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Mixing is a quintessential optimization problem. Given control of several component tracks,
a balance must be struck that reflects a trade-off between engineering methods, artistic ob-
jectives, and auditory perceptual constraints. Formally, this balance can be thought of as the
optimal solution to a system of mathematical equations that describe the relationships between
the component tracks within a mix. Hence, the nature of these equations defines the process by
which solutions may be arrived at. As perception is strongly nonlinear, an analytical solution to
this set of equations is not possible and so a search must be conducted. Here, taking loudness as
an example, we develop an optimization theory treatment of the problem of mixing, complete
with case studies to illustrate how auditory perception can complicate the process, not least

due to masking-related interactions.

0 INTRODUCTION

Humans have been solving optimization problems in mu-
sic for several centuries at least. In earlier times, the conduc-
tor controlled the sound balance between musicians of the
orchestra. More recently, the mixing engineer performs a
similar role by electronic means. In both cases, the problem
can be thought of as a set of mathematical equations with
equivalent control parameters. In both cases, the solution
is validated subjectively, reflecting perceptual and artistic
objectives.

If this cognitive process (mixing) were purely analytical,
the solution could be instantaneously arrived at (calculated)
given sufficient processing (thinking) time. However, in
practice, mixing embodies an iterative search process typ-
ical of Numerical Optimization Theory [1,2]. Therefore,
numerical optimization theory provides an ideal framework
for investigation into the process.

When balancing the various musical components, per-
haps the most important subjective judgment criterion is
loudness. Loudness provides a proxy to salience; the loud-
est component is typically perceived as the most salient.
Hence, a critical control parameter is acoustic intensity,
which the conductor controls through instructions to the
musicians and the mixing engineer controls through adjust-
ments to his mixing interface.

Recent work focused on automating the process of mix-
ing has sought to replicate the human process of optimiza-
tion using two principle components: (i) metric models to
describe the objective and (ii) algorithms that manipulate
control parameters on a mixing device to realize the objec-
tive. The majority of work uses linear models, where the
sounds within a mix do not interact with each other [3,4,
5,6, 7,8, 9], though recent efforts have sought to include
more sophisticated auditory models [10,11]. This provides
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for a simple, analytical solution that is computationally
trivial. However, auditory theory tells us that many aspects
of sound perception are nonlinear, and experience confirms
that balancing music is a non-trivial problem. The complex-
ity of our auditory system goes some way to explaining the
iterative nature of mixing. For example, if the loudness of
a sound was linearly related to its intensity we could solve
a linear least square problem to identify the changes in
intensity required to give a certain balance (relative loud-
ness). However, because loudness is nonlinearly related to
intensity, real-world loudness balancing is a nonlinear least-
square problem, which must therefore be solved iteratively
(Fig. 1).

The main contribution of this article is a formal treatment
of the mixing process, centered on the role of auditory non-
linearity in the numerical optimization. Taking as example
the objective of a predefined loudness balance, we develop
the necessary theory to relate the human process to the
mathematical framework. Along the way, we illustrate and
realize the theory through computational analysis featuring
an auditory model that incorporates both nonlinearity and
masking interactions. Our computational case studies ex-
amine the nonlinear iterative nature of mixing, demonstrate
how masking adds complexity to the problem, and illustrate
how mixing for different sound systems and listening con-
ditions is a problem of best-fit. More generally, we provide
an intuitive tutorial on applied optimization for those in the
field and through this we offer some insight into the human
process of mixing.

1 MIX MATHEMATICS

In this section we define the model used to estimate
loudness metrics of our mix and explain the optimization
algorithm by which target metrics can be realized. In the
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Fig. 1. Schematic diagram illustrating the iterative search process
of numerical optimization.

following equations we represent scalar values by lower
case variables (e.g., g is the scalar gain applied to track
1), vectors by lower-case bold-face variables (e.g., g is a
vector of scalar gain values), and matrices by upper-case
bold-face variables (e.g., E is the spectro-temporal matrix
describing auditory excitation).

1.1 Using Loudness to Describe the Mix

Mixing begins from an arbitrary starting point and ad-
justments are made after listening. The primary task is to set
a good balance in loudness between component sounds by
adjusting the intensity of the respective component tracks.
A mix consists of n sources that have been pre-recorded
onto n tracks. Track i therefore contains the unscaled au-
dio signal from source i, given by a;. The mixing system
can make changes to the intensity level of each track by
applying gain, and these mix-state parameters are stored
in the gain vector g (Eq. (1)). We refer to this gain vector,
by convention, as the “fader gain” vector as it represents
the positions of faders on a mixing console. For each of
the n tracks, the respective acoustic signal (with units of
pressure, Pa) reaching the listeners ears is pj, given by Eq.
(2), where g; is element i of the fader gain vector g, and h is
the impulse response of the reproduction system and room.

g=[g1 & g ] (1
pi = (g:a)) xh 2

Having represented the faders of the mixing console and
the component acoustic signals, it remains to represent the
listener (mixing engineer) who will guide the mixing pro-
cess according to his perception. We use an excitation-
pattern loudness model [12,13, 14] as a substitute for the
listener to guide the intensity adjustments made to the mix
(for a tutorial on using this model see [15]). The first stage
of the loudness model applies a linear filter representing the
effects of outer and middle ear. Next, the incoming signal
is decomposed through “auditory filters” to represent the
frequency-to-place transformation and frequency-tuning of
the basilar membrane. We used a time-domain gamma-
tone filter to decompose the signals [16], rather than the
frequency domain approach given in [12]. This results in
an instantaneous measurement of energy within a discrete
number of frequency bands, each representing fibers of the
auditory nerve, which together constitute the excitation pat-
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tern E;. Hence, the excitation pattern is a spectro-temporal
matrix. We denote this operation by the function f'as shown
in Eq. (3).

Ei = 1 (p) 3

For a sound heard in isolation, the intensity represented
in the excitation pattern matrix is converted into perceptual
units in the form of a loudness time-series, s, by compress-
ing the signal in each frequency band (to reflect the action
of the cochlea), integrating across frequency, and smooth-
ing to reflect the time-response of the auditory system. We
denote this by the function ¢ as shown in Eq. (4).

Si=~¢ (El) (4’)

The combination of auditory filters and compression re-
sults in energetic (simultaneous) masking. When multiple
sounds are heard concurrently Eq. (4) is adapted to account
for the masking resulting from the respective excitation of
the competing sounds, as given by Eq. (5). This partial at-
tribution of excitation between two concurrent sounds is
known as partial loudness. In such competing scenarios, if
the magnitude of one excitation pattern is increased, it will
reduce the partial loudness of the other.

n

> b )

=1

Si=~¢ Ei,f

For each component track, the loudness time-series s;
is then converted into a single, scalar loudness measure
l;, which reflects the overall loudness impression over the
duration of the measurement period; and that we refer to
simply as the loudness. We denote this operation by the
function p because it represents some form of averaging
of the loudness time function (Eq. (6)). A number of sug-
gestions for this function have been made in the literature,
including the peak [17], mean [13], and thresholded mean
[18]. For the purposes of estimating the overall loudness re-
lationships between the components of the mix, and hence
describing the mix, the partial loudness of each component
track is consolidated into the vector 1 (Eq. (7)).

li = (si) (©)
I=[ b 5 ... L] )

From the absolute loudness of each component track,
ratios may be computed that describe the relationships in
a way that is invariant with level. We define the loudness
balance of a track, b;, as its loudness relative to the mean
loudness of all tracks, as shown in Eq. (8). This gives a
loudness balance vector b (Eq. (9)), which we express in
decibels to conform with engineering practice such that a
difference of 3 dB means that one sound is twice as loud as
another.

l;
b; = 101lo R — 8
10 (% > lj> 3

b=[b b b b.]" Q)
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Given a description based on loudness ratios, it is clear
that the same balance could be produced for a very quiet
or loud mix. This is problematic because it means that the
number of possible solutions is infinite. So in order to make
our mix description unique, we add a further constraint; the
loudness of the mix as a whole. This is evaluated using
Egs. (2) to (6), substituting a, for a; in Eq. (2), where a, is
the summation of all audio signals (Eq. (10)). We therefore
describe our mix using the loudness balance vector b, and
the loudness of the whole mix, /,,,.

ay, = Zai (10)

1.2 Solving the Mix

We use our loudness model to identify the fader (gain)
settings required to produce a mix with a predefined bal-
ance and mix loudness. The nonlinearity in the loudness
model means that an analytical solution is not possible,
hence numerical optimization must be used. If we begin
with arbitrary (random) fader gain settings, the loudness
metrics of our mix will differ from the target objective
(unless we are very lucky!). We represent these differ-
ences as errors (signed), for each track, denoted by e;
(Eq. (11)), and the error in mix loudness is denoted by
en (Eq. (12)), where the subscript ¢ identifies the target
metric. These are consolidated into the overall error vector

e (Eq. (13)).

e;=b; —b, (11)
Cn = lm - lt,,, (12)
e= [61 e e3 e, em]T (13)

Each element of e is a function of the fader gain vector
g, so the total error, er(g), can be expressed as the sum of
squares (i.e., the sum of squared errors) of e (Eq. (14)). The
minimum of e, i.e., the point where our mix is closest to the
target mix, can be found iteratively using a nonlinear least
squares algorithm, which has the general form given in Eq.
(15); where g is the iteration index. Ay is the search direction
in the fader gain vector where the error is decreasing most
rapidly, and the step size, 0 < A, < 1, determines how
far along that search direction we move during a given
iteration.

er(@ =) el(g) =e@ @ (14)

i=1
8g+1 =8¢ + hglg, (15)

The search direction is typically found using a numerical
method derived using a Taylor series expansion, e.g., New-
ton’s method (second order expansion). We choose to use
the Gauss-Newton method, which is based on Newton’s
method but which uses an approximation to the second
derivative in the expansion and reduces computation time
for problems solved numerically (see [1,2] for details on
numerical methods). The Gauss-Newton method produces
a system of equations known as the normal equations, given
in Eq. (16), which can be rearranged to give Ag as in Eq.
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(17), where: Jq is the Jacobian matrix at iteration g, and

(J TJ)_l J7 is the Moore-Penrose pseudo inverse of J; the
inverse of a non-square matrix [19]. The Jacobian matrix
contains the partial derivatives of each component of the
error function with respect to each parameter, as shown in
Eq. (18).

(Ja" Jq) g, = —Jq" €. (16)
Ag, = — (JqTqu1 JqTeqv a7
 dey deq dep 7
dg1 g dga
des  dep des
dg1 g dga
J=1] : : (18)
de, Ode, de,
dg1 9g T dga
de, dey den,
L g1 dg T 0ga -

Eq. (17) has the same form as a linear least-squares prob-
lem, i.e., Ax=b — x = (ATA)"'A”b, where A is non-
square. Each iteration of the Gauss-Newton method can
therefore be viewed as a linear least-square problem, where
the search vector A is the estimated change in gain that will
minimize the error. The actual change in the error will de-
pend on how accurately the normal equations describe the
behavior of our system (of equations). By using the Gauss-
Newton method we have already truncated the Taylor series
expansion at second order terms and have used an approx-
imation to the second derivative. If these approximations
introduce no error, e.g., if the system of equations are in
fact linear, then the minimum would be found (calculated)
in a single iteration; but if the errors are large, it may take
many iterations to converge. Depending on the nature of the
search space and the approximations discussed above, it is
possible that the search vector will produce gain changes
that overshoot the minimum and which may even increase
the error. The step length parameter h, may be used to
mitigate this effect by giving a shorter, more cautious step
toward the minimum; in effect, damping the changes in
our parameters. While this may avoid potential overshoots
(and accompanying oscillations), it will inevitably lead to
an increase in the number of iterations before convergence.
When implementing an optimization algorithm a fixed or
a variable step length may be used. For the latter, the op-
timal step length at each iteration is found using a second,
small-scale optimization algorithm, e.g., a direct search
method [1,2]; but this inevitably increases computational
demands.

1.3 Summary

In this section we have outlined the two key components
of an automatic mixing system: a model to describe our
chosen mix metrics (loudness balance and mix loudness)
in terms of the control parameters of our mixing system
(fader gain), and an optimization algorithm that will find
the fader gain values to produce our target mix metrics.
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The model is a general excitation pattern loudness model,
which includes the nonlinearities of the human auditory sys-
tem. The algorithm uses the Gauss-Newton method, which
uses derivative information at each iteration to estimate the
changes in gain that will minimize the error. This process is
repeated iteratively until the minimum of the error function
is found and, hence, our mix metrics are as close to the
target mix as possible.

2 CASE STUDY: MIX OPTIMIZATION IN ACTION

We demonstrate mix optimization using an excerpt from
an 8-track recording of a rock band. The band included
voice, lead guitar, piano, bass guitar, kick drum, snare drum,
hi-hats, and crash cymbal; and the audio signal for each
was stored on a separate track. To simplify this example
we assumed that the frequency response of the reproduc-
tion system was perfectly flat and invariant with level (i.e.,
linear); we modelled the impulse response h as a scalar cal-
ibration constant A, converting the audio signals—which
in the digital domain are typically represented using val-
ues between —1 and 1—into an acoustic signal with units
of pressure. We set 7 = 1, so an audio signal with a peak
of 1 produced an acoustic signal with peak pressure of 1
Pa (94 dB SPL). Each audio signal was initially peak nor-
malized and had a starting track fader gain of 0 dB, which
corresponded to a peak level of 94 dB SPL. Our target
loudness balance was set to provide equal loudness for all
tracks (Eq. (19)), and the target mix loudness was set to
30 sones (I, = 30), which is equivalent to a 1 kHz tone
with an RMS level of approximately 90 dB SPL. We used
the procedure outlined in Section 1.1 to evaluate loudness
time-series, s, and set the function jL(s) as the mean of that
time series.

be=[0 0 0 0 0 0 0 0] (19)

Assuming that the process does not begin with the op-
timal solution, the first step in the optimization algorithm
requires evaluation of the search direction at the starting
position (Fig. 1). J cannot be evaluated analytically and
so must be estimated using a numerical, finite difference
method, e.g., the forward difference (Eq. (20)) or central
difference (Eq. (21)), both of which perturb the current
gain vector by a finite amount, 8, and calculate the change
in the error. The latter is a more accurate approximation but
requires an additional function evaluation for each element
of J, and to increase the speed of our algorithm we selected
the forward difference method.

de; ~ ei(g+8g) — ei(g)
agk ng

(20)

de;. ~ ei(g+d,,) —ei(g —d,,)

(21
8gk Q,ng

The target loudness balance is shown in Eq. (19), the
loudness balance at our starting point (iteration 0) is shown
in Eq. (22), and the overall mix loudness /,,,_, = 15.0 sone.
The starting error is shown in Eq. (23), and the correspond-
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ing Jacobian in Eq. (24).
bg—o = [-59 84 —13.1 —9.0 —273 —137 -38 -8.1]"
(22)

g1 = [-5.9 84 —13.1 9.0 —27.3 —13.7 =38 —8.1 15.0]"
(23)

Jq=1

0.45 —0.37 —0.01 —0.03 —0.00 0.00 —0.03 —0.00
—-0.01 0.05 —0.00 —0.01 0.00 —0.00 —0.01 —0.01
—0.03 —0.46 0.58 —0.08 —0.01 0.01 —0.00 —0.01
—0.04 —0.41 —0.13  0.65 —0.05 —0.01 —0.01 —0.00

=1-0.03 -0.44 —0.13 —-0.52 1.18 0.01 —0.03 —0.00
—0.02 —0.46 —0.03 —0.09 0.00 0.69 —0.10 —0.00
—-0.02 -0.22 0.01 0.01 0.00 —0.03 0.28 —0.01

0.00 —0.28 0.01 0.01 0.00 0.00 —0.03 0.29

0.07 0.79 0.04 0.09 0.02 0.03 0.08 0.03

(24)

The search direction, Ay can then be found using Eqg.
(17) and is shown in Eq. (25) for a step size hyj—o = 1.
This process is repeated, with J, e and A, is re-calculated at
each iteration, until a predefined tolerance has been reached
(that in our case was ey = 0.01). This represents the limit
at which errors resulting from such small changes in fader
gain settings are imperceptible. Fig. 2a shows the evolution
in the total error over time, and Fig. 2b shows the fader gain
values. The error drops rapidly (note the logarithmic y-axis)
and by the 4th iteration is below our tolerance threshold.
The rapid reduction in error, and the absence of oscillations
in the gain parameters, suggest that the approximations we
made in deriving the normal equations do not introduce
substantial errors, and that in this case it is safe to use the
maximum step size (though this may not be guaranteed for
any song).

Aglz[—l.S -204 7.1 37 178 70 -0.8 8.0]T

(25)

2.1 Why Mix Loudness Is Important

In defining the mix metrics in Section 1.1 we included the
mix loudness as well as the loudness balance to ensure that
our mix had a unique description; but how does this relate
to our optimization algorithm? As already discussed, each
iteration can be viewed as a linear least-squares problem
of the form Ax = b, which represents a system of simulta-
neous equations. The number of rows in A is the number
of equations, and the number of columns is the number of
parameters. If there are more independent equations than
parameters the system is over-determined, and the solution
will reflect the best fit, i.e., the solution with the least-square
error. In this example, J has 9 rows and 8 columns, so we
would expect the system to be over-determined; however,
the fact that a given loudness balance can theoretically be
achieved for any overall mix loudness suggests that there
is linear dependency between the corresponding rows of J
(rows 1 to 8). The rank of a matrix tells us how many inde-
pendent rows there are, and rank(J) = 8; hence though we

7
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Fig. 2. Illustration of the converging search, showing values at each iteration in the optimization algorithm. a plots the total error ey
(circles where masking interactions are included, triangles where masking interactions are excluded), b plots the fader gain values for

each track.

have 9 equations, we only have 8 independent equations. If
we didn’t include the mix loudness within the optimization
algorithm, we would have a square matrix of 8 equations,
but only 7 would be independent. J would therefore be
rank deficient, and the system of equations it describes are
under-determined so a unique solution would not exist. A
square, rank deficient matrix (also known as a singular ma-
trix) cannot be inverted and is analogous to dividing a scalar
by zero. However, the approximations we made in using fi-
nite difference methods means our matrix is not perfectly
singular, so it can be inverted, but will result in very large
gain changes, which in the scalar analogy can be thought
of as division by zero plus a small offset error. If we rerun
the algorithm with this reduced set of equations our initial
search vector is that shown in Eq. (26); adding 14,000 dB
of gain to each track is clearly not going to yield a very
useful mix!

x 10*
(26)

T
qu:(] = [1.38 1.39 1.43 1.41 1.37 1.37 1.31 1.37]

2.2 Summary

This case study demonstrates the process of automatic
mixing and provides some crude insight into how humans
perform this task. From a random starting point we calculate
the Jacobian and the error, which we then use to evaluate the
search vector Ag, which is an estimate of the gain changes
needed to minimize the error. Due to the nonlinearities in
the model, this estimate will not be exact, so the process
must be repeated until convergence is reached. We have also
highlighted the fact that we must include the mix loudness
constraint if we want to obtain a usable mix; and more
generally, that our system of equations used to describe the
mix allows for a unique solution to be found.

3 WHAT MAKES MIXING DIFFICULT: MASKING
AND THE SENSITIVITY MATRIX

Each element of J describes the rate of change in one
component (track) of the error, with respect to the change

8

in one fader gain parameter, i.e., J;x = gi For now we
consider i = 1...n, where the error relates to the loudness
balance of the mix (for i = n + 1 the error relates to the mix
loudness). The elements of J can be expanded as shown
in Eq. (27), in which the term

balance does not change with galn

= 0, because the target

dej _ db;  9b, _ db;
Jik = =T L =

= 27)
0gr gk 0% Om

The loudness balance was defined in Eq. (8) in terms of
the loudness of each track and is repeated here for conve-
nience. Elements of J can therefore be expressed in terms
of loudness as in Eq. (29).

l;
b; =101o _
g1o( Z, i )

ob; d l;
Jix= 10logyy | +—=—
3gk Ern Z/ ey

The logarithm with base 10 is converted to the natural

logarithm using log,(x) = izg% and the numerator and

denominator are separated (Eq. (30)).

(28)

(29)

ob;
Jik = —

30
b2 (30)

10 d 1
=—— " llog, () —1log, | - ¥ 1
Tog, (10) 3gy | 0% ()~ oz | 1 21

The two logarithmic functions are differentiated using
f'(log,(x)) = f 0‘) , where S, = ”l L (Eq. (31)), and the +
terms are cancelled (Eq. (32)).

g2 10 [Sw XS]
[N It ol [ g

dgr  log,(10) | I; YL
Joo 10 [ 21 Sik 32
g log(10) | L YhL L
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For i = n + 1, the error directly relates to the overall mix
loudness, so the final row of J can be expressed using Eq.
(33).

de, dl, 9l ln
I == - =
ogk 08 08 08

The matrix S has the same form as J and is referred to
as the sensitivity matrix because it shows how sensitive the
loudness of each track and the overall mix are to changes
in fader gain (Eq. (34)). The sensitivity matrix at the start
point of the previous case study is shown in Eq. (35). The
diagonal terms in the top 8 rows of the matrix (highlighted in
bold) show how the loudness of a track is related to changes
to its fader gain. Adding gain will increase the intensity of
the excitation, which in turn will increase loudness, so the
diagonal elements of S are positive. The off-diagonal terms
show how the loudness of a track interacts with changes
in the fader gain applied to other tracks. These interactions
must be due to masking, because the only mechanism by
which /; can be effected by gi is through a change in the
competing excitation pattern in Eq. (5). An increase of
energy in the competing excitation pattern will cause more
energetic masking, so /; will decrease and the off-diagonal
elements will be negative.

(33)

rdly aly a1 7
dg1 g 0g
dal, 0l dly
dg1 0z T 0g
S=1| : : : (34)
al, dl, dl,
dg1 9g T 9ga
al,, dl, dal,,
Lagi dg ~ dg.d

0.09 —0.05 —0.00 —0.01 —0.00 —0.00 —0.01 —0.00
—-0.12  1.08 —-0.07 —0.10 —0.01 —0.06 —0.09 —0.03
—-0.00 —0.01 0.02 —0.00 —0.00 —0.00 —0.00 —0.00
—-0.00 —0.03 —-0.01 0.07 —-0.01 —0.00 —0.00 —0.00

=[-0.00 —0.00 —0.00 —0.00  0.00 —0.00 —0.00 —0.00
—0.00 —0.01 —0.00 —0.00 —0.00 0.02 —0.00 —0.00
—0.01 —-0.03 —0.00 —0.00 —0.00 —0.01  0.09 —0.00
—0.00 —0.02 —0.00 —0.00 —0.00 —0.00 —0.00  0.04

0.07 079 004 009 002 003 008 0.03

(35)

3.1 Mixing Without Masking

If we were to assume that there were no masking inter-
actions (off-diagonal elements of S are zero), then the diag-
onal elements of J could be simplified to Eq. (36) and the
off-diagonal terms to Eq. (37). Adding fader gain to track
k would then increase the attribution of balance to track k
and decrease it for the other tracks by equal amounts. This
is a critical point because it would mean that changing the
fader gain of a track would not affect the loudness balance
between the other tracks, i.e., the seven instruments within a
mix could be balanced, and upon setting the vocal gain, the
balance between the instruments would not change. This
independence between tracks would make the process of
mixing simpler, but as shown in Eq. (35) there are mask-
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ing interactions, so changing the fader gain of a track will
affect the balance between the other tracks. This can been
understood numerically by inspecting J (Eq. (24)) and S
(Eq. (35)). S1, 2 = —0.05, and S, 3 = —0.00, which means
that changes in g; have a far bigger effect on /, compared
to 3, i.e., there are strong masking interactions between
tracks 1 and 2, but not 1 and 3. This is mirrored in the Ja-
cobian, with J; » = —0.37 and J;, 3 = —0.01. This means
that adding 1 dB of fader gain to track 1 will reduce the
balance of track 2 by 0.37 dB, but will hardly change the
balance of track 3, i.e., the loudness of track 2 drops by
0.37 dB relative to track 3 if I add 1 dB gain to track 1.
Understanding these interactions offers some insight into
the human mixing process.

ab,‘ 10 Sk,k Sk,k
Jickk = —

it — 36
dgr ~ log,(10) | I Z_’}—n’f} .

ob; 10 S
Jigkk = — |:— nk’kl‘:| (37)
j

dge  log,(10) | Yo,

3.2 Summary: Man vs Machine

Intuitively, a difficulty for a human mixing engineer
(or conductor) would be to maintain the above informa-
tion/matrices for the many possible channels involved in a
typical mixing scenario. A second problem would be to ad-
just multiple fader gains simultaneously. To assist with this
problem, the practice of subgrouping has emerged, where
like-channels are combined, according to their own inde-
pendent sub-mix, and controlled with a single fader move-
ment. However, the masking interactions illustrated above
mean that the balance within a sub-mix will be altered when
subsequent tracks are added to the mix, or when their gain is
modified, which in turn will necessitate further corrections
to obtain the prior sub-mix balance. As a result, the human
mixing process is inherently iterative. With an automated
mix algorithm the interaction terms can be evaluated and
stored, offering advantages over the human process. If these
terms are ignored (i.e., forgotten or impossible to compute)
then the algorithm will behave more like a human and will
require more iterations to converge. Fig. 2a illustrates this
point by showing the progression of the mix optimization
from the previous case study compared to the same process
but with off-diagonal elements in the top eight rows of S set
to zero. The algorithm still converges to the same solution,
but it takes three times as many iterations to get there.

4 ONE MIX FITS ALL: MIXING FOR MULTIPLE
LISTENING CONDITIONS

The roles of mixing engineer and conductor share a fur-
ther difficulty—the requirement that the balance should be
optimal for multiple listening conditions at the same time.
In the orchestral hall, the conductor attempts to optimize
the balance of the orchestra for reception at seats from the
front-row to the back-row and even balcony. In the record-
ing studio, the mixing engineer attempts to optimize the
mix for any possible listening condition, from the kitchen

9
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Table 1.

Repro. System Tgt. Mix Loud. (sones)

1kHz Calib. (dBSPL/dBFS) Mix Error (dB sone)?

Studio 30
Kitchen Radio 10
Headphones 30
Auditorium 40

104 4.7

82 4.2
101 8.4
114 8.9

radio to the dance-hall PA system, and must face the prob-
lem of each playback system featuring a ““volume” control.
In this section we illustrate how this extends the optimiza-
tion problem to one of “best fit” and how, in the worst case,
the best fit can amount to a poor compromise.

amount. With n tracks there will be n independent equations
per system (in our case study there were 8), which gives
(n x r) in total. Our track gain controls are common across
all reproduction systems, but we have an additional master
gain control for each, giving (n + r) parameters in total.
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The metrics used to describe our mix are the loudness
balance and overall mix loudness. The loudness model used
to evaluate these metrics operates on the acoustic signals,
which are evaluated by applying fader gain, and convolving
the audio signals with the impulse response of the reproduc-
tion system and room (Eq. (2)); which includes scaling of
signal level in units of pressure. The subsequent nonlinear-
ities in the model mean that the impulse response may have
a strong effect on the mix metrics, even if the fader gain
controls are kept constant. This is a common problem for
mixing engineers who want their mix to sound “the same”
in any listening environment and at any listening level, and
their solution is to listen to a mix on multiple systems and to
correct a mix with further adjustments if necessary. This is,
in effect, a further layer of iteration between reproduction
systems.

This situation can be understood by considering our sys-
tem of equations. We assume that a mix is to be reproduced
on r systems and that our mix metrics should be recreated
on each. To account for the fact that each system will have
its own volume control, we add a master gain control for
each system that scales each track in the mix by an equal

10

This means that when r > 1 we will have more equations
than parameters, and that the ratio between equations and
parameters will increase with r. As a result, it will be im-
possible to produce a mix with the same metrics on multiple
reproduction systems.

4.1 True Best-fit for Multiple Conditions

The algorithm we have presented is well suited to provide
true best-fits for mixes on multiple reproduction systems by
expanding our equations as shown in Eq. (38). Each block of
J reflects error derivatives for different listening conditions.
Columns 1 to n contain the loudness balance derivatives,
and there is a column per condition to account for an indi-
vidual mix loudness, and a device-specific volume control.
The error is of a similar form, with one block per condition,
and the gain vector contains the existing fader controls and
a master (volume) control for each condition.

We demonstrate this idea of best-fit mixing using four
parallel listening scenarios, each with different acoustic
conditions. The first scenario is an idealized recording
studio featuring a flat frequency response at a moderate

J. Audio Eng. Soc., Vol. 62, No. 1/2, 2014 January/February
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Fig. 3. Mixing for multiple conditions: illustration of a converging search with residual error. a plots mix error, b plots fader gain vs

time.

listening level. The second scenario is a typical home-
listening scenario featuring a kitchen radio at low listen-
ing level, and the third is a set of KRK-6400 headphones
at moderate listening level. The fourth is a typical concert
scenario in a large auditorium with high listening level. In
each of the four scenarios the target was equal loudness
across tracks, but in each case the target mix loudness was
set separately as shown in Table 1. The mixes were solved
using the expanded matrices (Eq. (38)), and the total er-
ror across all mixes is plotted in Fig. 3a. This shows that
at the third iteration the error reaches its minimum value,
but that this minimum is well above our tolerance, i.e., it
is impossible to provide the target loudness balance to all
mixes at the same time. The fader gain values for each track
are plotted in Fig 3b. In this example we normalized the
track gain values to have a maximum value of 0 dBFS to
remove redundancy caused by the inclusion of a master
gain parameter for each mix (identical mixes can be ob-
tained by re-attributing master gain to all tracks and vice
versa). The master gain values output by the optimization
algorithm were used to determine the reproduction system
calibration, which incorporates the presence of a volume
control. These are shown in Table 1 and are stated as the
ratio of dBSPL to dBFS for a frequency of 1 kHz, i.e., for
the studio the loudspeaker volume is set so that a 1 kHz tone
with an peak signal level of O dBFS will give an acoustic
signal with a peak sound level of 104 dBSPL.

4.2 Summary

The orchestral conductor is free to walk the hall during
rehearsal to sample the different listening scenarios of au-
dience positions in the hall and perhaps take mental note of
the possible best-fit parameters with relation to his podium
experience. This best-fit problem seems reasonable since
(often by design) the acoustic conditions do not vary wildly
with location in the hall. In contrast, for the practicing mix-
ing engineer the problem of producing a best-fit mix across
multiple conditions is acute. Firstly because there is no
simple means to store and compare his perception of mix
features from one scenario to another, and secondly because
the possible scenarios are unknown and, even if they were
known, they would be practically impossible to sample in

J. Audio Eng. Soc., Vol. 62, No. 1/2, 2014 January/February

person. The algorithm presented here provides a means to
find the true best fit and offers advantages over the current
human process since it can simulate a listener able to lis-
ten to multiple scenarios simultaneously. However, we have
also illustrated that the best-fit solution does not necessarily
represent a good fit if the competing scenarios feature large
differences in their acoustic conditions. The only solution
in this case would be to produce custom mixes for each
reproduction system (e.g., [20]).

5 DISCUSSION

In this article we have treated mixing as a numerical
optimization problem. Using an auditory model, we have
demonstrated how numerical optimization can be used to
pose and solve a mix problem. We have highlighted the
interplay between artistic objectives, perceptual constraints,
and engineering methods. Taking loudness as example, we
have shown that the nonlinearity in the perceptual model
leads to complex behavior, but that it can be overcome by
careful choice of optimization strategies and parameters.
We have illustrated the problem of best-fit, and through
our case studies we have provided some insight into the
human process of mixing. While the optimization-theory
approach offers several advantages over the human process,
much work remains before the theory can be fully realized.
In particular, the approach places great emphasis on the
auditory model and, hence, is likely to identify weak points
in auditory theory that had not previously arisen in less
artistic contexts.
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