AES E-Library

AES E-Library

Sparse Iterative Beamforming Using Spherical Microphone Arrays for Low-Latency Direction of Arrival Estimation in Reverberant Environments

Document Thumbnail

Acoustic direction of arrival estimation methods allows positional information about sound sources to be transmitted over a network using minimal bandwidth. For these purposes,methods that prioritize low computational overhead and consistent accuracy under non-ideal conditions are preferred. The estimation method introduced in this paper uses a set of steered beams to estimate directional energy at sparsely distributed orientations around a spherical microphone array. By iteratively adjusting beam orientations based on the orientation of maximum energy, an accurate orientation estimate of a sound source may be produced with minimal computational cost. Incorporating conditions based on temporal smoothing and diffuse energy estimation further refines this process. Testing under simulated conditions indicates favorable accuracy under reverberation and source discrimination when compared with several other contemporary localization methods. Outcomes include an average localization error of less than 10? under 2 s of reverberation time (T60) and the potential to separate up to four sound sources under the same conditions. Results from testing in a laboratory environment demonstrate potential for integration into real-time frameworks.

Authors:
Affiliations:
JAES Volume 69 Issue 12 pp. 967-977; December 2021
Publication Date:
Permalink: https://www.aes.org/e-lib/browse.cfm?elib=21545

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member and would like to subscribe to the E-Library then Join the AES!

This paper costs $33 for non-members and is free for AES members and E-Library subscribers.

Learn more about the AES E-Library

E-Library Location:

DOI:

Start a discussion about this paper!


AES - Audio Engineering Society