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In a loudspeaker enclosure filled with fibrous damping material, the conduction of heat
between the fibers and the air involves a time constant whose value depends on what conditions
are held constant during the heat transfer. Five combinations of conditions are considered,
leading to five different time constants. One of these, denoted by Xfp,is the time constant
at constant fiber temperature and constant pressure. Equations expressing the other four time
constants in terms of -rfpare derived using a thermal circuit model. Another thermal circuit
yields an approximate analytical expression for -rfpin terms of the diameter and packing
density of the fibersand the thermal diffusivity of air. A more accurate numerical computation
of Xfp,based on separation of variables, is also obtained. By adjusting a single parameter
in the analytical approximation, the approximation is made to agree with the numerical
solution within a tolerance of -+2% for all possible input data. Assuming an intuitive form
for the equivalent circuit of the acoustic compliance of the enclosure, it is shown that two
of the five time constants can be read from the acoustic circuit, and hence that the components
in the acoustic circuit can be calculated simply and accurately from the known properties of
the enclosure and the filling.

0 INTRODUCTION some of the work of compression is irreversibly con-
vened into heat. Thus the heat conduction contributes

The frequency response of a loudspeaker in a fiber- to the damping of the enclosure at these frequencies.
filled enclosure is influenced by heat conduction between The problem is to determine which frequencies are
the fibers and the air. When the air is compressed, its "sufficiently high" and "sufficiently low." Chase [2] and

temperature and pressure initially increase. The resulting Leach [1] have considered a typical case in which the
temperature differential causes a transfer of heat from fibers are 5 gm in radius and occupy 0.25% of the vol-
the air to the fibers, which offsets some of the increase ume. Assuming for simplicity that the heat transfer takes
in air temperature and pressure. When the air is rarefied, place at constant fiber temperature and constant air pres-
the reverse process occurs. At sufficiently high audio sure, both authors conclude that the heat transfer is well
frequencies, the heat transferred during one half-cycle approximated as an exponential function of time with a

is negligible compared with the work done, so that the single time constant. If we call the time constant ,rfp,
compression of the air is nearly adiabatic, as if the fibers where the f stands for constant fiber temperature and the
were absent. At sufficiently low frequencies, the fibers p for constant pressure, the two authors agree that the
and the air remain nearly in thermal equilibrium, so that transition from thermal equilibrium to adiabatic behavior

the compression is more nearly isothermal. Thus the takes place around a frequency fo = (2'tr,rfp)-1. But on
fibrous filling can increase the compliance of the en- the value of fc for the "typical" example, the authors
closed air [1, pp. 587-588]. At intermediate frequen- disagree by more than three orders of magnitude, Chase
cies, the time scale of heat conduction is comparable obtaining 3.5 Hz and Leach obtaining 6.4 kHz.

with the period of the audio-frequency oscillation, so Hence Chase concludes that the fibers must be corn-
that the heat transferred to the fibers during compression pacted if we wish to obtain nearly isothermal compres-
is not fully restored to the air during expansion, and sion of the air at the lowest operating frequencies, and

that uncompacted fibers "would have no effect in the

* Manuscript received 1997 February 15; revised 1997 Oc- audio range." Leach concludes that the air may be as-
tober 9. sumed to be in thermal equilibrium with the fibers at all
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operating frequencies of the bass driver, and notes that q Heat transfer per unit volume

his result contradicts that of Chase. q Heat flux density vector (power per
My purpose in this paper is not merely to adjudicate area)

between Chase and Leach (I disagree with both), but r, _b, z Cylindrical coordinates
rather to obtain a more general result which permits R Thermal resistance

instant calculation of the thermal time constant for any S Space-dependent factor (separation
diameter and packing density of the fibers. This Paper of variables)
also builds on one of the notable achievements of Leach, t Time

namely, his equivalent-circuit model of the compliance T Time-dependent factor (separation of
of a fiber-filled loudspeaker enclosure [1, p. 589]. Leach variables) or temperature
acknowledges that Tfp (which he calls 'ri) is not the appro- TO Ambient temperature
priate time constant to use in calculating the equivalent- V Volume
circuit elements, but only an approximation thereto. This x Normalized radius, = r/a
paper begins by examining the various.ways of defining y Radial eigenfunction, y(x) = S(r)
the thermal time constant, and finds an expression for et Thermal diffusivity

Leach's desired time constant in terms of Tfp. [_ f pfCf/[(1 - f)P0Cv]
Both Leach and Chase use separation of variables to _y = Cp/Cv

solve the heat equation in cylindrical coordinates. The _ Undetermined index in formula for xfp
same procedure is followed here. But first an approxi- 0 Excess temperature of air
mate analytical formula for 'rfp is found by a simpler and Of Excess temperature of fibers
less error-prone method. The formula assumes that 'rfp K Thermal conductivity
is just an RC time constant, where R is the thermal _n nth Sturm-Liouville eigenvalue
resistance between one fiber and its share of the sur- P0 Mean density of air
rounding air, and C is the heat capacity of the same air. Of Intrinsic (bulk) density of fibers
Further approximations are made in estimating R and C. % Time constant corresponding to IX,

The resulting formula can obviously be used to check Tfp Thermal time constant at constant fi-
the results of the separation of variables--any gross bet temperature and pressure
discrepancy would be evidence of theoretical or compu- 'rf_ Thermal time constant at constant fi-
tational error. It turns out, however, that the approxi- ber temperature and volume

mate formula can be made accurate enough for the prac- 'rp Thermal time constant with no exter-
tical calculation of time constants: by adjusting a single hal heat flow and constant pressure
undetermined parameter in the formula, the time con- % Thermal time constant with no exter-
stants calculated from the formula and from the separa- nal heat flow and constant volume
tion of variables can be made to agree to within 2% for % Thermal time constant at constant
all possible filling factors. The more elaborate method, air temperature
having served its purpose of refining the analytical ap-

proximation, can then be put aside. 2 THE THERMAL CIRCUIT
For the typical example given by Chaseand Leach, the

refined analytical formula gives a transition frequency of In a volume element inside a fiber-filled loudspeaker
about 289 Hz. This implies that neither the adiabatic enclosure, let the fraction of the volume occupied by
assumption nor the equilibrium assumption is valid for fibers (the filling factor or packing factor) be f. Let Po
all audio frequencies, and that.a realistic model of the be the mean density of the air (mass per unit volume of
enclosure must take the thermal time constant into account, air) and If the bulk density of the fibers (mass per unit

volume of the material of which the fibers are made).

I LIST OF SYMBOLS These densities are intrinsic; the corresponding average
densities (mass per unit overall volume) are (1 - f)P0
for the air and fpf for the fibers. The specific heats

a Radius of fibers mentiOnedin Section 1 are mass-specific heats, that is,
· C Heat capacity heat capacities per unit mass. To convert these to heat

Ca, Cth, Rth Acoustic circuit components capacities per unit overall volume, we multiply by the
Cf Specific heat of fibers corresponding average densities, obtaining (1 - f)p0Cp

Cp Specific heat of air at constant pressure for the air at constant pressure, (1 - f)p0C_ for the air
C_ Specific heat of air at constant volume at constant volume, and fpfCf for the fibers.
d Diameter of fibers, = 2a Let the excess temperature (temperature rise above
f Filling factor (packing factor) ambient) be 0 for the air and Of for the fibers, and let 0

Gth Thermal conductance per unit volume and Ofbe understood as spatial averages. Suppose that,
m = f- la starting from thermal equilibrium, we somehow transfer
p Excess pressure (pressure rise above heat from the fiber to the air. Suppose further that the

ambient) transfer takes place at constant pressure and with no
Po Ambient atmospheric pressure external heat flow, that is, with no net heat flow into or
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out of the air- fiber system. Let q denote the transferred Recall that Tfp is the thermal time constant for constant
energy per unit overall volume. Then for the air, fiber temperature and constant pressure (the maintenance

of constant fiber temperature would require some exter-

q = (1 -f)poCp0 (1) nal heat flow). To impose constant Of, we can either
"short out"fpfCf in Fig. 1 or let Cf---> ooin Eq. (4). In

and for the fibers, either case, the result is

- q = fpfCf0f . (2) 'rfp = k (1 - f)poCp . (7)

If heat energy per unit volume is represented by charge,
and excess temperature by voltage, Eqs. (1) and (2) Now let % and ,rf, bedefinedlike,rpand,rfp, exceptthat
show that the volume-specific heats are analogous to the subscript v (instead of p) indicates constant volume
capacitances. Now let Gth denote the thermal conduc- (instead of constant pressure). At constant volume, the
tance per unit overall volume between the air and the thermal circuit is the same as Fig. 1, except that C,
fiber (assuming that the rate of heat transfer is propor- replaces Cp. Making the same replacement in Eqs. (4)
tional to the temperature difference and to the air-glass and (7) gives
surface area, the latter being proportional to overall vol-

ume)..Then % = _th [(1 - f)poCvl[fpfCf] (8)

= Gth(0 f -- 0) (3)

= _- (1 - f)poC_ · (9)T fy

so that Gth is analogous to electrical conductance. ;-'th

Eqs. (1)-(3) are modeled by the thermal circuit shown
For the sake of completeness, let % be the thermalin Fig. 1. Ground potential represents the ambient tem-

perature To. Nodal temperatures are relative to To and time constant at constant air temperature, that is, at con-
are written "in the nodes." The conductance Gth is shown stant 0. Then % can be found by shorting out the heat
as a resistance 1/Gth. capacity of the air in Fig. 1, or letting Cp --> ooin Eq.

(4), or letting C_ -_ _ in Eq. (8). The result is

3 FIVE THERMAL TIME CONSTANTS !
'ra = _--fpfCf. (10)

The time constant of the series circuit in Fig. 1 is the 'Jth

thermal time constant between the air and the fiber at Now recall that
constant pressure, with no external heat flow. If we call

this time constant 'rp, where the subscript p stands for Cp = _tC_ (11)
constant pressure, the equivalent circuit gives

and let

= _ [(1 - f)poCpHfpfqf] (4)Tp

[3 _ fpfCf (12)
(1 - f)p0Cv '

where [] is the harmonic sum operator, defined by

Notice that [3, like ?, is a ratio of specific heats: the
numerator is the heat capacity of the fibers per unit

u[]v =A 1 = uv (5) overall volume, and the denominator is the heat capacity1/u + 1/v u + v
of the air per unit overall volume. Using Eqs. (11) and

and having a precedence below multiplication and divi- (12) and the distributive law [Eq. (6)], we can easily
sion, but above addition and subtraction. From the deft- express all the time constants in terms of Xfp.Dividing
nition it is easily shown that multiplication is distributive Eq. (4) by Eq. (7) yields
over harmonic addition, that is, for all u, v, k,

[3Tfp
'rp = -- (13)

k(ullv)= kull . (6) 'Y+ [3'
Similarly, from Eqs. (8) and (7),

1//Gth

0 [------] 4 Of _ {3Xfp (14)
] I % ,(1+[3)

(1 -/)poCp 1 fpfCf and from Eqs. (9) and (7),
1

__ __ Tfv= 'rfp (15)
Fig. 1. Air-fiber thermal circuit at constant pressure. 'y
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and from Eqs. (10) and (7), "heatshed" (by analogy with watershed). In the presence
of many fibers, the heatshed is a honeycomb-like surface

Ta = _'rfP (16) which divides the space between the fibers into a myriad
_/ of contiguous tubes, which we shall call "heat tubes."

Each tube is threaded by one fiber. (More generally, a
Leach [1, p. 592] uses 'rfp (which he calls 'q) as an heatshed is a surface across which there is no heat flux.

estimate of 'rp (which he calls 'ri) and notes that 'rp < If the air is cooler than the fiber, the flow of heat on

·rfp. This is confirmed by Eq. (13). both sides of the heatshed is toward it instead of away
from it--a slight loosening of the analogy between heat-

4 ASSUMPTIONS shed and watershed.)
In any heat tube, the maximum heat flux density,

Section 3 treated the air and fiber temperatures as hence the maximum temperature gradient, occurs at the
spatial averages and assumed nothing concerning the surface of the fiber. The temperature gradient is small
temperature distributions within the air and the fiber. in the outer regions of the heat tube, reaching zero at
This approach was sufficient for determining the rela- the outer surface. Hence the position and the shape of the
tionships between the time constants. But the calculation outer surface have little effect on the effective thermal
of any one time constant must take these distributions resistance between the fiber and the air in the heat tube.

into account. Moreover, the position and the shape of the heatshed do
First it will be shown that, at least in the case of glass not affect the average heat capacity of the air in a heat

fibers, the temperature within each fiber may be assumed tube. A shift in the heatshed causes an increase in the
uniform. According to Fourier's law of heat conduction heat capacity of one heat tube and a compensating de-
[3, p. 4-143], crease in that of another. Therefore, for the purpose of

q = - KVT (17) calculating the thermal time constant, we may approxi-
mate the heatshed surrounding each heat tube by a sur-

where q is the heat flux density (power per unit area), face of "average shape" containing the correct average
K is the thermal conductivity, and T is the temperature volume; it does not greatly matter that individual heat
(absolute, or relative to an arbitrary reference); At the tubes have different shapes or volumes, or even that the

air-glass surface, heat is transferred between the air and heatshed may move with time.
the glass by the normal component of q. By conservation The geometry of the fibers is more critical because of
of energy, the normal component of q is continuous the high temperature gradients at the fiber surfaces. To
across the surface. Hence, by Eq. (17), a step change obtain a well-defined and realistic problem, let us sup-
in K must be accompanied by a reciprocal step change pose that the fibers are of circular cross section and
in the normal component of VT, that is, the VT ratio uniform diameter. In practice this means that the fibers
is the reciprocal of the K ratio. The thermal conductivity are of a synthetic material such as glass. (We may hope
of air at room temperature is about 0.026 Wm,_K -1 that the thermal behavior of natural fibers, with their
[4, p. 962]. Common soda-lime glasses have thermal variations in thickness and geometry, can be modeled
conductivities around 1Wm- !K- l [5, pp. 12-143-146]; ' satisfactorily by assuming cylindrical fibers of a suitably
conductivities of other common glasses are of the same defined average diameter, but this question is not exam-
order of magnitude. From the figures cited, the thermal ined in the present paper.)
conductivity of the glass is roughly 40 times that of the- In a sufficiently small region, each fiber may be as-
air, so that the temperature gradient on the glass side of sumed cylindrical, that is, the curvature of the axis of
the surface is roughly 1/40 of that on the air side. Hence each fiber may be neglected. Hence it is most convenient
it is reasonable to neglect the spatial variation of temper- to assume that the surrounding heatshed is a cylindrical
ature within the glass, surface coaxial with the fiber. Let the radii of the fiber

If we assume uniform temperature within the fibers, and the heatshed be a and ma, respectively, where m >
the "constant" fiber temperature assumed in the defini- 1. Then the filling factor is

tions of 'rfp and 'rfvbecomes a constant and uniform fiber
temperature. This suggests that 'rfp and 'rfvare easier to f - _ra_2 - m -2 (18)
calculate than the other time constants, because they 'rr(ma)2

involve a simple constant-temperature boundary condi-
tion on the surface of the fiber, so that

Next we must consider the Pattern of heat conduction
around each fiber. Suppose the air in some local region m = f-la. (19)

is compressed, so that the air temperature rises above Consider a segment of fiber of length I. Let us adopt
the fiber temperature and heat begins to flow from the a cylindrical coordinate system coaxial with the fiber
air to the fibers. Over the surface of each fiber, the heat and heatshed, with the origin at one end of the fiber
flux is inward. Hence, between any two fibers, there segment. If r is the radial coordinate, the air occupies
must exist a surface across which the normal component the region
of the heat flux density is zero; heat flows away from
this surface on both sides. Let us call this surface the a _ r _< ma, 0 _< z _< l_ (20)
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and the glass occupies the region tube, the first question is whether we should use Cv or

Cp as the specific heat. It is tempting to say simply that
r _< a, 0 _< z _< l (21) we must use Cp to find "rfp, and Cv to find 'rf,. But the

accurate solution of the heat equation allows different

(see Fig. 2). regionsof air to be heatedor cooledat differentrates.
Therefore, for consistency in the derivation, we must
seek a condition common to all regions. If we use Co we5 ANALYTICAL APPROXIMATION
assume that heat is conducted so fast that local regions of

If thermal resistance is analogous to electrical resist- air do not have time to expand or contract as they are
ance, then thermal conductivity K is analogous to electri- heated or cooled. This would require the conducted heat
cai conductivity ct, so that the thermal resistance of the to propagate much faster than sound. If we use Cp, we
cylindrical shell between radius r and radius r + dr is assume that heat conduction is so slow that any local

variations in pressure with temperature have ample time
dr to dissipate or "equalize"--in other words, that acoustic

dR - K2_rrl' (22) disturbances propagate much faster than thermal distur-
bances, in accordance with the assumption of adiabatic

To estimate the total thermal resistance between the fiber compression in acoustics. So we can consistently use

and the air, let us consider the heat capacity of the air Cp, but not Cv; hence we can directly calculate 'rfp, but
to be concentrated at the "representative radius" not 'rf,.

For constant pressure, the heat capacity of the air is

m + 1 Cp multiplied by the effective mass of air, that is,
r - -- a (23)

2 C = PoCpAl (25)

that is, midway between the fiber surface and the heat- where A is the effective cross-sectional area. We could
shed. Then the total thermal resistance is assume that A is simply the total air area, that is, the

annular area between the fiber and the heatshed. How-

f(m+Dw2 dr -2_IK (?)R = Ja . K2-_rl In . (24) ever, to allow for the fact that the temperature variationsclose to the fiber (modeled as an infinite heat sink) must
be less that those further out, it is desirable to exclude

Notice that the representative radius determines the ar- an area somewhat greater than that of the cross section
gument of the In function, which is a weak function for of the fiber. So let us assume
large arguments. So for large m, that is, for small filling
factors, the choice of the representative radius does not A = ,n'(ma)2 - _'tra2 = (m2 - e) 'rra2 (26)
greatly affect the accuracy of the result. Also notice that where
the expression for R is defined and positive for tn > 1,

that is, for all meaningful values of tn. Unnecessary 1 _ _ < m2 . (27)
limits on the range of tn have been avoided so that we
will not be prevented from exploiting any knowledge of Notice that A becomes the total air area if we take e = 1.

the asymptotic behavior of 'rfpas tn approaches unity Substituting Eq. (26) into Eq. (25), then multiplying
or infinity, our expressions for R and C, we obtain the time constant

Concerning the heat capacity of the air in the heat

a2 (?). _ ...... . 'rfp= _ (m2 -- () in (28)

!' ', where tx, known as the thermal diffusivity, is defined
! \

, \ as [3,p.4-144]
x

", a - . (29)
P0Cp

· ,' The remaining problem is to find e. This is where it
Air"_/ "'_,' is useful to consider the asymptotic behavior for larget

,' and small values of m. Because the greatest temperature

'- ......... -'" ! gradients occur near the fiber, we should exclude only

".. Heatshed .' a small fraction of the cross section for large m, that is,' '"x,.. -'" ¢ << m2 for large m. Ifm is close to unity, the tempera-
ture gradient will be significant throughout the annular

Fig. 2. Cross section of average heat tube. Outer surface (ra-
dius ma) is heatshed. Air region is described by a < r < rna cross section of the air, so that we need to exclude a
or 1 < x < m. substantial fraction of this annular area by'making E
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significantly greatly than unity. We can satisfy both the gradient is small in regions far from the fibers and that
large-m and small-m requirements, as well as the funda- such regions make negligible contribution to the overall

mental constraint (27), by taking thermal resistance, because there are no such regions.)

e = m_.... 0_< _<2. (30)
6 SOLVING THE HEAT EQUATION

Substituting this into Eq. (28), we obtain
The temperature field in the air is described by the

heat equation [3, p. 4-144]

'rfp ----_ (m 2 -- mt) In (31)

0=aV20 (38)
or, in terms of the fiber diameter d,

' where 0 is the excess temperature (temperature rise

d2 (____[) above ambient)and a is the thermal diffusivity defined'rfp = _ (m 2 -- mg) In (32)· by Eq. (29). For our assumed geometry we may use
cylindrical coordinates and write 0 = 0(r, t). By symme-

Part of the motivation for Eq. (30) was that any value try, 0 is independent of the other coordinates d_ and z.
of _ less than 2 gives an accurate cross Section and heat If the fiber is held at the ambient temperature, its excess
capacity for large values of m. We have also noted that temperature is zero, giving the boundary condition
any reasonable representative radius in Eq. (24) gives
an accurate thermal resistance for large tn. Hence, for 0(a, t) = 0 (39)
large m, Eq. (31) is quite accurate for all permissible
values of _. Therefore we choose _ by considering small for the inner boundary. The outer boundary is the heat-
values of m. Because m > 1, a small value of m is shed. Absence of heat flow across the heatshed implies

the zero-temperature-gradient boundary condition
tn = 1 + _ (33)

00
where 0 < 8 << 1. Hence we have Orr(ma, t) = 0. (40)

m2-_ 1 + 2_ (34) For the initial condition, we shall follow the existing
literature by supposing that we have thermal equilibrium

m_ _ 1 + _ (35) for t < 0 and that the air is subject to a step increase in
pressure at time t = 0, causing a uniform step increase

la(?) _ in temperature.If the initialtemperaturerise is 00,we--__. (36) havethe initialcondition

Substituting the small-m approximations into Eq. (31) 0(r, 0) = 0o, a < r < ma. (41)
gives

The solution to Eqs. (38)-(41) will be presented in suf-

a2 2 - [ _2 (37) ficient detail to show the points of disagreement with
'rfp -_ 2ct 2 Chase [21 and Leach [1].

so that 'rfpor _2, if and only if [ is constant· Let us check 6.1 Separation of Variables

this proportionality. If _ is very small, the air cross Suppose Eq. (38) has the product solution
section is a thin annulus whose area is nearly propor-

tional to its width, which in turn is proportional to _. 0 = S(r)T(t) . (42)
Hence the heat capacity and the thermal resistance of

the air are both proportional to _, and their product is Substituting this into Eq. (38) and dividing through by
proportional to g2. So we can indeed take the index [ to ST gives the separated form
be a constant, and an appropriate choice of [ will make
Eq. (31) agree closely with the full solution of the heat
equation for small m. We may then hope that the adjusted _r V2S- = ct-- (43)
analytical formula for'rfp makes a smooth transition from T S
large-m to small-m behavior, giving acceptable accuracy
for all m. The left-hand side shows that the separation constant

(Note: While Eq. (32) may accurately predict the ther- has the dimensions of (time)- _;we may therefore let the
mai time constant of a coaxial cylindrical heat tube for constant be - 1/'r, where _: is a time. Setting both sides
all m, the assumption that the heat tube is coaxial and equal to this constant gives
cylindrical is valid only for sufficiently large m, that

is, for sufficiently small packing factors. With densely T = _ T (44)
packed fibers we can no longer say that the temperature 'r
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V2S + __1S = 0. (45) 6.2 Significance of EigenvaluesO(T

From Eq. (53),

Eq. (44) has the solution
a 2

x - . (57)
T = Ae -tI' (46) IX2a

So each eigenvalue Ixn corresponds to a time constantwhere A is a constant, showing that 'r is a time constant
in the usual sense and that x must be positive if the %. Substituting Eqs. (46), (51), and (52) into Eq. (42)
solution is to be stable. In cylindrical coordinates, and using a subscript n for every quantity depending on

the eigenvalue tx,,, we obtain

V2S(r)= 1 d (rdS) (r)
r drr drr = S"(r) + 1S,(r). (47) On = Anyn e_t/,,r (58)

Substituting Eq. (47) into Eq. (45) gives the spatial where
equation

a 2
Tn -- (59)

S" + 1 S' + 1S = 0 (48) Ixn2Ot'
r OffT

This is a product solution to the heat equation [Eq. (38)]
and substituting Eq. (42) into Eqs. (39) and (40) gives satisfying the boundary conditions [Eqs. (39) and (40)].
the boundary conditions Because the heat equation is linear and the boundary

conditions are homogeneous, the equation and boundary
S(a) = 0 (49) conditions are also satisfied by any linear combination

of solutions of the form of Eq. (58). So a general solution
S'(ma) = O. (50) of Eqs. (38)-(40) is

(a)Eqs. (48)-(50) can be normalized by writing 0 = E AnYn e-t/%. (60)
n=l

S(r) = y(x) (51)
Putting t = 0, applying the initial condition (41), and

where usingEq.(52),weobtain

rx = - (52) AnYn(X)= 0o, 1 < x < m. (61)n=la

The coefficients Anmay now be found in the usual man-
and defining the positive real number Ix such that ncr by exploiting the orthogonality of the eigenfunctions

[7, pp. 218-228]. Eq. (60) will then be the complete

IX2 a2= --. (53) solution of Eqs. (38)-(41).
'rot The coefficients need not be investigated further. For

present purposes it suffices to note that every term or
The results are "mode" in the solution(60) has its own time constant

which, according to Eq. (59), is proportional to the in-

ly, + Ix2y = 0 (54) versesquareoftheeigenvalue. The longest time constanty,, +
x is 'r_, corresponding to the smallest eigenvalue pq, and

is given by
y(1) = 0 (55)

a 2

y'(m) = 0. (56) 'ri - Ixl2ct· (62)

For a given m, Eqs. (54)-(56) constitute a regular Hence the mode associated with 'ri (the fundamental
Sturm-Liouville problem [6, p. 334]. The problem has mode) has the slowest decay and becomes dominant as
the trivial solution y(x) = 0, and nontrivial solutions t increases, that is, as equilibrium is approached.
for an infinite number of discrete values of tx, known Although we have considered the solution to the heat
as the eigenvalues. Let the nth eigenvalue (in ascending equation in the case of a step compression [see before
order) be Ixnand let the corresponding solution, called Eq. (41)], the conclusion that the fundamental mode is
the eigenfunction belonging to tXn,be yn(X). Each eigen- dominant under near-equilibrium conditions leads to a
function is determined up to an arbitrary scale factor, justification for considering only the fundamental mode
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when analyzing sinusoidal compressions of any fre- This is the limiting solution of the IVP as Ix _ 0. For

quency. By causality, the rate of heat transfer at any Ix > 0, let s(n, Ix) be the abscissa of the nth stationary
instant is not affected by subsequent variations in applied point of y(x) as x increases from x = 1. Then Ixnis the
pressure and is the same as it would be if the pressure value of Ix for which
were subsequently held constant, as it is in the case

of a step compression. Thus for any applied pressure s(n, ix) = m . (67)
function, the pattern of heat flow at any instant can be

reproduced by a step compression with the appropriate A numerical algorithm for computing the eigenvalues
initial temperature field at that instant. In the complete and eigenfunctions is described in [8, sec. 8.2.4]. The
solution of the heat equation, the initial temperature field results for the first three eigenvalues, together with the
is invoked only in the final step to determine the coeffi- limiting function y = In x, are shown in Fig. 3. It can
cients of the modes. It does not affect the eigenfunctions be seen at a glance that each eigenfunction satisfies the
or time constants. Therefore as far as the instantaneous boundary conditions in Eqs. (64) and (65) and has the
heat flux is concerned, the eigenfunctions and time con- required number of extrema on [1, mi.
stants that apply when the air is subject to a step com-
pression also apply in other cases, including the case of 6.4 Comparison with Chase (1974) and
sinusoidal compression. At low frequencies, for which Leach (1989)

the temperature field has ample time to "equalize" during Both Chase [2] and Leach [ 1] solve the heat equation
a single cycle of compression, the departure from ther- by the separation of variables, with a transformation of

mai equilibrium is small, so that the fundamental mode the radial equation [Eq. (54)] to Bessel's equation. Both
is dominant. At higher frequencies the higher order authors give a complete series solution in the form of
modes become significant. This affects the rate at which Eq. (60), except that they use the notation VO(Ixnx) in
the system approaches adiabatic behavior as frequency place of yn(X) and use a instead of ct for the thermal
increases, but does not alter the fact that the limiting diffusivity.
high-frequency behavior is adiabatic. Moreover, it will For m = 20 (the only numerical example that he
be seen in Section 6.5 that the higher order modes allow considers), Leach gives the eigenvalue Ixl = 0.232,
only a small fraction of the air volume to exchange heat which matches IX2in Fig. 3 to three decimal places. So
with the fiber, so that they cannot, by themselves, cause Leach has found IX2instead of IX_,leading to the time
gross departure from adiabatic behavior. Hence at all constant 'r2 instead of 'r_. If we use a = 5 Ixm and ct =
frequencies only a small error is incurred by assuming 1.87 x 10 -5 m2s -l, as quoted by Leach, and take Ix2
that all heat conduction is due to the fundamental mode. from Fig. 3, we obtain 'r2 = 24.8 Ixs. This corresponds

to a transition frequency of 6.4 kHz, which is Leach's
6.3 CompUtation of Eigenvalues and result. If Leach had used Ix! from Fig. 3, he would have
Eigenfunctions obtained a transition frequency of 258 Hz, which is much

The Sturm-Liouville problem comprises Eqs. (54)- closer to my result of 289 Hz.
(56). Because the eigenfunctions can be scaled arbi- Chase's Eq. (7), which corresponds to my Eq. (62),
trarily, let us normalize them by introducing a fourth has the outer radius ma (which Chase calls R2 = mR0
equation, in place of the inner radius a (which he calls R0. Leach's

Eq. (36) corrects Chase's Eq. (7). However, this substi-
y'(1) -- 1. (63) tution does not fully account for Chase's results; further

details are given in [8, sec. 8.2.5].
The four equations can then be conveniently regrouped

as an initial-value problem (IVP), 6.5 Why Higher Order Modes Are Neglected
We can now finish the argument that concludes Sec-l

y" ±y, + Ix2y = 0 tion 6.2. In Fig. 3 recall that x is proportional to the+
X

radius and y is proportional to the excess temperature
of the associated mode. Thus every maximum or mini-

y(1) = 0 (64) mum in an eigenfunction represents a modal heatshed.

y'(1) = i For the nth mode, only the air inside the radius corres-ponding to the first maximum of the eigenfunction y,

with a remote boundary condition can exchange heat with the fiber. For m = 20, Fig. 3
· shows that the radius of the first maximum of Y2is less

y'(m) -- 0 . (65) than 30% of the outer radius of the heat tube, so that
the fraction of the air volume that can exchange heat

The IVP has a unique solution for each value of IX. The with the fiber in the second mode, which fraction we

eigenvalues are the values of Ix for which the IVP solu- shall call f2, is less than 9%. In the third and higher
tion satisfies Eq. (65). modes, the fractionf a is smaller. Thus the higher order

For Ix = 0, Eqs. (64) have the exact solution modes seem unimportant.
To see whether the same conclusion holds for all real-

y = In x. (66) istic values of m, we need to compute f2 for a range of
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values of the filling factorf. This exercise has been done rithm for checking a single trial value of _ is described
in [8, sec. 8.2.6]. It was found that f2 rises to 11% in [8, p. 137].
forf = 1% and to 13% forf = 2%, and theoretically By trial and error it was found that _ = 0.37 is about
approaches a limit of 1/3as f---> 100%. So for realistic optimal; in the printout for _ = 0.37, shown in Table
filling factors, f2 remains small. When we remember 1, the percentage errors in ixa and i_b appear as ermua
that air is only 40% more compliant under isothermal and ermub. (The printout contains some additional diag-
compression than under adiabatic compression, the sig- nostics. The eigenvalue IX_was computed using two step
nificance of these small values of f2 is further dimin- sizes, the second being half the first. The number of
ished, steps between x = 1 and x = m for the smaller step

size is tabulated as steps. The difference between the

7 REFINING THE ANALYTICAL APPROXIMATION two results, in parts per million, appears in the printout
as errmu. The worst discrepancy is seen to be about 25

An estimate of the first eigenvalue i_ can be found ppm, indicating that step size is not a significant source
from the analytical approximation to the time constant, of error.)

Writing x_ for xfp in Eq. (31) and substituting from Eq. For the whole range of filling factors, the rough esti-
(62) gives mate I% differs from IX_by no more than 10%. As ex-

pected, the error is much smaller for large m, suggesting

[2 ( 2 )] -1/2 that the numerical analysis is free from gross errors.
P'I _ (m2 -- mc) In m____l . (68) For _ = 0.37, the "refined" analytical formula under-

estimates IX_by a margin of less than 0.9% for all m.
By Eq. (62), 'r_ _ ix-_2, so that the percentage error in

For large m we can estimate ix_ by setting _ = 0 [see the estimate of 'r_will be - 2 times that in the estimate
Eqs. (30)-(32) and the subsequent discussion]. Let this

of IX_.Hence Eq. (31) overestimates 'r_by no more than
"rough" estimate of IX_be called I%, and let the "refined" 1.8%. Now all the analysis in this chapter has neglected
estimate based on a general value of _ be called p.o. the thermal resistance of the glass. Recalling that the
Then we have thermal resistivityof the air is about 40 times that of

-1/2 the glass, and supposing that most of the air-to-glass

i% = Il(m2 - 1) la (rn--_) ] (69) thermal resistance is caused by the regions close to theair-glass surface, inclusion of the thermal resistance of
the glass would increase the air-to-glass resistance, and

and hencethe thermaltimeconstant,by (veryroughly)one
part in 40, or 2.5%. Hence overestimating a'_ tends to

[1 (?)]-,/2 compensate for the neglect of the thermal resistance ofI% = (m2 - mc) In (70) the glass. For this reason it seems prudent to accept the
consistent underestimation Of IX_shown in the rightmost
column of Table 1.

The numerical computations of ix_ can be checked by
comparing Ix_with I% for large m. Then we can adjust Putting _ = 0.37 in Eq. (32) gives
the parameter _ to obtain the best possible agreement

between I%and IXlfor the full range ofm. The necessary d2 (?)comparisons and adjustments are made easier if we tabu- *fP _ _ (m2 - m°'37) In . (71)
late the percentage errors in the two analytical estimates
of IX_,rather than the estimates themselves. The algo- At a temperature of 20°C 'and a pressure of 1 atm, the

Y
/_l = 0.04651

3 it2 = 0.23175 tt = 0
/_3 = 0.40160 ..................................................

............::::::::::::::::::::::::::::::::::::::::::

2 _ ...............................::............. ...............................1_ =/-/1 ...................1 .,'?.... .............. '..............p =/-t2

..'" /z =/_3 ........ '.................. ....................................' % .,.
·.. ...

X

i ....................................................i>'<ii ....................................20
Fig. 3. Radial eigenfunctions for m = 20, and limiting function.
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thermal diffusivity et is about 2.121 × 10- 5m2s- 1(esti- If the volume in question is fiber filled, V must be re-

mated from the formulas in [9]). If we put d = 10 ixm placed by the air volume V(1 - f), so that the acoustic
andf = 0.25% (whence m = 20), Eq. (71) gives 'rfp _ compliance becomes
550 IXS,which corresponds to the transition frequency
of 289 Hz quotedin theIntroduction. V(1- f)

Having chosen 4, we can estimate the ultimate accu- Ca - poe2 (72)
racy of Eq. (71). For filling factors up to 8%, Eq. (70)

underestimates ixl by 0.34-0.83%; hence Eq. (71) over- This assumes that the compressions are still adiabatic,
estimates 'ri by 0.68-1.66%. Suppose that, because we which in practice means that the frequency is too high
have neglected the thermal resistance of the glass, 'r1 for signifcant heat conduction between the air and the

underestimates 'rfp by 2.5%. Then Eq. (71) underesti- fibers. If, on the contrary, the frequency is so low that
mates 'rfp by 0.84-1.82%. We may therefore reasonably the air and the fibers can be assumed to be in thermal

expect Eq. (71) to be correct to within 2%, provided equilibrium, the compliance is higher. The increase can
that the filling factor is small enough to justify the be modeled by an additional compliance Ca, (which we
cylindrical-heat-tube assumption. The neglect of higher may call the thermal relaxation compliance) in parallel
order (that is, shorter)time constants has a qualitatively with Ca. We require Cth to be effective only at low
similar effect to overestimating a single time constant, frequencies. The obvious way to achieve this is to place
and therefore tends to compensate for an underestima- a resistance Rth (the thermal relaxation resistance) in
tion of 'rfp. So the calculated value of 'rfp will still be series with Cth- Thus by a simple intuitive argument we
within 2% of the effective value provided that the depar- infer that the form of the equivalent circuit is as shown
ture from thermal equilibrium is not too great, in Fig. 4.

The requirements of a small filling factor and a small This form was derived by Leach [1, pp. 587-589] by
departure from thermal equilibrium have not been quart- assuming that in response to a step change in pressure,
tiffed. Concerning the filling factors likely to be encoun- the apparent volume of the box begins at the adiabatic
tered in practice, Chase's Fig. 1 [2, p. 299] indicates value and exponentially approaches the thermal-
that common fiberglass with a natural density of 6 kg equilibrium value. A Laplace transform then leads to
m -3 has a "practical maximum compressed density" of the equivalent circuit. (Because Leach assumes an iso-

70 kg m -3. The natural and maximum densities corre- baric heat transfer, his time constant 'rf is identical to

spond to filling factors of 0.25% and2.9%, respectively, my 'rp; his subscript f apparently stands for constant
According to Bradbury [10, p. 163], the filling factor is force, which implies constant pressure, whereas my sub-
at most 5%. script f stands for constant fiber temperature.) I have

derived the same circuit by a third method, involving
8 THERMAL TIME CONSTANTS AND THE simultaneous differential equations, in [8, sec. 7.2].
ACOUSTIC CIRCUIT To find the component values in Fig. 4, first note that

the excess pressurep appears across Ca. Ifp is constant,
The acoustic compliance of a volume V under adia- no flux (volume velocity) flows in Ca, so that all of the

batic compression is [1] external flux ui, flows in Rth and Cth, that is, when the

V air expands, the volume of air flowing out of the volume

Ca - P°& · V is supplied by "discharging" Cth, so that the pressure

Table 1. Computer output showing errors in analytical approximations to ix_
for various filling factors, for [ = 0.37.*

f (%) m mul steps errmu ermua ermub

0.016 80.00 0.009224 7901 10.20 -0.38 -0.34
0.031 56.57 0.013698 5557 11.29 -0.42 -0.36
0.062 40.00 0.020448 3901 12.57 -0.48 -0.39
0.125 28.28 0.030717 2729 13.95 -0.58 -0.43
0.250 20.00 0.046509 1900 15.70 -0.73 -0.47
0.500 14.14 0.071135 1315 17.81 -0.95 -0.53
1.000 10.00 0.110270 900 20.07 - 1.28 - 0.60
2.000 7.07 0.174116 608 22.85 - 1.76 - 0.68
4.000 5.00 0.282361 401 25.12 -2.46 -0.76
8.000 3.54 0.477237 254 23.92 - 3.43 - 0.83

19.237 2.28 1.034493 201 0.00 - 5.14 - 0.84
37.180 1.64 2.216110 200 -12.26 -6.83 -0.74
57.392 1.32 4.636943 200 - 15.63 -8.12 -0.59
74.316 1.16 9.524470 201 - 15.72 -8.96 -0.46
85.734 1.08 19.329821 201 - 15.39 -9.44 -0.38
92.456 1.04 38.958271 200 - 17.63 -9.70 -0.33
96.117 1.02 78.224464 201 -12.87 -9.83 -0.30

· The sixth and seventh columns show percentage errors in the "rough" and
"refined" analytical approximations.
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in Cth is proportional to the excess volume, with a sign where C a is given by Eq. (72), [3 by Eq. (12), and 'rfp

reversal. But at constant pressure, specific volume is by Eq. (71).
proportional to temperature, so that the excess volume Eqs. (72), (77), and (78) can be reconciled with the
is proportional to the excess temperature 0. Therefore corresponding results of Leach [1, p. 589] using the

· the pressure in Cth is proportional to --0, so that the following substitutions, in which Leach's notations ap-
thermal time constant is just the time constant of Rth and pear on the left:
Ca , that is,

Vs(1 - Vf/VB)--_ V(1 -- f)

'ri, = RthCth · (73) C^m _ Ca

At constant volume (or constant density), the pressure CAm_ Cth

and temperature of the air are proportional, so that the
excess pressure appearing across Ca is proportional to VB/Vf--* 1/f
the excess air temperature 0. Therefore the thermal time
constant is the time constant applicable to the pressure Ram _ Rth

across Ca. Now at constant volume there is no external B_fp
flux (that is, uin = 0), so that the equivalent circuit is 'rf---_'rp =
isolated and its time constant is simply that of the series _t + [3 '

CRC circuit, that is, Leach's use of 'rfp as an estimate of 'rpis corrected by
the last substitution, which quotes Eq. (13). With these

% -'- Rth(Ca[[Cth). (74) six substitutions, Leach's Eq. (17) becomes my Eq.
(72). His Eq. (18) yields my Eq. (77) with the aid of

Substituting Eq. (13) into Eq. (73) gives my Eq. (12), and his Eq. (19) yields my Eq. (78) with
the aid of my Eq. (77).

RthCth- _'rfp (75)
',/+ [3' 9 DISCUSSION

Substituting Eq. (14) into Eq. (74) gives For a fiber diameter of 10 Ixm and a filling factor of0.25%, Leach [1] concludes that the air and the fibers

RtdcallCth) = [3'rfp (76) may be assumed to be in thermal equilibrium up to a
_t(1 + [3) transition frequency of about 6.4 kHz, whereas the pres-

ent paper gives a transition frequency of about 289 Hz.
Thus we have two equations in the two unknowns Cth It must be conceded, however, that a gross error in
and Rth. The solutions are modeling the thermal behavior and the dynamic com-

pressibility of the air does not necessarily translate into

Cth = (_t -- 1)[3Ca (77) a gross error in predicting the output of the loudspeaker.
_/ + [3 Whether the transition frequency is 6.4 kHz or 289 Hz,

we can assume thermal equilibrium for calculating the
and bass rolloff characteristic. At frequencies just above roi-

loft, the motion of the diaphragm is mass limited, so

-rfp (78) that the dynamic compressibility of the air is less sig-
Rth = (_/ _ DCa nificant. At higher frequencies, the diaphragm is heavily

influenced by unwanted internal resonances in the enclo-
·Uin sure, and a major purpose of the filling material is to

· I _/ dampen such resonances. Because thermal relaxation is

a mechanism of damping, the thermal time constant must
have some effect on the frequency-response irregularit-
ies caused by resonances. The examples considered in

Rth [8, chap. 10, esp. figs. 10.13 and 10.22] suggest that
p C_, _ the viscosity of the air is the dominant mechanism of

I
damping resonances, so that the assumption of thermal

Cth equilibrium causes only a small error in the computed

---_ frequency response. But it remains conceivable that cer-

tain combinations of fiber diameters, filling factors, and
operating frequencies could make the departure from

i thermal equilibriummore significant, justifying the use
_ of the more precise model of dynamic compressibility

Fig. 4. Equivalent circuit for compressibility of air in fiber- shown in Fig. 4. As this model is quite simple, its use
filled volume, requires little justification.
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10 FURTHER WORK theless, as the'following summary shows, the model
recommends itself by its simplicity.

Lest the elegance of Eq. (71) obscure its limitations, The compressibility of air in a fiber-filled volume can

it should be noted that the "accuracy" of 2% accounts be modeled as the well-known adiabatic compliance Ca
only for the difference between analytical and numerical in parallel with the series combination of a thermal relax-
computations and (very roughly) for the effects of the ation compliance Cth and a thermal relaxation resistance
thermal resistivity of the fibers. The assumption of cylin- Rth. The form of the equivalent circuit confirms the ear-
drical heat tubes requires a small filling factor, but lief result of Leach [1]. Formulas have been derived for

"small" has not been quantified. The effect of neglecting computing Cth and Rth from the properties of the air and
higher order modes has not been quantified, except to the filling material. These formulas also confirm those
say that it leads to the correct limiting behavior at high given by Leach, except that the time constant used in

and low frequencies and that the volume fraction al- the calculation of Rthhas been more accurately expressed
fected by higher order modes is small. No attempt has in terms of 'rfp, which is the thermal time constant at
been made to account for fibers with nonuniform diame- constant fiber temperature and constant pressure.

ters or irregular geometries. Moreover, 'rfp may be estimated from the formula
If the error in Eq. (71) were to be determined by

experiment, the error in measuring xfp would need to be d2 /..\

--m°'37) la (m--_ -[) (79)substantially smaller than the error in the formula. Such 'rfp _ _ (m2
accuracy seems unlikely in view of the variable proper-

ties of fiberglass filling material--for example, handling where d is the fiber diameter, et is the thermal diffusivity
the material causes nonuniform and unpredictable of air,f (not in the formula) is the filling factor, and m =
changes in its packing density. Probably the best we can f- m. This simple formula agrees with a more elaborate
hope for is an approximate measurement of ,rfp, offering numerical simulation to within 2%.
further confirmation that the computations in this paper The numerical results given by Eq. (79) differ greatly
are of the right order, from those given by Leach [1] and Chase [2]. The dis-

A direct measurement of any of the five time constants agreement with Leach is explained by his choice of ei-
defined in this paper seems impossible because the con- genvalue in the radial Sturm-Liouville problem. The
ditions under which the time constants are defined could disagreement with Chase is partly explained by an incor-
not be imposed. Moreover, the measurement would be rect substitution, which was also noted by Leach. But
imprecise because of the time constant of the thermome- the main argument in support of Eq. (79) is that it comes
ter and the nonzero time taken to set up the initial condi- from a synthesis of two independent methods, whereas

tions. Therefore any measurement of 'rfp would need to Leach and Chase relied on a single method. The explicit
be indirect, involving the measurement of some acoustic formula for ?fp is also more convenient to use than previ-
property of the air-fiber medium that depends on xfp. ously published results.
Damping is apparently not a suitable property forthis

purpose because, as noted, it is more heavily influenced 12 ACKNOWLEDGMENT
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