
Audio Engineering Society

Convention e-Brief
Presented at the 133rd Convention

2012 October 26–29 San Francisco, CA, USA

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its presentation,
and the AES takes no responsibility for the contents. All rights reserved. Reproduction of this paper, or any portion thereof, is not
permitted without direct permission from the Audio Engineering Society.

 EspGrid: A Protocol for Participatory
Electronic Ensemble Performance

David Ogborn1

1 McMaster University, Hamilton, Ontario, L8S 4M2, Canada2

ABSTRACT

EspGrid is a protocol developed to streamline the sharing of timing, code, audio and video in participatory electronic
ensembles, such as laptop orchestras. An application implementing the protocol runs on every machine in the
ensemble, and a series of “thin” helper objects connect the shared data to the diverse languages that live electronic
musicians use during performance (Max, ChucK, SuperCollider, PD, etc.). The protocol/application has been
developed and tested in the busy rehearsal and performance environment of McMaster University’s Cybernetic
Orchestra, during the project “Scalable, Collective Traditions of Electronic Sound Performance” supported by
Canada’s Social Sciences and Humanities Research Council (SSHRC), and the Arts Research Board of McMaster
University.

1. CONTEXT

EspGrid is both a protocol, and a software application
implementing that protocol, aiming to streamline the
sharing of timing, code, audio and video in participatory
electronic ensembles, such as laptop orchestras[1]. The
software has been initially developed in close
connection with the regular rehearsal and performance
schedule of a specific laptop orchestra, the Cybernetic
Orchestra at McMaster University in Hamilton,
Canada[2]. In the Cybernetic Orchestra, each member
performs with their own laptop and loudspeaker, with
sole responsibility for their own sound performance,
although each member is connected to all others via a
local area network (LAN). The performance practice of
the orchestra has two main features: live coding[3], in
which each member performs by writing/modifying

programs in the on-the-fly-programming language
ChucK[4], and the use of synchronized beat structures.

2. ARCHITECTURE

2.1. No servers

In the Cybernetic Orchestra, the control of centralized
musical processes rotates freely and democratically.
The EspGrid architecture reflects this social practice
through the absence of any central server. Every
machine in the ensemble (every “node”) runs the
EspGrid application, implementing the same behaviour.

2.2. Multiple machines to each human

A given member of the orchestra may be performing
with multiple nodes - for example, a laptop that is being

AES

Ogborn EspGrid: Participatory Electronic Performance

AES 133rd Convention, San Francisco, CA, USA, 2012 October 26–29

Page 2 of 4

used to run demanding software synthesis patches, as
well as a tablet that is being used to control the beat
system and chat with fellow orchestra members. To the
other members, both nodes will appear as extensions of
the same human performer. In the application’s
Preferences, participants identify themselves with a
<name> (i.e. david) and then identify the particular
<machine> (i.e. laptop).

2.3. The private protocol

EspGrid actually sets forth two protocols, a private
protocol and public protocol. Each node in the
ensemble runs the EspGrid application, and each
instance of the application communicates with all others
over the network according to the private protocol.
Electronic performers do NOT need to know or
understand anything about the private protocol – it
works “automatically” and behind the scenes to provide
the sharing and co-performance resources of the grid.

2.4. The public protocol

On each node the EspGrid application communicates
with sound and music performance applications (such as
Max, ChucK, SuperCollider, PD, etc.) via Open Sound
Control (OSC)[5] messages sent to local UDP network
sockets. This is the public protocol. Performers never
address other nodes on the network directly. Instead,
they interact with their local EspGrid application
(directly or via the public protocol), while the
application interacts with the other nodes.

3. LOW-LEVEL RESOURCES

The interaction of EspGrid applications forms two low-
level resources upon which higher-level resources
(closer to the human intentions and structures of
participatory electronic performance) depend: a list of
the other nodes on the grid, and a synchronized clock.

3.1. The list of nodes

When a new instance of the application is launched, it
broadcasts a beacon message many times throughout the
first few seconds, in an effort to make sure that new
additions to the ensemble are noted as quickly as
possible. Thereafter, each instance transmits the beacon
once every several seconds. The receipt of a beacon is
used to populate and maintain a list of nodes, including
the identity of each <name> and <machine> plus other
information. The receipt of a beacon also causes a node

to respond by broadcasting an acknowledgement. When
a node receives an acknowledgement of its beacon it
uses this to estimate the latency introduced by the
network, and then keeps track of the lowest observed
latency between itself and each other node (i.e. the
fastest possible return trip between each pair of nodes).

3.2. The synchronized clock

Forming a synchronized clock signal across the grid
allows higher-level resources to determine the sequence
of multi-user actions, and to synchronize or sequence
effects (for example, beats) across the grid. Every
beacon contains the current value of the issuing node’s
synchronized clock. If a node receives a clock value
that is higher than it’s own current clock, it increments
an adjustment factor so that it’s own clock “races
ahead” to tie with the received clock value. A second
adjustment helps to compensate for network latency.
Half of the minimum latency with a specific node (as
recorded in the list of nodes) is used to adjust the
received clock values (cf. Cristian’s algorithm[6]). For
example, if the latency to node B as measured by node
A is 10 ms, whenever node A receives a BEACON and
clock value from node B it will add 5 ms to that clock
value before any comparison.

4. HIGH-LEVEL RESOURCES

On the basis of the low-level resources formed by the
EspGrid protocol, a number of high-level shared
resources can be formed, relating directly to the
practices of performers in a participatory electronic
ensemble. Currently stable high-level resources include
the sharing of synchronized beats, the sharing of code
fragments during live coding, and a basic chat protocol
for text-based communication.

4.1. Beat sharing

4.1.1. Problems with “naïve” beat
synchronization

Compositions or improvisations using synchronized
beats are common with laptop orchestras, but the code
for these pieces often employs an all too simple method
for synchronizing beats, wherein one machine simply
issues triggers via UDP on the local network. This has
three serious problems, all of which are strongly in
evidence with the commercial WiFi hardware
commonly used by laptop orchestras: (1) packets may
be lost completely, (2) packets will arrive with a

Ogborn EspGrid: Participatory Electronic Performance

AES 133rd Convention, San Francisco, CA, USA, 2012 October 26–29

Page 3 of 4

minimum latency, leading to a discrepancy in timing
between the issuing machine and receiving machines,
and (3) the latency varies greatly from packet to packet
(jitter), leading to late beats.

4.1.2. The temporary solution

Various “short-term” solutions to the problem of UDP
jitter and lost packets exist and were employed in the
orchestra during the earliest phases of this research:

• Many identical beat messages can be issued in rapid
bursts, in order to decrease the impact of lost packets.

• Some of the timing can be delegated to the receiving
machines, in order to make jitter less noticeable. For
example, a whole bar or section of beats can be
triggered by a single network message.

Neither of these methods, whether alone or in
combination, leads to completely solid synchronized
beats. Neither compensates for the minimum latency
between the sender and receiver.

4.1.3. Shared beat parameters

EspGrid implements shared beats by sharing the
parameters of the beat structure across the grid. The
content of the parameters, rather than the timing of their
arrival, determines the timing of beat events. An
Objective-C class called EspKeyValueController allows
key-value pairs to be synchronized across all nodes.
When user action changes a parameter, that action and
the resulting value are time-stamped (according to the
shared, synchronized clock established as a lower level
resource) and later user actions trump earlier ones.
Every machine running the EspGrid application has
GUI elements that allow the beat parameters (tempo,
how many beats in the bar, active/inactive) to be
displayed and modified. If one user changes a
parameter on their machine, all other users see and
experience the change. Not only is the beat shared – so
is the method of controlling that beat.

4.2. Code sharing

In a participatory laptop orchestra, open to the widest
possible pool of potential members, informal learning is
both a prized and frequent occurrence. EspGrid
provides a technical accelerant to informal learning
through a facility for rapidly sharing code fragments.
The application shows a constantly updated list of all

the code fragments that have been shared by other
nodes, from which any piece of shared code can be
grabbed and then pasted into a live coding window.

The default mechanism for sharing code is to copy it to
the clipboard then click a button in the EspGrid
application. However, in the Cybernetic Orchestra we
also use a modified version of the miniAudicle[7] in
which every successful execution of a new code “shred”
leads automatically to the sharing of that code.

4.2.1. ANNOUNCE – REQUEST – DELIVER

In the private protocol, the code sharing mechanism
involves the following basic messages: (1) When a node
is going to share a code fragment, it announces the
existence of the code fragment to all of the other nodes;
(2) When a node wishes to acquire a code fragment, it
requests the code fragment; and (3) When a node sees
that one of it’s fragments has been requested, it delivers
the content of the fragment in broadcast messages. All
nodes receive the content and store it, thus avoiding
some duplicate requests.

4.2.2. Further consequences

The Cybernetic Orchestra is just beginning to explore
the possibilities this affords in terms of new types of
improvisation. For example, code sharing suggests
improvisation structures in which players are required to
successively modify each other’s code during live
coding. Additionally, and especially when automatic
code sharing mechanisms are engaged, EspGrid
provides a novel form of documentation of collective
live coding performances: the database of all code
successfully executed during a given performance.

4.3. Chat

Although technically quite simple, the chat feature of
the EspGrid protocol is crucial to many performances
by the Cybernetic Orchestra. Every person on the grid
can send broadcast chat messages to every other person
on the grid. EspGrid chat is most typically used in
improvisations to have discussions about the timing and
nature of changes of direction, and in fixed
compositions to indicate the timing of changes of
section, special events, etc. Jokes, complaints,
congratulations, and observations about the performance
in progress are also common!

Ogborn EspGrid: Participatory Electronic Performance

AES 133rd Convention, San Francisco, CA, USA, 2012 October 26–29

Page 4 of 4

5. INTERFACE WITH PERFORMANCE
ENVIRONMENTS AND APPLICATIONS

While some resources are engaged directly by a user
working with the EspGrid GUI, a performer’s
experience usually involves working with what the
public protocol sends to performance environments and
applications. The application’s Preferences allow the
user to control whether the public protocol is sent to
specific local applications or not, following a fixed,
arbitrary scheme of UDP ports.

In addition to these “standard” public protocol
connections, the application can be told to forward the
public protocol to custom addresses and ports. This
allows for flexible uses locally, as well as for the
participation of machines that cannot run any available
implementation of EspGrid (current implementations
are for Mac OS X and iOS). An EspGrid instance
becomes a “buddy” to the machine without EspGrid.

5.1.1. Public protocol sent by EspGrid

These are the OSC messages sent by EspGrid to other
local applications as part of the public protocol:

• /esp/beat [n=beatNumber] [l=length of cycle]
[d=duration of beat in seconds]

• /esp/chat [name-of-sender] [rest is message]

5.1.2. Public protocol received by EspGrid

Each instance of the grid currently responds to the
following OSC messages, as an alternate means for
controlling the grid when the GUI is impractical:

• /esp/beat/on [1 or 0]

• /esp/beat/tempo [beats per minute]

• /esp/beat/cycleLength [number of beats in bar]

• /esp/chat/send [name-of-sender] [rest is message]

5.1.3. Helper objects

An adjunct element of the project that is critical in
routine use consists of a number of helper objects
created to conveniently parse the EspGrid public
protocol within ChucK and Max. Helper objects for
other environments are necessary and not hard to create!

6. FUTURE DEVELOPMENT

Future development will maintain two key current
features: the extremely minimal demands EspGrid
places on the user and the small GUI footprint. As new
features emerge, top priority will be given to keeping
the public protocol as invariant as possible. High-level
resources to be added in future versions of EspGrid
include audio/video sharing, screen casting, and the
ability to form grids across multiple local area networks.

7. ACKNOWLEDGEMENTS

This work was supported by the Social Sciences and
Humanities Research Council (SSHRC) of Canada, and
the Arts Research Board of McMaster University.

8. REFERENCES

[1] Trueman, D. (2007). “Why a laptop orchestra?”
Organised Sound 12(2): 171-9.

[2] Ogborn, D. (2012). “Composing for a Networked,
Pulse-Based, Laptop Orchestra.” Organised Sound
17(1): 56-61.

[3] Collins, N., McLean, A., Rohrhuber, J., and Ward,
A. (2003). “Live coding in laptop performance.”
Organised Sound 8(3): 321-30.

[4] Wang, G., Cook, P.R. (2003). “ChucK: A
Concurrent, On-the-fly, Audio Programming
Language.” Proceedings of the 2003 International
Computer Music Conference.

[5] Wessel, D., Wright, M. (2002). “Problems and
prospects for intimate musical control of
computers.” Computer Music Journal 26(3): 11-22.

[6] Cristian, F. (1989). “Probabilistic clock
synchronization.” Distributed Computing 3(3):
146–58.

[7] Salazar, S., Wang, G., Cook, P.R. (2006).
“miniAudicle and ChucK Shell: New Interfaces for
ChucK Development and Performance.”
Proceedings of the 2006 International Computer
Music Conference.

