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There is not much data available on the acoustical properties of our everyday environments
and our subjective impressions and communication abilities in those environments. In this paper
we present a smartphone-based system that is capable of measuring the most important features
of the surrounding acoustics. However, in contrast to simple audio recordings and subsequent
analysis the proposed solution will respect the privacy of all communication partners and
bystanders by extracting a feature set tested for privacy compliance only. Nonetheless, a larger
set of necessary features for acoustical environment classification can be computed in the
necessary accuracy afterwards in an off-line process. For a given feature set the statistical
analysis shows comparable results in the extracted data, when either the original audio signals
or the new privacy-aware extraction methods are used.

0 INTRODUCTION

People are surrounded by acoustical environments ev-
erywhere and at all times. How they behave in those envi-
ronments can be subject to factors such as mood or capabil-
ities. In order to enhance people’s possibilities to interact
with their environment, hearing devices are common tools.
However, it is difficult to evaluate the benefit of those tools
or to measure the actual acoustically challenging situations
in natural environments. In the research focus “Hearing in
everyday life in Oldenburg (HALLO)” one important task
is to assess the typical acoustic environment of everyday
situations. Since the subjects are not supervised and they
interact with people not involved in the study, special care
has to be taken to protect the privacy of everyone involved,
including bystanders and their conversations.

In order to monitor people’s behavior and their percep-
tion, many studies are based on questionnaires that are filled
in afterwards in the test laboratory or completed in the
evening at home (e.g., [15, 3]). Unfortunately, these meth-
ods are prone to subjective or even wrong memories. In
order to reduce the time between a given situation and the
questionnaire, the method of ecological momentary assess-
ment (EMA) was introduced. EMA allows to get ongoing
data through self-reports, often implemented as the expe-
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rience sampling method (ESM) [8], e.g., for hearing aid
users [4]. The results are still on subjective scales.

A natural choice to do acoustic assessments is to sam-
ple the environment acoustically. Combined with the data
obtained by EMA, this enables comparisons of objective
measures to the respective subjective ratings. Several meth-
ods are known from very different research fields. In [18]
and [11] binaural audio recordings were used to measure
noise exposure, phonation time [5], and vocal effort. Con-
versation behavior was analyzed in [13] by recording only
small fragments of audio (30 s every 12.5 min) and allow-
ing participants to exclude recordings from further analysis,
though only a very few used those options [12]. The com-
bination of questionnaires and objective data, especially
on mobile phones, was proposed in [17] e.g., but without
considering audio. A technically simpler approach was to
carry out interviews and recordings of natural acoustics at
the same time [16]. EMA with long-term audio recordings
on a mobile phone was proposed by [7, 6].

Yet, none of these approaches will protect the privacy of
conversation partners or bystanders by design. The respec-
tive national laws on how to deal with this fact are quite
different and we can only give some information on US
and German law. In the US the recording of conversation
is defined by federal law (18 U.S.C. §2511) [2] and fur-
ther defined by the different states’ laws. Most of the US
states (e.g., in Texas or Georgia where [13] was conducted)
and the federal law allow recording if at least one party
gives consent, even if it is the person using the recording
device (One Party Consent). In some others like California,
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all participants of a conversation must agree to the record-
ing (Two Party Consent). In Germany a two-party consent
is necessary (StGB §201) [1]. Another problem arises in
public or semi-public spaces, like restaurants or trains. The
device could record conversations of bystanders who are
not actively a part of the conversation of the participant. In
this case no informed consent is given. However, the spo-
ken word in public is protected differently. In Germany the
intention of the conversation is important. If it was meant to
be private, recording would be forbidden. This shows that
for a system which is suited to be used worldwide, very
rigid privacy standards have to be implemented.

In this paper we propose a solution based on the ex-
traction of a limited set of features on the smartphone that
does not compromise privacy, and yet still allows for the
assessment of the acoustical environment. The paper is or-
ganized as follows. In the next section the system, its hard-
and software, is described and the technical specification is
given. Secs. 2 and 3 show the privacy-aware feature extrac-
tion method and its evaluation. The final section includes
an analysis of the system, to show that the privacy of others
is not affected.

1 SYSTEM DESCRIPTION

The full system consists of multiple hardware compo-
nents as well as control software and analysis algorithms
implemented in both the mobile recording device itself and
in MATLAB for further off-line processing.

1.1 Hard- and Software
While a number of mobile multichannel recording de-

vices are available, their lack of flexible audio processing
capabilities makes it necessary to save the audio material
until it can be processed off-line, disqualifying them for
continuous long-time recording, if we want to protect the
subject’s personal data and privacy. Modern smartphones,
on the other hand, are affordable and offer sufficient pro-
cessing power for digital audio processing, allowing to ex-
tract selected features and then discard the audio data itself.

Given its openness and flexibility, Android was the plat-
form of choice. Since we were unable to acquire an An-
droid device that itself provides stereo audio input, external
USB audio interfaces of type PureAudio USB-MA (An-
drea Electronics) were used. Android 5 offers some ba-
sic access to external USB audio interfaces but is limited
in functionality and device support. For a more flexible
solution, a class-compliant driver (i.e., does not require
vendor-specific drivers) is commercially available and was
purchased to reduce development time. Generally, any USB
class compliant device should be compatible. The Android
device in question has to support USB On-The-Go, which
enables it to act as a host to external USB devices. For this
study smartphones of type Moto G (1st generation, 2013,
Motorola) were used. Two omni-directional microphones
of type EK-23024 (Knowles Electronics) were built into
simple behind-the-ear shells and the necessary bias voltage
of 2.2 V was supplied by the USB audio interface. Fig. 1

Fig. 1. Schematic of the Android recording system. Shown are
the two microphones connected to the USB-Audio-Interface that
supplies a bias voltage of 2.2 V (Vbias) to power the microphones.
The A/D converted audio signal is passed to the smartphone where
features are extracted and stored.

shows an overview of the system’s main hard- and soft-
ware components. Of course different microphones could
be used as well, e.g., consumer devices aimed specifically
at recording for stereophony. However, those often come in
in-ear variants, obstructing the auditory canal and are there-
fore not suited for the task at hand when a subject should
be able to act as unhindered as possible in everyday life.

The software is comprised of a simple user interface (UI)
for starting and stopping the analysis as well as a status
indicator (Fig. 2). In the background, a service controls
signal recording and processing. Once started, the service
runs independently from the UI. This allows for ongoing
recording and processing, should the user exit the UI itself
or change to another application.

Two channels of data, left and right, are sampled simul-
taneously and recorded continuously with a sample rate of
fs = 16 kHz at a resolution of 16 bits and cached in chunks
of 60 s. After a chunk is written, the service is notified
to start a new processing thread. There, the cached data
is high-pass filtered (f0 = 100 Hz, 2nd-order Butterworth)
to reduce low-frequency noise (see Fig. 4), passed on to
the algorithms as specified in Sec. 3.1, and the resulting
feature-data is stored. After the processing of a given chunk
of data is finished, the system deletes the cached audio data
permanently. With the algorithms currently deployed, the
smartphone’s battery lasts for over 8 hours, producing 130
MB of feature-data per hour.
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Fig. 2. User interface of the analysis app, indicating that the
analysis is running (in German: Analyse läuft). Analysis is started
and stopped by touching the large button in the middle of the
screen.

1.2 Measurements
In order to test if the recording system can be used for

EMA from a purely technical point of view, the frequency
response and the noise floor of four pairs of microphones
in their respective behind-the-ear shells were measured.
Finally, the dynamic range was determined for each pair.

The measurements to determine the system’s characteris-
tics were conducted in the anechoic chamber at our depart-
ment. Free field responses were measured using a G.R.A.S
40AF free-field microphone with a type 26TK preamplifier
powered by Bruel & Kjær type 2829. The signal sound pres-
sure level was calibrated using a Bruel & Kjær calibrator,
type 4231 (114 dB SPL at 1 kHz).

1.2.1 Frequency Response
To evaluate the frequency response of the microphones,

Gaussian white noise with a broadband level of 74 dB SPL
was played back using an NTi Audio Talk-Box. This loud-
speaker, developed as a reference speaker for room acoustic
applications, offers on-line equalization of any input signal
resulting in a flat frequency response between 100 Hz and
10 kHz with a steep roll-off beyond. It was mounted at a
distance of 1.75 m to the investigated microphone.

The power spectral densities (PSD) were estimated from
the recorded white noise using Welch’s method ([19]) and
smoothed using a moving average filter with equivalent
rectangular bandwidth (ERB, [14]). These PSDs were
then related to an equally processed PSD derived from the
reference microphone, yielding the transfer functions as
shown in Fig. 3. The black line denotes the average over
all microphones whereas the grey lines show the individual
transfer functions.

Up to 3 kHz, the responses are flat within 1 dB. Between
microphones, the differences are within 2 dB, showing very

Fig. 3. Frequency response of four measurement systems (8
mics.). Shown is the average response over all microphones
(black) as well as the individual transfer functions (grey). The
data has been smoothed in ERB-bands for display.
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Fig. 4. Noise level as a function of frequency for unweighted,
highpass-filtered and A-weighted noise floor. Shown is the aver-
age over all microphones (black) as well as the individual mea-
surements (grey). The results have been smoothed in ERB-bands
for display.

similar progression. Beyond 3 kHz, there is a slight rise, and
while six microphones remain within 2 dB of each other,
two microphones show a moderately increased sensitivity.

1.2.2 Noise Floor
The noise floor was determined by relating mea-

surements of the static background noise to calibrated
white noise measurements from above. Again, the results
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Fig. 5. Total harmonic distortion as a function of sound pressure
level for a 1 kHz sine. Depicted are two channels of one measure-
ment system (black) and the same signal recorded with a reference
microphone (40AF, grey).

have been smoothed in ERB-bands. In addition to the
unweighted noise-level, a second order high pass filter
corresponding to the implementation on the Android
system (f0 = 100 Hz, 2nd-order Butterworth) was applied
as well as an A-weighting filter. The resulting noise levels
are shown in Fig. 4.

As with the frequency response, the microphones ex-
hibit very similar noise floors. One pair, the same that
showed a slightly higher sensitivity towards higher frequen-
cies above, shows a noise floor about 2 dB below the other
microphones. Generally, this noise floor below 35 dB SPL
beyond 1 kHz hints at a viable dynamic range, since all
relevant acoustic situations we would like to acquire are far
above 35 dB SPL. A normal conversation, for example, can
be assumed to take place at levels of at least 50 dB SPL.

1.2.3 THD and Dynamic Range
The dynamic range of the system is given by the noise

floor at the low end and by the clipping behavior at the up-
per end of the range. In order to determine the upper bound
of the system, we measured the total harmonic distortions
(THD) using an amplitude swept sine with a fixed frequency
of 1 kHz. To produce appropriate sound levels of up to 100
dB SPL, a Fostex 6301B active loudspeaker was used in
close proximity to the microphones (0.6 m). The THD was
calculated by relating the amplitude of the second to fifth
harmonics (V2 through V5, without the fundamental fre-
quency) to the amplitude of the first harmonic at 1 kHz, V1,

THD =
√

V 2
2 + V 2

3 + V 2
4 + V 2

5

V1
. (1)

Fig. 5 shows the THD as a function of the signal level
for one pair of microphones (black) as well as for the
reference microphone (grey). For the analysis only levels
above the static noise level of ≈34 dB SPL (compare

Fig. 4) are considered. The THD slowly decreases as the
signal level rises above the noise floor, showing an increas-
ingly smoother progression. At around 95 dB SPL, the
recording system abruptly reaches its limit for transparent
audio capture (clipping) while the reference microphone
shows a moderately increasing THD. Considering a THD
of below 1 or even 2% as sufficiently low for acoustic
transducers, this results in a usable dynamic range of 45 to
55 dB. The results of the other three microphone pairs and
measurement systems are similar.

2 FEATURE EXTRACTION

The final application for the analysis of everyday life
recordings will define the subset of features and parameters
that are necessary to be extracted from the audio signal. The
proposed system is very flexible and can compute many
different features. However, due to power constraints on a
smartphone and privacy considerations not everything that
is desirable can be done.

We will focus on a feature subset proposed by [9] for
acoustic classification in hearing aids. It includes, e.g., de-
scriptors for the power of the signal, the zero-crossing rate,
or the Mel Frequency Cepstral Coefficients (MFCC).

In order to apply the extraction guidelines beneficially,
we first analyzed which parts have to be computed on the
audio stream and which parts can be derived afterwards
from other extracted data or features. Thus, the computa-
tional and storage demands are reduced on the smartphone
system. The final dataset is computed afterwards off-line
in a PC-based framework. Additionally, for all extraction
routines, privacy is considered.

Many features are based on some form of frequency do-
main description. We decided to extract the power spectral
densities (PSD) for the left and right signal and the cross-
power spectral density (CPSD) to get information on the
spatial acoustics, which extends Kates’ original approach.

Therefore, our final solution is not an exact replica of the
extraction routines given by Kates but a close approxima-
tion in order to measure and classify acoustic environments.

2.1 Smartphone Extraction Process
We refer to the recorded audio channels as xL[n] and

xR[n], respectively. To streamline the expressions below,
formulae are given for one channel x[n] unless noted
differently.

Before processing, a 2nd-order high-pass Butterworth
filter with a cutoff-frequency of f0 = 100 Hz is applied to
the signal in order to suppress low-frequency noise.

The processing itself is frame-based, with each block
x divided into M overlapping frames xm with N = 400
samples each (25 ms) and a feed of L = N/2 = 200 samples
(12.5 ms).

xm[n] = x[n + m · L], (2)

with current frame number m = 0, 1, . . ., M − 1 and samples
n = 0, 1, . . ., N − 1.
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For each frame the Root Mean Squared (RMS) value and
the Zero Crossing Rate (ZCR) is computed. Furthermore,
the ZCR of the first derivation of the input signal �xm[n]
= xm[n] − xm[n − 1] is determined.

The power spectral densities (PSD) are not in the Kates-
set, but they are valuable to derive other features and they
are important for our privacy-aware system. Hence, we will
explain the extraction process in more detail.

The PSDs are estimated by first applying a Hann-
window

ω[n] = 0.5

[
1 − cos

(
2πn

N − 1

)]
(3)

to signal frames xL, m and xR, m. Afterwards, the windowed
frame is transformed to the frequency domain using a 512-
point fast Fourier transform (FFT). Based on the frequency-
domain representations XL, m and XR, m, the periodogram
for the left and right channel, �Per

L and �Per
R as well as the

Cross-periodogram �Per
LR are computed:

�Per
[L,R],m[n] = X [L,R],m[n] · X∗

[L,R],m[n], (4)

�Per
LR [n] = XL,m[n] · X∗

R,m[n], (5)

where (·)* denotes the complex conjugation. A PSD es-
timate is finally achieved by smoothing the adjacent peri-
odograms. For non-stationary processes like speech usually
a first order recursive filter

�̂[m] = α · �Per [m] + (1 − α) · �̂[m − 1], (6)

is applied, where

α = exp(−t/τ), (7)

denotes the smoothing factor, with frame-shift t = (N −
L)/fs (12.5 ms) and time constant τ. Since speech signals
contained in the recorded audio data xL[n] and xR[n] can
easily be reconstructed to the level of intelligibility from the
original periodograms, we have to apply a time constant as
high as 125 ms. Additionally, every 125 ms the current
averaged frame with all three spectra is saved, the rest of
the data is discarded to ensure privacy (see listening test,
Sec. 4).

2.2 Feature Extraction in the Off-Line Post
Processing

The saved feature data are used to compute several other
features given by Kates. All of them are very briefly de-
scribed and notable differences in the extraction procedure
compared to the description in [9] are given.

The signal envelope is based on the extracted RMS values
and therefore no differences between the direct audio and
the extracted features are to be expected, since both are
working on the same frame interval of 12.5 ms.

As a second feature the well-known Mel Frequency Cep-
stral Coefficients (MFCC) are derived from the PSD esti-
mates. They are often used for speech recognition tasks and
are well suited for classification purposes. They represent
the spectral shape of the audio signal in a very compact
form.

Other spectral features include the power spectral cen-
troid and the power spectrum entropy. In this special imple-
mentation the results are given in the critical band numbers
(used for the MFCCs) and not in Hz.

The extraction of the broadband correlation is somewhat
more complex. It can be divided into the audio-dependent
part, which is the sum of powers of the critical bands without
the low and high frequencies. The result per audio block is
smoothed to get an envelope, and for this envelope a sliding
autocorrelation function is computed. The maximum and
the lag-value are the two final features. These features can
be used to find repetitive structures in the envelope. They
cannot be compared directly to the audio-extracted material
and the smartphone-based features, since the time interval
varies too much (12.5 ms compared to 125 ms). Thus, we
additionally extracted the broadband version of these fea-
tures by using the RMS values and comparing these results
with the audio-based features.

In contrast to these signal-based extraction methods, the
delta coefficient is used directly on the extracted feature.
It can be computed for all other features and is defined as
the difference between two adjacent time instances. It rep-
resents the rate of change of the feature structure. Another
statistical measure derived is the standard deviation, esti-
mated by subtracting a running mean that is computed with
a first order low-pass filter and a time constant of 500 ms.
Finally, the running standard deviation is computed.

3 MEASUREMENTS

For the ZCR and the PSD estimates we will show some
results of test routines. All derived features will be com-
pared to the same features computed directly from the input
audio signal.

3.1 Zero Crossing Rate
The zero crossing rate (ZCR) was evaluated from pure

tones at 1/3-octave center frequencies, played back in an
anechoic chamber using the TalkBox (see Sec. 2.2), and
simultaneously recorded. Fig. 6 shows boxplots of the com-
bined data of both channels, equalling 6 s of analysis per
frequency or 478 frames for a frame-size of 25 ms with
50% overlap. Generally there is little deviation of the me-
dian from the theoretical values with a maximum of 4% at
125 and 250 Hz. The analysis at 8 kHz shows an increased
number of outliers, which can be explained by distortions or
artifacts caused by the proximity to the Nyquist-frequency.

3.2 Power Spectral Densities
From the same sine sequence as used above we estimated

�̂L, �̂R and �̂LR according to Eq. (3)ff. and calculated the
absolute power per frequency relative to full scale. The
results, as functions of time, are shown as spectrograms in
Fig. 7. The sine sequence can easily be traced with each
tone at the expected frequency. The faint harmonics are
also visible. At lower frequencies the noise contained in
the signal increases. This is in accordance with the system’s
design and the noise measurements shown in Fig. 4.
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Fig. 6. Deviation of the zero crossing rate as calculated by the
Android system from the theoretical value for each frequency
displayed. The box plots show the median (horizontal line), the
lower and upper quartile (lower and upper boundary of the box),
the lowest and highest values within 1.5 times the quartile range
relative to the lower and upper quartile (limit of vertical line), and
outliers (symbol +).

Both measurements confirm that the basic features are
extracted according to the design.

3.3 Measurement and Comparison of the
Off-Line Features

In order to show a comparison of the direct audio re-
coding to the privacy-aware extraction we recorded three
different acoustic scenarios: a silent office, the same office
with people talking in it, and a busy street with lots of cars
passing by.

Fig. 8 shows the four MFCCs for the three situations (10
s each) extracted by using the original audio signal (black)
and by using the proposed privacy-aware method (grey).

The results clearly show that the plots for the new method
are much smoother and therefore some details are lost.
However, the overall trajectories are quite similar and each
situation is clearly different from the others. The statistical
analysis of 40 s of audio material of each situation confirms
these results (see Figs. 9 to 12). The boxplots reveal slight
differences in the statistics, which is to be expected since the
number of data points is different by a factor of 10 (12.5 ms
and 125 ms block interval). However, the three situations
can be statistically separated for both analysis methods.

Other features, especially the delta measures, differ more
between the two methods. An example is given1 in Fig.
13. Due to the different block intervals the quantile range
diverges, yet all of the three scenarios result in discriminable
statistics.

4 PRIVACY ISSUES AND LISTENING TEST

The smartphone system extracts RMS and ZCR values
and PSDs. Only the PSDs can be used to reconstruct speech

1 In this paper only a minor selection of the many fea-
tures are presented. You can download all figures, the extrac-
tion code, and the original data at the corresponding web-page
(http://pub.tgm.io/PrivacyAwareEMA 2016).

in such detail that the resulting signal is intelligible. There-
fore, we decided to use smoothed PSDs only. This section
describes the listening experiment to determine the recog-
nition score of speech reconstructed from the stored PSDs
in dependence of the smoothing constant τ (25, 75, and 125
ms, see Eq. (7)).

4.1 Test Design
Speech recognition was determined by using the

Göttingen sentence test (GÖSA, [10]). This test consists
of 200 everyday sentences combined in 10 test lists with 20
sentences each spoken by a male speaker. The sentences are
composed of three to seven words per sentence. The speech
material was used in its original version as well as in the
three processed versions. One test list was presented to
each listener for each version over headphones (HDA200)
using the software program Oldenburg Measurement Ap-
plication (OMA) of HörTech GmbH, a Fireface 400 (RME),
headphone driver HB7 (Tucker Davis Technologies), and a
MicroAmp HA400 (4-channel Stereo Headphone Ampli-
fier, Behringer). The OMA was modified to a “user-defined
speech test” to include the processed speech material. The
speech material was presented without background noise
(in quiet) at a level of 70 dB SPL. One list of the original
Göttingen sentence test was presented and the listener used
the volume control of the MicroAmp HA400 to adjust the
level of the presented signals. After the listener found the
level for highest perceived recognition, the presentation of
the list was interrupted. Then, a second list with original
speech was presented and the listener repeated the presented
sentences. The examiner marked each correctly recognized
word on a touch screen. The measurements were continued
with the processed versions in a randomized order. The list
was also randomly selected.

Ten young normal hearing listeners (seven male, three
female, age 20–27 years) participated in the experiment.
Their hearing loss was 10 dB HL at maximum from 125
Hz to 4 kHz and 20 dB HL at maximum until 8 kHz.

4.2 Signal Generation
The test signals were generated by calculating aver-

aged PSDs from the original GÖSA sentences according to
Eq. (3)ff, with a frame size of 25 ms and an output rate of
25 ms (every frame), 75 ms (every third frame), and 125
ms (every fifth frame). The frames were smoothed by using
the corresponding smoothing factor τ (see Eq. (7)).

Afterwards we calculated the minimum phase ϕ for each
frame from its Hilbert-transform,

g[m] = −H{log(|�̂[m]|)}, (8)

ϕ[m] = Im{g[m]}, (9)

where log (·) denotes the natural logarithm and Im{ · } the
operator to retrieve the imaginary-part only. ϕ[m] is then
applied to �̂[m] and the spectrum is transformed to the time
domain. To prevent transients, a Hann-window is applied to
each frame. Finally, we adjusted the level to get the output
signal. The resulting speech is reconstructed to the same
length as the original, with continuous data-frames for the
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Fig. 7. Spectrograms calculated from the power spectral densities for the left and right channel (�̂L, �̂R) as well as from the magnitude
of the cross-power spectral density (|�̂LR|), estimated for a sequence of sine tones at 1/3-octave center frequencies from 100 Hz to
8 kHz.

output rate of 25 ms, whereas for 75 and 125 ms the signal
is padded with two and four 25 ms frames of zeros between
data-frames respectively.

4.3 Results and Discussion
Fig. 14 shows the recognition scores in percent correct for

words in the Göttingen sentence test. The original sentences
are fully recognizable resulting in a score of 100% for all
listeners. The processed sentences with a window length
of 25 ms result in a recognition score of 97.2% (median).
Two listeners still reach a score of 100%. With broadening
the window length, the recognition score drops to median

values of 1.6% for 75 ms and 0.6% for 125 ms. Five out of
the 10 listeners were not able to repeat one single word of the
respective test list in the 125 ms version. The highest score
for this version was 3.2%. Therefore, this parameter setting
can be regarded as “privacy-proof.” This goal is also almost
achieved by a window length of 75 ms. Nevertheless, the
Göttingen sentence test offers a speech rate of 279 syllables
per minute and is therefore regarded as a relatively fast
speech test. The recognition rate might be higher for slower
speaking communication partners in everyday life. Hence,
the processing with a window length of 125 ms was used
for further testing.
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Fig. 8. Comparison of the four MFCCs for three different acoustical situations. Black curves are extracted by using the audio data
directly. Grey lines are derived by the proposed privacy-aware method. Note that we added an arbitrarily chosen constant of 30 to the
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privacy-aware method.
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Fig. 10. Boxplot of the second MFCC for three different acoustical
situations. Black plots (left of each pair) are extracted by analyzing
the audio data directly. Grey plots are derived by the proposed
privacy-aware method.
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Fig. 11. Boxplot of the third MFCC for three different acoustical
situations. Black plots (left of each pair) are extracted by analyzing
the audio data directly. Grey plots derived by the proposed privacy-
aware method.
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Fig. 12. Boxplot of the fourth MFCC for three different acoustical
situations. Black plots (left of each pair) are extracted by analyzing
the audio data directly. Grey plots are derived by the proposed
privacy-aware method.
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Fig. 13. Boxplot of the delta centroid for three different acoustical
situations. Black plots (left of each pair) are extracted by analyzing
the audio data directly. Grey plots are derived by the proposed
privacy-aware method.
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Fig. 14. Recognition score for the original Göttingen sentences
and the processed sentences with window lengths of 25, 75, and
125 ms.
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5 CONCLUSIONS AND OUTLOOK

In this paper a novel solution to assess the acoustic
environment while preserving people’s privacy was pro-
posed. We showed that the computational power needed
on a smartphone device could be reduced by dividing the
feature extraction into two parts: a first extraction phase
on a smartphone and a second phase on a more power-
ful computer platform afterwards. The comparison shows
that different scenarios result in separable features for the
new extraction method. Therefore, we believe that acoustic
assessment without disturbing the privacy of the speaker,
conversation partner, or bystanders is possible. The next
steps in our research will be to use the system to record
material of a few test persons over a period of several days
to get better insight into acoustically challenging situations
for hearing aid users. Furthermore, new features to describe
acoustical situations will be developed, such as estimators
for the signal-to-noise ratio and the reverberation time.

The Android program, the source code of the extraction
methods (java classes and matlab), and all data are available
on the corresponding web page.
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