Influence of the Relative Height of a Dome-Shaped Diaphragm on the Directivity of a Spherical-Enclosure Loudspeaker
×
Cite This
Citation & Abstract
Z. Zhang, G. Yu, and L. Liang, "Influence of the Relative Height of a Dome-Shaped Diaphragm on the Directivity of a Spherical-Enclosure Loudspeaker," J. Audio Eng. Soc., vol. 71, no. 3, pp. 118-128, (2023 March.). doi: https://doi.org/10.17743/jaes.2022.0064
Z. Zhang, G. Yu, and L. Liang, "Influence of the Relative Height of a Dome-Shaped Diaphragm on the Directivity of a Spherical-Enclosure Loudspeaker," J. Audio Eng. Soc., vol. 71 Issue 3 pp. 118-128, (2023 March.). doi: https://doi.org/10.17743/jaes.2022.0064
Abstract: The influence of diaphragm shape on loudspeaker directivity has been evaluated only in the frontal half-space in studies using infinite baffle models, and thus, information in the rear field remains unknown. To extend the result to the entire space, a spherical-enclosure loudspeaker model (SELM) is used in this paper that is based on modifications of existing rigid-sphere loudspeaker models. Using the boundary element method, the radiation of the SELM is simulated in the full audible range, and then directivities for dome-shaped diaphragms with different relative heights (RHs) are compared and analyzed using various metrics. The results show that in general, the planar diaphragm exhibits narrower directivity than convex or concave domes, whereas directivities of the latter two change differently with RH. In the case of a concave hemisphere, a resonance occurs around ka0 = 7.14 (a0 is the radius of the sphere), causing a low radiation power and an unusual directivity pattern, which agrees with findings of Suzuki and Tichy. For the rear radiation, the rear-to-front difference in sound pressure level of the convex hemisphere does not exceed 10 dB in the whole audible range, indicating that its rear radiation should not be neglected even in high frequencies.
@article{zhang2023influence,
author={zhang, zhichao and yu, guangzheng and liang, linda},
journal={journal of the audio engineering society},
title={influence of the relative height of a dome-shaped diaphragm on the directivity of a spherical-enclosure loudspeaker},
year={2023},
volume={71},
number={3},
pages={118-128},
doi={https://doi.org/10.17743/jaes.2022.0064},
month={march},}
@article{zhang2023influence,
author={zhang, zhichao and yu, guangzheng and liang, linda},
journal={journal of the audio engineering society},
title={influence of the relative height of a dome-shaped diaphragm on the directivity of a spherical-enclosure loudspeaker},
year={2023},
volume={71},
number={3},
pages={118-128},
doi={https://doi.org/10.17743/jaes.2022.0064},
month={march},
abstract={the influence of diaphragm shape on loudspeaker directivity has been evaluated only in the frontal half-space in studies using infinite baffle models, and thus, information in the rear field remains unknown. to extend the result to the entire space, a spherical-enclosure loudspeaker model (selm) is used in this paper that is based on modifications of existing rigid-sphere loudspeaker models. using the boundary element method, the radiation of the selm is simulated in the full audible range, and then directivities for dome-shaped diaphragms with different relative heights (rhs) are compared and analyzed using various metrics. the results show that in general, the planar diaphragm exhibits narrower directivity than convex or concave domes, whereas directivities of the latter two change differently with rh. in the case of a concave hemisphere, a resonance occurs around ka0 = 7.14 (a0 is the radius of the sphere), causing a low radiation power and an unusual directivity pattern, which agrees with findings of suzuki and tichy. for the rear radiation, the rear-to-front difference in sound pressure level of the convex hemisphere does not exceed 10 db in the whole audible range, indicating that its rear radiation should not be neglected even in high frequencies.},}
TY - paper
TI - Influence of the Relative Height of a Dome-Shaped Diaphragm on the Directivity of a Spherical-Enclosure Loudspeaker
SP - 118
EP - 128
AU - Zhang, Zhichao
AU - Yu, Guangzheng
AU - Liang, Linda
PY - 2023
JO - Journal of the Audio Engineering Society
IS - 3
VO - 71
VL - 71
Y1 - March 2023
TY - paper
TI - Influence of the Relative Height of a Dome-Shaped Diaphragm on the Directivity of a Spherical-Enclosure Loudspeaker
SP - 118
EP - 128
AU - Zhang, Zhichao
AU - Yu, Guangzheng
AU - Liang, Linda
PY - 2023
JO - Journal of the Audio Engineering Society
IS - 3
VO - 71
VL - 71
Y1 - March 2023
AB - The influence of diaphragm shape on loudspeaker directivity has been evaluated only in the frontal half-space in studies using infinite baffle models, and thus, information in the rear field remains unknown. To extend the result to the entire space, a spherical-enclosure loudspeaker model (SELM) is used in this paper that is based on modifications of existing rigid-sphere loudspeaker models. Using the boundary element method, the radiation of the SELM is simulated in the full audible range, and then directivities for dome-shaped diaphragms with different relative heights (RHs) are compared and analyzed using various metrics. The results show that in general, the planar diaphragm exhibits narrower directivity than convex or concave domes, whereas directivities of the latter two change differently with RH. In the case of a concave hemisphere, a resonance occurs around ka0 = 7.14 (a0 is the radius of the sphere), causing a low radiation power and an unusual directivity pattern, which agrees with findings of Suzuki and Tichy. For the rear radiation, the rear-to-front difference in sound pressure level of the convex hemisphere does not exceed 10 dB in the whole audible range, indicating that its rear radiation should not be neglected even in high frequencies.
The influence of diaphragm shape on loudspeaker directivity has been evaluated only in the frontal half-space in studies using infinite baffle models, and thus, information in the rear field remains unknown. To extend the result to the entire space, a spherical-enclosure loudspeaker model (SELM) is used in this paper that is based on modifications of existing rigid-sphere loudspeaker models. Using the boundary element method, the radiation of the SELM is simulated in the full audible range, and then directivities for dome-shaped diaphragms with different relative heights (RHs) are compared and analyzed using various metrics. The results show that in general, the planar diaphragm exhibits narrower directivity than convex or concave domes, whereas directivities of the latter two change differently with RH. In the case of a concave hemisphere, a resonance occurs around ka0 = 7.14 (a0 is the radius of the sphere), causing a low radiation power and an unusual directivity pattern, which agrees with findings of Suzuki and Tichy. For the rear radiation, the rear-to-front difference in sound pressure level of the convex hemisphere does not exceed 10 dB in the whole audible range, indicating that its rear radiation should not be neglected even in high frequencies.
Authors:
Zhang, Zhichao; Yu, Guangzheng; Liang, Linda
Affiliations:
Acoustic Laboratory, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China; Acoustic Laboratory, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China; College of Civil Engineering and Architecture, Guangxi University, Nanning, China(See document for exact affiliation information.) JAES Volume 71 Issue 3 pp. 118-128; March 2023
Publication Date:
March 7, 2023Import into BibTeX
Permalink:
http://www.aes.org/e-lib/browse.cfm?elib=22035