Binaural Sound Source Localisation is increasingly being achieved by means of the Convolutional Neural Network (CNN). These networks take in a Time-Frequency representation of audio as an input, and use this to estimate the direction of arrival of a sound. In previous works, different Time-Frequency representations have been used, but never only using solely magnitude spectra, leading to a lack of understanding in the importance of this in full azimuthal binaural sound source localisation. This work aims to address that gap by testing the performance of a CNN trained and tested on four different Time-Frequency representations: Mel-Spectrogram, Gammatonegram, Mel-Frequency Cepstrum, and Gammatone-Frequency Cepstrum. From this test, it was found that Spectrograms are suitable for the task of full azimuthal binaural sound source localisation.
http://www.aes.org/e-lib/browse.cfm?elib=22084
Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!
This paper costs $33 for non-members and is free for AES members and E-Library subscribers.
Learn more about the AES E-Library
Start a discussion about this Spatial Audio!