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ABSTRACT

In Automatic Music Transcription, onset information is useful for correcting timing issues of multi-pitch estimation
processes and obtain note-level representations of audio signals. Although this idea has been often used in
transcription systems, it is still unclear to which degree its use is beneficial. We address this question by studying
the influence of the accuracy of onset information in piano music transcription. Results indicate that note tracking
results improve when the onset information provided is accurately estimated and properly included with the correct
strategy. Additionally, results depict an important accuracy gap in note tracking when considering ground-truth
onset information compared to using an automatic onset estimation algorithm, showing the need for more accurate

onset detection methods for music transcription systems.

1 Introduction

Automatic Music Transcription (AMT) stands for the
process of automatically retrieving a high-level sym-
bolic representation of the music present in an audio
signal [1]. Such ambitious task requires a large number
of disparate processes which complementary describe
the signal, being pitch estimation, rhythm analysis or
instrument detection some possible examples, among
many others [2].

Most AMT systems comprise two stages [3]: multi-
pitch estimation (MPE), in which the system estimates
the active pitches in each frame of the signal; and note
tracking, which processes the frame-based MPE result
to produce a list of note events in terms of a pitch, onset
and offset. While both representations constitute abs-
tractions of the music signal, namely frame-level and

note-level transcriptions respectively, the note track-
ing step is the one for obtaining musically-meaningful
representations.

Frame-level transcription has been widely addressed
over the years. Examples of successful systems span
data-driven techniques, with a remarkable use of neural
networks for modelling such extraction [4, 5], to signal
processing methodologies, with the spectrogram fac-
torisation paradigm a very successful example [3] of
such family of methods. The idea behind spectrogram
factorisation techniques resides on decomposing the
initial spectrogram into a series of pitch templates and
pitch activations. Non-negative Matrix Factorisation
(NMF) and Probabilistic Latent Component Analysis
(PLCA) [6] constitute practical and successful exam-
ples of such factorisation principles.
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On the contrary, note tracking has not received much
attention [7]. Note-level transcriptions are commonly
obtained by processing frame-level representations
with minimum-length pruning processes for elimina-
ting spurious detections and gap-filling stages for re-
moving small gaps between consecutive pitches. Im-
plementations of these ideas range from rule-based
systems [6] to hidden Markov models (HMMs) [8] or
dynamic Bayesian networks (DBNs) [9].

In general, MPE systems are imprecise in terms of tim-
ing. Typical issues comprise their tendency to miss
note starts, mainly due to the irregularity of the signal
in the attack stage, or the over-segmentation of long
notes or the merge of repeated notes (e.g., tremolo pas-
sages) into single events. The use of timing information
has been considered for tackling the aforementioned
issues; examples include [10] which uses onset events
for segmenting the signal before the pitch estimation
stage, or [11] which post-processes the MPE results
with onset information for correcting timing issues.

In this paper we study the potential of onset information
for improving note tracking performance for automatic
piano transcription. The idea is to assess how rele-
vant the goodness of the onset information is in this
context: on the one hand, we use ground truth onset
information (oracle approach) to study a possible upper
bound in performance; on the other hand, we consider
onset events obtained with state-of-the-art onset de-
tection algorithms (practical approach) and compare
those results with the oracle ones to point out the lim-
itations found. For that, we model the note tracking
task as a sequence-to-sequence transduction problem
(raw estimation to onset-based corrected estimation)
and thus consider the use of Finite State Transducers
(FSTs) for performing it, which constitutes a paradigm
that, to our best knowledge, has not been previously
considered. Also note that, while onset information
has previously been incorporated in some AMT sys-
tems, to the authors’ knowledge no existing work has
thoroughly studied the influence of onset information
for improving automatic music transcription perfor-
mance.

The rest of the paper is structured as follows: Section 2
explains the scheme proposed for the experiment; Sec-
tion 3 introduces the multipitch estimation algorithms
considered; Section 4 describes the onset detection
strategies contemplated; Section 5 presents the pro-
posed note tracking process; Section 6 details the eva-

luation methodology and describes the results; finally,
Section 7 provides conclusions and future directions.

2 Scheme proposed

To carry out the proposed study, we have implemented
the scheme shown in Figure 1. Audio signals undergo
an MPE process which outputs frame-level transcrip-
tion Tr (p,t), that is a binary representation depicting
whether pitch p at time frame ¢ is active. Simultane-
ously, onset events (o,-)ll-“=1 are estimated with an on-
set detection algorithm. Eventually both analyses are
merged in a note tracking stage obtaining the note-level
abstraction Ty (p,1).

. Tr (p,t) Note
Audio )
Onset (00)i2y
Detection

Fig. 1: Proposed set-up configuration.

The details concerning each of the processes in Figure 1
will be explained in the following sections.

3 Multipitch estimation

We have considered two MPE approaches in our work:
the system by Vincent et al. [12] based on adaptive
NMF and the one by Benetos et al. [13] based on
dictionary-based PLCA. Both models output a pitch
activation probability P(p,t), where p stands for pitch
in the MIDI scale and 7 for time instant. We set a tem-
poral resolution of 10 ms for the input time-frequency
representation and output pitch activation.

Vincent et al. [12] decompose a spectrogram with an
NMF-like method by modelling each template spec-
trum as a weighted sum of narrowband spectra that
represents a group of adjacent harmonic partials. This
enforces harmonicity and spectral smoothness while it
allows adapting the spectral envelope to the instruments
in the piece.

Benetos et al. [13] take as input a constant-Q transform
(CQT) spectrogram with a resolution of 60 bins per
octave and decomposes it into a series of pre-extracted
log-spectral templates per pitch, instrument source,
and tuning deviation from ideal tuning. Model para-
meters are estimated using Expectation-Maximization
(EM) [14].
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In both cases, P(p,t) is processed to obtain the Tr (p,t)
binary representation: P(p,t) is normalised to its global
maximum so that P(p,7) € [0,1] and a 7-element me-
dian filter is applied over time to smooth it. Then, the
function is binarised using a threshold value 6 = 0.1,
which is obtained taking the work in [12] as a reference
and refining it for the data used in this work. Finally,
a pruning stage with a minimum-length filter of 50 ms
is applied to remove spurious note detections. These
values were obtained by performing initial exploratory
experiments to optimise the parameters for the data
considered.

4 Onset Detection

As mentioned, our aim is to study the relevance of the
onset information accuracy when considered for note
tracking. Thus, we distinguish two situations: a first
one considering ground-truth onset events and a second
one with estimated onset information. For the latter
case we have selected three different algorithms given
their good results reported in literature: Semitone Filter-
Bank (SFB) [15], SuperFlux (SF), and ComplexFlux
(CF) [16, 17]. These processes output a list (c),-)l-L=1
whose elements represent the time positions of the L
onsets detected. We shall now introduce them.

SFB applies a harmonic semitone filter bank to each
analysis window of the magnitude spectrogram and
retrieves the energy of each band (root mean square
value); a first-order derivative is then applied to each
band; negative results are filtered out as only energy
increases may point out onset information; finally, all
bands are summed to obtain a function whose peaks
represent the onset events.

SF and CF expand the idea of the spectral flux sig-
nal descriptor by substituting the difference between
consecutive analysis windows by tracking spectral tra-
jectories in the spectrum together with a morphological
dilation filtering process. This suppresses vibrato ar-
ticulations in the signal which tend to increase false
positives.

The time-frequency analysis parameters of the algo-
rithms have been set to their default values. As all
of them comprise a final thresholding stage, where 25
different values equally spaced in the range (0, 1) have
been tested to check the influence of that parameter.
Onset lists (0;)%_, have been filtered with an averaging
30 ms to avoid overestimation issues by the algorithms
following [18].

5 Note Tracking

Tr(p,t) can be considered a set of |Z?| binary se-
quences of |t| symbols. Hence, elements (0;)%_, may
be used as delimiters for segmenting each sequence
pi € & in L+ 1 subsequences, resulting in a frame-
level abstraction quantised by the onset information:

Tr (pist) = Tr(pi,0: 01) ||-.|| Tr (pisor : [t| = 1)

where || represents the concatenation operator, p; the
pitch band at issue and L the total number of onsets.

Once onset information has been included in Tr (p,t)
we can process each subsequence for each pitch value
pi € & separately for correcting the errors committed.
For that, we have considered the use of Finite State
Transducers (FSTs), a type of automaton which trans-
forms a sequence of symbols xp, Xy, ...,xy into another
sequence yo,y1,...,yn [19]. The input to the FST is
each single onset-based subsequence whereas the out-
put is another sequence in which some of the elements
have been changed following a particular policy.

Given that each subsequence is a series of ones and
zeros representing pitch activations and silences res-
pectively, the two possible actions to model are either
activating or deactivating sections. We focus on the
former case, i.e. assuming the MPE process misses
active areas. Thus, this note tracking approach tackles
the MPE issues of missing onset events in attack phases
and the breaking of notes. The main reason for only
tackling one of the two types of errors is to assess how
beneficial can be the use of onset information for post-
processing an MPE estimation when considering a very
simplistic note tracking approach. This may somehow
depict a lower limit in the note tracking figures that
may be surpassed if more sophisticated approaches are
considered.

Let the 6-tuple IT1 = (Q,X, A, 5,1, ) define our trans-
ducer. As we are dealing with binary sequences, the
input alphabet is £ = {0,1}. Its possible states are
0 ={q1,42} connected with transitions 6(q,0) = g1,
0(q1,1) = ¢q2 and 6(g2,a) = g where a € X. The out-
put alphabet A = {1,v;,v;} is a non-binary represen-
tation which is parsed once the subsequence has been
processed to model different FST behaviours. The
outputs are given by A(q1,0) = vy, A(g2,0) = v, and
A(b,1) = 1 where b € Q. Finally, ¢; represents the
initial state of the process. This transducer I1 is graphi-
cally shown in Figure 2.
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Fig. 2: Graphical representation of the FST proposed.

To model different performances of the FST we parse
symbols v; and v, to values of the input alphabet
¥ following three different policies. For clarity, let
{(vx) € X be the first element after v, which is diffe-
rent to it and let # represent the end-of-string character.
All policies fill the gaps in-between active areas and
two of them additionally fill other gaps which may be
present. Policy (i) fixes vi = 1 and v, = 1 if {(v) =1
or, alternatively, v, = 0 if {(v,) = #, which fills the
possible gap between the onset and the first active area.
Policy (ii) fixes vi = 0 and v, = 1, thus filling the possi-
ble gap between the last active area and the end of the
sequence. Policy (iii) is equivalent to (i) but setting
v1 = 0, thus not filling any other type of gap. Figure 3
graphically shows their behaviour.

Finally, before the FST processes the subsequences,
they undergo a pruning stage of 50 ms for removing
spurious detections.

6 Evaluation

6.1 Datasets

‘We consider the use of the MAPS database [20] con-
taining audio piano performances (both from real and
synthesised pianos) synchronised with MIDI annota-
tions. From that we have taken the pieces of the MUS
set recorded with the Disklavier piano in both “am-
bient” and “close” configurations (i.e., recording mi-
crophones near and far from the source, respectively).
We have also used the Saarland Music Data (SMD)
collection [21] that comprises 50 piano pieces (audio
and MIDI aligned) also recorded with a Disklavier. As
in other AMT works, we only considered the first 30
seconds of each piece. Table 1 provides a summary of
these sets.

Table 1: Description of the datasets considered.

Set Pieces Notes
MAPS-Close 30 7,353
MAPS-Ambient 30 8,764
Saarland SMD 50 12,231

6.2 Evaluation metrics

Since we aim at assessing the relevance of using proper
onset information for note tracking, we shall evaluate
both tasks.

An estimated onset is considered to be correct if
its corresponding ground-truth annotation is within a
+50 ms window of it [22].

In terms of note tracking, we shall restrict ourselves
to the onset-based figure of merit as we are not consi-
dering note offsets. Thus, a detected note event is
assumed to be correct if its pitch matches the corre-
sponding ground-truth pitch and its onset is within a
+50 ms lapse of the corresponding ground-truth on-
set [23].

For assessing the tasks we may define the figures of
merit precision (P), recall (R) and F-measure (F;) as
follows: P = NOK/NDET, R = NOK/NGT, F1 = (2 .
P-R)/(P+R). Nok stands for the number of correctly
detected events (onsets or notes, depending on the case),
Npgt for the number of total events detected and Ngr
the total amount of ground-truth events.

6.3 Results and discussion

Table 2 shows the results obtained for the onset detec-
tion process, which constitute the average and deviation
of the figures obtained when evaluating each dataset
using the 25 threshold values considered.

The high precision figures obtained state the robustness
of these algorithms against false alarm detections in
these data. Recall figures, though, are not that consis-
tent: SFB commits a number of false positive errors
while SF and CF seem to properly deal with them. The
F, figures obtained show the performance limitations
of these methods. For instance, the best-case scenarios
are the SF and CF algorithms when tackling the MAPS-
Close set (average F; = 0.82, possibly due to being the
dataset recorded in the most favourable conditions, i.e.
close to the source) which are far from a score of 1. We
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(a) Result of the MPE process.

Onset 1 Onset i+1

(b) Note-level transcription considering Policy (i).

///////

Pitch p

///////
///////

Pitch p

Onset 2 Onset 1+ 1

(¢) Note-level transcription considering Policy (ii).

Onset ¢ Onset 1+1

(d) Note-level transcription considering Policy (iii).

Fig. 3: Comparison of the behaviour of the different FST configurations proposed. Solid blocks represent time
frames estimated as active by the MPE whereas striped regions represent the areas filled by the FST.

Table 2: Onset detection results, in terms of average
and standard deviation.

of onset information for note tracking. Nevertheless,
the actual point here is the need for accurate onset in-
formation. As shown, SF and CF improve results when
compared to a simple pruning stage (e.g., an improve-

Onset Ambient Close Saarland
detector

SF 0.78£0.14|0.824+0.13|0.864+0.13

P CF 0.80+£0.14|0.844+0.13|0.874+0.13

SFB |{0.8 £0.2 |09 £0.2 |0.8 +0.2

SF 0.79+0.07|0.87£0.04 | 0.78 0.05

R CF 0.76£0.10]0.85+0.05[0.77 £0.06

SFB |/{0.3 £0.3 |04 £0.3 |0.3 £0.3

SF 0.76£0.07 | 0.82+0.08 | 0.80+0.06

F; CF 0.75+0.060.82+0.07 | 0.79 +0.06

SFB |{0.4 £0.3 |04 £0.3 |04 £+0.3

ment around 5 % to 10 % in F; may be achieved in
the MAPS-Ambient set depending on the MPE method
with respect to the single pruning stage), but these
figures are far from results achieved with ground-truth
onset information (e.g., ground-truth onset information
implies a further improvement of up to 5 % in F; on
top of the improvement achieved by SF and CF in the
Saarland set). Furthermore, there seems to be more
room for improvement in the MAPS-Ambient set than
in the rest, possibly due to being the set with the most

shall check how this limitation affects the note tracking
stage.

Figures 4, 5 and 6 show the note tracking results ob-
tained for the proposed FST with Policies (i), (ii) and
(iii) respectively for the two MPE schemes considered.
Due to space limitations, figures have been limited to
the F score.

Results for Policy (i) of the FST (Fig. 4) show that,
for both MPE processes, the use of onset information
for note tracking benefits the process: onsets estimated
with SF and CF improve results compared to the case in
which no additional information is considered. In con-
trast, onset information from SFB implies a decrease
in performance, possibly due to the reported tendency
of this algorithm to miss onset events, which may be
providing inaccurate subsequences to the FST.

The performance boost observed when ground-truth
onset information is provided suggests the usefulness

unfavourable recording conditions (far from the source)
and thus the one with the lowest figures in both onset
estimation (cf. Table 2) and the MPE process (quali-
tatively reflected on the note tracking scores when not
considering onset information, i.e. F; ~ 0.45). Addi-
tionally, threshold values maximising onset estimation
in the entire collections (for all sets, these threshold va-
lues are around 0.5 for SF and CF, reporting F; ~ 0.8,
and 0.15 for SFB, achieving F; = 0.7) also exhibit the
maximum for note tracking results. This reveals a re-
lation between the accuracy of onset information and
the success of the note tracking process (i.e., the bet-
ter onset detection, the better note tracking), with the
ideal case being the one considering ground-truth onset
information.

Figures obtained when considering Policy (ii) (Fig. 5)
and Policy (iii) (Fig. 6) of the FST do not show such im-
provement for the results in note tracking. For policies
(ii) and (iii), results obtained when onset information
is not considered outperform all other cases. Clearly,
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Fig. 4: Note tracking results (F; score) obtained when applying Policy (i) in the FST for the MPE systems
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Fig. 5: Note tracking results (F; score) obtained when applying Policy (ii) in the FST for the MPE systems
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the fact that Policy (i) is able to correct missed attack
events by the MPE stage makes it stand as a better
alternative for note tracking than the other policies con-
sidered. Moreover, this fact states the relevance of the
note tracking stage: when providing onset information
to the system, a proper strategy has to be followed to
correctly incorporate that knowledge and take advan-
tage of it. Thus, the use of more elaborated tracking
processes which may take advantage of the particulari-
ties of piano notes should report an improvement.

Additionally, it can be checked that the MPE method
by Vincent et al. [12] consistently improves results
with respect to Benetos et al. [13]: the figures obtained
by the former method outperform the latter in around
5 % to 10 % in F;, which suggests that the former
method is more precise in terms of timing than the
latter one. Finally, the improvement in the note tracking
results of both MPE methods when onset information is
considered states the robustness of onset-based tracking
when compared to a basic pruning stage.

7 Conclusions

This work studies the use of onset information for im-
proving note tracking performance. Particularly, our
contribution lies in assessing the improvement that can
be achieved when integrating onset information in an
automatic piano transcription system. Using Finite
State Transducers, we combine frame-level outputs
obtained using two well-known multipitch estimation
algorithms with onset information. The onset infor-
mation is either in the form of onset events estimated
using state-of-the-art onset estimators or in the form
of ground-truth onset events as they represent the most
accurate onset information.

The comparison of the results obtained when conside-
ring the estimated and ground-truth onset events points
out an intrinsic relation between the accuracy of the
onset information and the overall quality of the note
tracking process. Also it is shown that the performance
of current state-of-the-art onset estimators limits the
performance of onset-based note tracking systems as
results obtained when considering ground-truth onset
information generally outperform the ones achieved
with estimated onset events. The experiments also state
the importance of the combination policy for onset
and pitch information on the success of the task, being
the case in which the onset information is used for
correcting the attack phase of the note the one reporting

the best overall results. Finally, experiments also point
out the influence of the recording conditions of the
piece and the relevance of the multipitch estimation
stage.

Future work considers the further exploration of Finite
State Transducers for note tracking by studying more
complex architectures so that, false alarm errors may be
tackled. Also, we aim at exploring human-computer in-
teractive methods to obtain accurate onset information
with the least annotation effort to narrow the accuracy
gap between ground-truth and estimated onset events.
Moreover, combining pitch and onset salience informa-
tion rather than their binarised versions might report
some improvements. Finally, machine learning could
be considered to automatically infer the proper policy
to combine pitch and onset events.
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