The far-field
response was calculated using the Kirchhoff-Helmholtz
integral at the boundary of the mesh.

2.1.4 Results

The optimization in COMSOL converged to control
parameters that correspond to the design parameters
shown in Table 1. The horizontal and vertical off-axis
plots are shown in Figure 5. From those one can see
that we achieved a remarkably smooth and continuous
drop of high frequency at all off-axis angles. The simu-
lation achieved a horizontal beamwidth of about 105°
and the prototype about 110° (6 dB down at 10 kHz).
In the vertical plane, simulation and measurement show
a 95° beamwidth. The resulting on-axis response, total
soundpower estimate [15, 16, p. 378], and directivity
index (DI, shifted by 50 dB) for a plane-wave source
with constant amplitude at the throat are shown in Fig-
ure 6. This plot also shows a very smooth behavior
with a 5-10 dB boost at the high midrange. The DI plot
is monotonically and smoothly increasing from 0.8 dB
at 1 kHz to 6 dB at 20 kHz.

AES 145t Convention, New York, NY, USA, 2018 October 17 — 20
Page 4 of 12



A.Bezzola Optimization Strategies for Acoustic Loudspeaker Elements
Parameter | Lower | Upper Optimal s —sworuR
bound | bound Solution 10 _——— — o
Lf?"’ 5 mm 45 mm 44.37 mm
Lhor 15Smm | 138 mm | 137.14 mm
Lyer 5mm | 45mm | 33.67 mm g
Ly 8 mm 70mm | 48.52 mm 5
LH S5mm | 45mm | 27.15mm
Ly 11mm | 10l mm | 38.12 mm
D¥» 168 mm | 233 mm | 232.6 mm
Ay(lkHz) | -1dB | -0.01dB | -0.14dB i ———
Aco(1kHz) | -25dB | -05dB | -1.48dB To

Table 1: Design parameters for waveguide surface.

Ai [dB]

1k 2k . Sk Hal 10k 20k 1k 2k . Sk il 10k 20k
Fig. 5: Horizontal (left) and vertical (right) off-axis
results for simulation (solid), measurements of
physical prototype (dashed), and target curves
for the 20° and 60° angles (black).

2.1.5 Conclusion

Thanks to the parameter optimization of the waveguide,
the results of the very first prototype show a remark-
ably smooth off-axis response. The implementation
was made possible thanks to the linked CAD and FEM
software and would have been very difficult to achieve
otherwise. Setting up this problem as an optimization
problem reduced the involvement of the designer dra-
matically, as only the base geometry and parametriza-
tion needed to be defined. Decisions on how deep or
shallow to make certain parts of the waveguide were
completely handled by the optimization algorithm.

3 Shape Optimization

As mentioned above, one drawback of parameter op-
timization for geometric design is that it requires a
re-meshing step at each iteration and the loss of sen-
sitivity information to control parameters. One opti-
mization method to overcome this drawback is called

Fig. 6: The on-axis (green), soundpower (blue) and DI
(red) response of the waveguide. The units are
in dB and the on-axis and soundpower are at
arbitrary level. The DI curve is shifted by 50 dB.
The insets show the CAD geometry on the left
and the prototype mounted in a baffle on the
right.

Define Update Solve
Geometry Mesh Simulation

1

Update B No Conver- -
Parameters gence

l Yes

Calculate
Objective

Reconstruct

Geometry Done

Fig. 7: The flow chart for shape optimization shows
how the control parameter update acts directly
on the mesh itself. After convergence, there
is an additional step needed to obtain the final
optimal geometry.

shape optimization (also known as mesh warping, mesh
morphing or mesh moving) [17]. During shape opti-
mization, the control parameters act on the mesh nodes
instead of on the underlying geometry. This means
that the mesh gets warped and squeezed, but through-
out all iterations each node retains its relative position
with regards to its neighboring nodes. The gradients
of the objective function with respect to control pa-
rameters can thus be analytically calculated, and we
can employ gradient-based optimization schemes [18].
The optimized geometry can finally be reconstructed
from the final morphed mesh. The shape optimization
flow chart is shown in Figure 7. Typically, mesh defor-
mation is driven at a boundary. The adjacent domain
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Fig. 8: Original mesh (black) with prescribed deforma-
tion at the top boundary (red) and the resulting
deformed mesh (blue).

mesh needs to adapt to the prescribed boundary defor-
mation during the mesh update step. There are many
algorithms that can be employed for this adaptation,
with the more prominent ones being Laplace, Winslow,
Yeoh smoothing [19]. Care needs to be taken when the
mesh deformations become large, because it can deteri-
orate the mesh quality or lead to inverted elements.This
method works therefore best when small deformations
are needed to achieve the optimal solution. Typically,
employing rectangular swept meshes leads to more sta-
bility and faster convergence [19]. An example of a
deformed mesh is shown in Figure 8.

We need to define a parametrization of the boundary
displacement with associated control parameters. One
suited parametrization is to define the boundary dis-
placements by Bernstein polynomials [20]. Other pos-
sible parametrization are Chebyshev polynomials [21]
or the Fourier basis just to name a few. The Bernstein
basis polynomials of degree n are defined as

bya(x) = (ﬁ)xv(l —x). ©)

And the resulting Bernstein polynomial is a linear com-
bination of the individual basis polynomials

B,(x) = ioﬁvbv,n (x) (10)

with By the coefficients of the polynomial. These coef-
ficients are excellent candidates for design parameters.
Figure 9 shows the Bernstein basis polynomials of de-
gree 4. It also shows that the sum of the five basis
polynomials adds up to unity. This is an intrinsic fea-
ture of the Bernstein basis polynomials and holds true
for any degree n. Additionally we can see that only
basis polynomials b ,, and b, , contribute to the outer
points. This is a feature that will be taken advantage of
in the next example.

087

06

047

0.2}

0 — T

0 0.2 0.4 0.6 0.8 1

Fig. 9: The Bernstein polynomial basis of degree 4.
The sum of the polynomials adds up to unity
and only bg 4 and b4 4 contribute to the edges
of the interval (0,1).

3.1 Example: Compression Driver Phase Plug

Compression drivers use a phase plug to reduce the
radiating area of a driver’s diaphragm to a smaller area
of a horn or waveguide throat [22]. The area reduc-
tion is typically enforced by putting a phase plug with
concentric or radial channels between the diaphragm
and the horn throat. Optimal design of the channels
reduces resonances in the small air cavity between di-
aphragm and phase plug. An analytic approach for the
optimal selection of concentric channels’ location and
width has been proposed by Jack Oclee-Brown [23].
However, the method stops short of being directly ap-
plicable to channels that meet at a central horn throat,
but it does provide an excellent starting point. In the
next sections, we show how shape optimization can be
used to take an initial solution from [23] and adapt it to
a final optimal phase plug geometry.

3.1.1 Geometry Setup & Parametrization

The geometry setup for this example is shown in Figure
10.

The diaphragm is shaped from an elliptical cross sec-
tion with semi-axes of 35 mm and 27 mm, truncated
at a radius of 30 mm. The air cavity in front of the
diaphragm is constructed by moving the diaphragm 1
mm in the axial direction, according to [23]. The phase
plug terminates into an infinite plane wave tube with
radius of R;,;. = 10 mm. The channel location r; thick-
nesses #; at the diaphragm are to be optimized and must

AES 145t Convention, New York, NY, USA, 2018 October 17 — 20
Page 6 of 12



A.Bezzola

Optimization Strategies for Acoustic Loudspeaker Elements

27

Fig. 10: Geometry setup for compression phase plug.
The air (blue) gets compressed from the di-
aphragm with an truncated elliptical cross
section (red) to an infinite tube with radius
10 mm.

adhere to the equation:

3
Y 2nrit = nRy,, (11)

i=1
The compression ratio is

JsndS

2
n-Rtube

9.0 (12)

where n; is the axial component of the diaphragm
surface normal, and the integral is taken over the di-
aphragm surface S. The channel dimensions 7; and ¢
can be calculated for straight channels according to
[23]. This leads to very close pressure distributions
inside each channel as shown in Figure 11. Below
16 kHz, the max difference between the channels is
1.4 dB. In a next step we angled the straight channels
to meet at a tube with 10 mm radius as shown in Figure
10. The channel thickness changes towards the tube to
maintain the same cross-sectional area Ai = 27wr;t;. Af-
ter this change in geometry we simulated the pressure
inside the plane-wave tube. The simulated tube length
is 0.1 m with a perfectly matched layer at the end. The
resulting SPL in the tube is also shown in Figure 11.

From Figure 11 it is evident that simply slanting the
channels to meet at the throat of a tube is not going
to lead to optimal results. This is where shape opti-
mization can help to fine tune the shape of the phase
plug. We let the six boundaries highlighted in Figure
12 be morphed by the shape optimization algorithm.
Each boundary’s deformation is controlled by Bern-

stein polynomials of degree 4 via the parameters ﬁés),

SPL in tube
©
N

821 | —SPL in tube

:2 —SPL1 //’ﬁ‘\\
ol UJ_UJ PR %

10?

Frequency [Hz]
Fig. 11: SPL pressure in the three straight channels op-
timized according to [23]. The max SPL dif-
ference is 1.4 dB at 15.5 kHz. Inset a) shows
pressure distribution inside straight channels
and inset b) shows the pressure distribution in

the slanted channels at 15.5 kHz.

Fig. 12: Mesh and deforming boundaries of the phase
plug shown in axisymmetric plot. Each red
boundary is mapped onto an interval (0,1) and
allowed to deform according to a Bernstein
polynomial of degree 4 with By and 4 fixed
at zero.

where (s) denotes the boundary number. By setting

ﬁés) and Bf) equal to zero we ensure that the chan-
nels endpoints maintain their position throughout the
optimization. This leads to 18 remaining parameters

B‘(/S),V:{LZ’S},S:{1727...76}_ (13)

3.1.2 Objective Function

The objective is to achieve a smooth frequency response
curve in the plane-wave tube. Smoothness is not eas-
ily quantified with mathematical formulas, but a good
alternative would be to try to achieve a frequency re-
sponse curve that is the average of the three frequency

AES 145t Convention, New York, NY, USA, 2018 October 17 — 20
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response curves achieved with the straight channels as
shown in Figure 11.

_ SPLy(f)+SPLy(f) + SPL3(f)

SPLtarget (f) - 3 (14)

We implemented this target as a least-squares problem
over M number of frequencies f;,.

M

2
F(q) = Z (SPLlube(qvfm) _SPLtarget (fm)) (15)

m=1

3.1.3 Simulation Setup

In order to reduce the chance for the channels to col-
lapse or overlap, we restricted the design parameters to

the interval ﬁés) € (—0.004,0.004). The design param-

eters ﬁ\(,S) are themselves mapped to control parameters
according to (2). In COMSOL the deforming mesh can
be set up fairly easily once a parametrization is chosen
and linear mappings between the morphing boundaries
and the interval (0,1) is established. We used the default
mesh update settings (Yeoh) and ran the optimization
with the gradient-based SNOPT [24] solver.

3.1.4 Results

The optimizer quickly converged towards a solution
that exhibits a very smooth frequency response in the
plane-wave tube. The SPL curve and pressure plot are
shown in Figure 13. The inset also shows the deformed
mesh of the channels. The maximal deviation from
the target curve is 0.8 dB, which confirms the choice
of the average straight-channel pressures as a viable
target. The deformed mesh shows that channels 2 and
3 get very close to each other towards the tube. An
overlap of the meshes is not ruled out by the choice of
parameter limits. It is up to the designer to check for
mesh overlap or collapse before continuing with the
optimized geometry.

3.1.5 Conclusion

Shape optimization problems require more time and
effort to set up than parameter optimization problems.
The advantage is that they generally converge faster to-
wards an optimal solution because they can profit from
the analytic gradient calculation, which is not possible
in parameter optimization. The obtained optimal mesh

_Ih

SPL [dB]

84f|— SPL_ tube
82| — SPL_target

Frleq‘uency [Hz] o’

Fig. 13: SPL and SPL target in the plane wave tube
after optimization. A very smooth frequency
response is obtained and the maximum dif-
ference between obtained SPL and target is
0.8 dB. The inset shows the deformed mesh at
the end of the optimization with the deformed

boundaries shown in blue.

needs to be checked for overlap and translated into a fi-
nalized geometry. We show that mesh optimization can
improve upon the already excellent analytic prediction
for straight tubes towards a more realistic phase plug
geometry that attaches to a plane-wave tube or horn. It
remains to be seen if higher-degree polynomials or a
different basis could lead to even better results.

4 Topology Optimization

Shape optimization and parameter optimization require
to some extent that the topology (i.e., arrangement
of holes, intersections etc.) be defined a priori and
maintained during the optimization. When the optimal
topology is not yet known, topology optimization can
be employed to find an optimal geometry [25]. Topol-
ogy optimization originated in structural mechanics
where it was developed to find the optimal material
distribution while maintaining a given compliance of
a structure under given load. It has since also been
adapted for acoustic problems [26, 27, 28]. The idea is
to optimally place a given amount of material inside a
design subdomain. Each point in the subdomain can
take on a material property that is interpolated between
two materials, typically a solid and air or void. With
the discretization of the domain with finite elements,
the interpolation variable takes on the form of a vector
with an entry for each node in the mesh. The general
strategy for acoustic problems is the following:

1) Define a subdomain Q, of the simulation domain
where you want to distribute solid and air. 2) Determine

AES 145t Convention, New York, NY, USA, 2018 October 17 — 20
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a relevant material property that can be interpolated be-
tween the values of the two different materials, e.g.,
density p and bulk modulus K with subscript O for air
and subscript 1 for some solid:
o(q :{poforq,'—O(air)‘ (16)
p; for g; =1 (solid)

K(q) = {Ko forg; =0 (air). a7
K for g; = 1 (solid)

3) Determine a suitable material interpolation scheme
that defines the interpolated material properties for val-
ues of q between 0 and 1. The easiest interpolation
would be a linear interpolation, but that is not always
the optimal choice. Better choices are discussed below.
4) Define a domain constraint that limits the total
amount of solid material that can be placed inside the
subdomain to a relative number § with the inequality

constraint _
dQ
fgdq e

e.g., if 0 is chosen to be 0.5, then half of the domain
can be filled with solid material.

5) Define an objective function and optimization
algorithm.

6) Interpret the material distribution and define a final
geometry.

(18)

4.1 Example: Tweeter Phase Plug for
High-Frequency Extension

Transducer engineers at the Samsung Audio Lab have
designed a tweeter that can play as low as 500 Hz, and
it is likely to be put into several commercial products.
Its main advantage is a low frequency cross-over that
minimizes lobing and thus creates a wider sweet spot
for the listeners. The problem with this tweeter is that
the frequency response drops significantly around 18
kHz. We could replicate this behavior with coupled
acoustic-structural FEM simulations after careful selec-
tion of material parameters. Measured and simulated
frequency response curves are shown in Figure 14. An
investigation into the root cause of the drop at 18 kHz
revealed a structural resonance in the surround that
destructively coupled with the pressure generated by
the diaphragm that moves pistonically up to 23 kHz.
A snapshot of the surround deformation (exaggerated)

85 e i R B NS

=TT \“‘ﬂ

80
P \

|
75 i__Pistonic Motion \
h
70 e i
65
eol &1
55
50
— Simulation
451 —— Measured
40— ,
10° 10° 10*
Frequency [Hz]

Structural

Resonance

SPL [dB]

Fig. 14: Simulated (green) and measured (blue) fre-
quency response of tweeter show an very good
match, including drop-off at 18 kHz. The in-
set shows simulated surround deformation at
20 kHz at 0° (blue) and 180° (orange). The de-
formation is exaggerated by a factor of 2000.
The diaphragm moves pistonically and the sur-
round exhibits a resonance.

Fig. 15: Design subdomain € (green), air (blue) and
tweeter geometry (black).

at 20kHz is shown in the inset of Figure 14. A solu-
tion to the described problem could be to re-design
the surround. But we wanted to investigate acoustic
solutions, since the performance of the driver below 18
kHz is excellent and first attempts to fix the problem
at the surround deteriorated the performance at lower
frequencies.

4.1.1 Geometry Setup and Parametrization

Topology optimization does not require the parametric
design of the geometry or mesh deformation. We only
need to define the subdomain Q,, where the algorithm
needs to optimize the material distribution. The Q
for the tweeter at hand is shown in Figure 15. The air
domain was surround by perfectly matched layers to
avoid reflections . The parametrization for the optimiza-
tion is done in the material interpolation. As mentioned
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above, we need to define an interpolation of the mate-
rial properties inside Q. The two most widely used
interpolation functions are the so-called SIMP [29] and
RAMP [30] interpolation methods. For the example at
hand, we used the a slightly modified version of RAMP
as presented in [26] for the interpolation of material in
Q.

Po
= 19
P = g (po/pr - 1) 1
k
K(q) : (20)

" T+q(Ko/Ki - 1)

with pyp = 1.204 kg/m3, Ko= 0.1461 MPa, p; =
1200 kg/m3, K; = 10 GPa. The choice of the modi-
fied interpolation scheme in [26] is based on empirical
tests, and we found it to work the best.

4.1.2 Objective Function

The target is to keep the SPL in the listening window
[16, p. 378] SPLyw (f) of the tweeter at 85 dB up to 20
kHz. Additionally, we also need to keep the directivity
index DI(f) in check, as not to create some highly
focused beam at higher frequency. We thus have two
objective functions in the form of least squares

F(q) = Fi(q) + F2(q) (1)
M

Fi(q)= Y (SPLiw(q,fu)—85)°  (22)
m=1

M
Fr(@)= Y. (DI(a, )= DI(f))  (23)
m=1

where DI(f) is a target for the directivity index as
shown in Figure 17 and M is the number of frequency
points f;, to include in the simulation.

4.1.3 Simulation Setup

After defining the design subdomain €, the mate-
rial interpolation functions and the objective function,
we define the initial value of the parameter field q at
0.5 and choose & from (18) to be 1, i.e., potentially
all of Q; could be filled with solid material. The
solver method of choice for topology optimization is
the Method of Moving Asymptotes (MMA)[31], be-
cause it handles a large number of control variables
well. Remember, the value of q at each mesh node in
Qg, is now a control variable. The optimization was
performed over 6th-octave points between 5 kHz and
20 kHz. The final results were then recomputed over
24th-octave points between 100 Hz and 20 kHz.

1
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/ fx\\b’i e
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\\ 0.3
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gg@pé&‘“ “—‘
.
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Fig. 16: Final distribution of control parameter q in
shaded grey. The shades of grey change in
increments of 0.1 from O to 1. The contour of
level q. = 0.6 is shown in red.

4.1.4 Results

The resulting distribution of q is shown in Figure 16.
The topology optimization results in a distribution of q
that varies between O (white) and 1 (black). After the
topology optimization provided that result, we ran a
parameter sweep with a cutoff value of q. and set the
material values to either air or solid according to

(24)

ifq<
p(q) = pO.q qc
prifq>qc

and accordingly for K(q). We found that a value of q. =
0.6 (see Figure 16) gives the best compromise for both
of the objective functions. From Figure 17 we can see
that the topology optimization raised the SPL between
7 kHz and 20 kHz to above 85 dB throughout (solid
green), while maintaining an error less than 2 dB for
the DI. The interpretation with q = 0.6 (dashed green)
exhibits a drop in SPL between 8 kHz and 15 kHz, but
it never drops to a value that is lower than the tweeter
without the phase plug (orange). The main target of
boosting the SPL above 18 kHz has been achieved and
DI curve is practically identical for both cases.

4.1.5 Conclusion

Topology optimization is not yet common practice in
loudspeaker design, but it can be helpful when the op-
timal topology is not easily guessed a priori. It also
requires some experimentation with interpolation func-
tions and constraint settings to get acceptable results.
We have shown that it can be used for the design of
phase plugs and the method can be easily adapted for
other problems. While the results of the material dis-
tribution must be interpreted, they can provide a good
starting point for a subsequent parameter or shape opti-
mization.
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Fig. 17: Results of topology optimization. Solid lines
show results with distributed q after topology
optimizaton and dashed lines show results af-
ter simulation with cutoff q. = 0.6. The re-
sponse of the measured tweeter with the proto-
type phase plug is shown in orange. The target
DI curve is shown in red.

5 Summary

The work presented introduces the three optimization
methods and confirmed their viability for the design
of acoustic elements in loudspeakers. Parameter op-
timization is the easiest to implement, because it just
requires parameterizing the geometry. It comes with
the drawback that the gradient of the objective function
cannot be calculated analytically. We implemented a
parameter optimization for the optimization with op-
timal off-axis behavior, and verified the results with
the measurement of a prototype. Shape optimization
requires slightly more preparation work as the design
parameters act on the mesh and care must be taken that
the deformation does not lead to invalid geometries.
We have implemented a shape optimization example
for the design of an optimal compression-driver phase
plug that is coupled to a plane-wave tube. Topology
optimization is the least intuitive of the three methods
and requires the most user input. It can potentially lead
to geometries that a designer would not easily conceive
otherwise. We have demonstrated the method with
the example of a tweeter phase plug that extended the
extended the HF range of the tweeter past 20 kHz.
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