History and Practice of Digital Sound Synthesis

Julius Smith
CCRMA, Stanford University

AES-2006 Heyser Lecture

October 6, 2006
Overview
Digital sound synthesis approaches in approximate historical order:

- Wavetable (one period)
- Subtractive
- Additive
- Frequency Modulation (FM)
- Sampling
- Spectral Modeling
- Physical Modeling

Some connections with audio coding will be noted

Emphasis:

- Sound examples
- Block diagrams
- Historical notes
The Knoll, Stanford University
Early Digital Sound Synthesis

Overview

Early Digital Synthesis
- Music V
- KL Music
- “Daisy”
- Additive Analysis
- Additive Synthesis
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice
- Sampling Synthesis
- Modern Example

Spectral Modeling

Physical Modeling

Summary
Music V Scripting Language ("Note Cards")

Overview

Early Digital Synthesis

- Music V
- KL Music
- "Daisy"
- Additive Analysis
- Additive Synthesis
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- Sampling Synthesis
- Modern Example

Spectral Modeling

Physical Modeling

Summary

- Essentially Supported in MPEG-4 Structured Audio Orchestra Language (SAOL) (Music V → csound → SAOL)
- "Encoding sounds" as "instruments" is hard, in general

```
INS 0 4 ;
ØSC P5 P7 B2 F3 P30 ;
ØSC P6 P7 B3 F4 P29 ;
AD2 B2 B3 B2 ;
MLT B2 V1 B3 ;
AD2 B3 V2 B3 ;
MLT P8 V3 B4 ;
ØSC B4 V4 B4 F5 P28 ;
AD2 P8 B4 B4 ;
AD2 B4 V5 B5 ;
ØSC B3 B5 B5 F2 V7 ;
ØSC B2 B4 B4 F1 V8 ;
MLT B2 B4 B4 ;
MLT B4 V6 B4 ;
ØUT B4 B1 ;
END ;
```
Kelly-Lochbaum Vocal Tract Model

Overview

- Early Digital Synthesis
 - Music V
 - KL Music
 - "Daisy"
 - Additive Analysis
 - Additive Synthesis
 - FM Synthesis
 - FM Formula
 - FM Patch
 - FM Spectra
 - FM Examples
 - FM Voice
 - Sampling Synthesis
 - Modern Example

-Spectral Modeling

- Physical Modeling

Summary

- John L. Kelly and Carol Lochbaum (1962)
Sound Example

“Bicycle Built for Two”: (WAV) (MP3)

- Vocal part by Kelly and Lochbaum (1961)
- Musical accompaniment by Max Mathews
- Computed on an IBM 704
- Based on Russian speech-vowel data from Gunnar Fant’s book
- Probably the first digital physical-modeling synthesis sound example by any method
- Inspired Arthur C. Clarke to adapt it for “2001: A Space Odyssey” — the computer’s “first song”
Classic Additive-Synthesis Analysis (Heterodyne Comb)

Overview
- Early Digital Synthesis
 - Music V
 - KL Music
 - "Daisy"
 - Additive Analysis
 - Additive Synthesis
 - FM Synthesis
 - FM Formula
 - FM Patch
 - FM Spectra
 - FM Examples
 - FM Voice
 - Sampling Synthesis
 - Modern Example

Spectral Modeling

Physical Modeling

Summary

John Grey 1975 — CCRMA Tech. Reports 1 & 2
(CCRMA “STANM” reports — available online)
Classic Additive-Synthesis (Sinusoidal Oscillator Envelopes)

Overview

Early Digital Synthesis
- Music V
- KL Music
- “Daisy”
- Additive Analysis
- **Additive Synthesis**
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice
- Sampling Synthesis
- Modern Example

Spectral Modeling

Physical Modeling

Summary

John Grey 1975 — CCRMA Tech. Reports 1 & 2
(CCRMA “STANM” reports — available online)
Overview

Early Digital Synthesis
- Music V
- KL Music
- “Daisy”
- Additive Analysis
- Additive Synthesis
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice
- Sampling Synthesis
- Modern Example

Spectral Modeling

Physical Modeling

Summary

Classic Additive Synthesis Diagram

\[y(t) = \sum_{i=1}^{4} A_i(t) \sin \left[\int_0^t \omega_i(t) dt + \phi_i(0) \right] \]
Classic Additive-Synthesis Examples

Overview

Early Digital Synthesis
- Music V
- KL Music
- “Daisy”
- Additive Analysis
 - Additive Synthesis
- FM Synthesis
- FM Formula
- FM Patch
- FM Spectra
- FM Examples
- FM Voice
- Sampling Synthesis
- Modern Example

Spectral Modeling

Physical Modeling

Summary

- Bb Clarinet
- Eb Clarinet
- Oboe
- Bassoon
- Tenor Saxophone
- Trumpet
- English Horn
- French Horn
- Flute
- All of the above
- Independently synthesized set

(Synthesized from original John Grey data)
Frequency Modulation (FM) Synthesis

FM synthesis is normally used as a *spectral modeling* technique.

- Discovered and developed (1970s) by John M. Chowning (CCRMA Founding Director)
- Key paper: JAES 1973 (vol. 21, no. 7)
- Commercialized by Yamaha Corporation:
 - DX-7 synthesizer (1983)
 - OPL chipset (SoundBlaster PC sound card)
 - Cell phone ring tones

- On the physical modeling front, synthesis of vibrating-string waveforms using *finite differences* started around this time:
 - Hiller & Ruiz, JAES 1971 (vol. 19, no. 6)
FM Formula

\[x(t) = A_c \sin[\omega_c t + \phi_c + A_m \sin(\omega_m t + \phi_m)] \]

where

\[(A_c, \omega_c, \phi_c)\] specify the carrier sinusoid
\[(A_m, \omega_m, \phi_m)\] specify the modulator sinusoid

Can also be called phase modulation
Jean-Claude Risset observation (1964–1969):

Brass bandwidth \propto amplitude

\[f_m = f_0 \]

\[f_c = f_0 \]
FM Harmonic Amplitudes (Bessel Function of First Kind)

Harmonic number k, FM index β:
Frequency Modulation (FM) Examples

All examples by John Chowning unless otherwise noted:

- **FM brass synthesis**
 - Low Brass example
 - Dexter Morril’s FM Trumpet

- **FM singing voice (1978)**
 Each formant synthesized using an FM operator pair (two sinusoidal oscillators)
 - Chorus
 - Voices
 - Basso Profundo

- **Other early FM synthesis**
 - Clicks and Drums
 - Big Bell
 - String Canon
FM Voice

FM voice synthesis can be viewed as "compressed modeling of spectral formants".
Sampling Synthesis History

- 1979 - Fairlight Computer Music Instrument - 8-bit
 - First commercial sampler
 - Eight voices, 8 bits, 64 KB (4 sec) RAM, 16 kHz (mono)
 - Editing, looping, mixing
 - One could *draw* waveforms and additive-synthesis amplitude envelopes (for each harmonic) with a light pen
 - $25,000–$36,000!

- 1981 - E-mu Systems Emulator
 - First “affordable” sampler ($10,000)
 - Eight voices, 128 K RAM, 8-bit, 80 lb.

- 1986 - Ensoniq Mirage
 - Breakthrough price-point ($1695)
 - Eight voices, 144 K RAM, 8-bit
Modern Sampled Piano

Example:¹

- 40 Gigabytes on ten DVDs (three sampled pianos)
- Every key sampled
- 4–10 “velocity layers”
- Separate recordings with soft pedal down
- Separate “release” recordings, for multiple striking velocities

¹Synthogy Ivory, $349 (Electronic Musician, October 2006)
Fundamental Problem with Sampling Synthesis

Piano timbre is determined by

- key number (1 byte)
- key velocity (2 bytes more than enough)
- pedal state (1 bit [or byte] per pedal)

Piano control is relatively low-dimensional:

- Less than six bytes of information per note played
- No continuous controls (typically)
- Ratio of total sampled data to one note of control data
 \[\approx \text{one billion} \]
Now consider bowed strings

Control parameters:

- Left-hand finger position(s)
- Left-hand vibrato
- Bow velocity
- Bow force
- Bow position
- Bow angle
- Shoulder damping
- Instrument orientation
- Player motion (within a room)
Difficulty of sampling bowed strings

- Bowed-string control is *infinite-dimensional* in principle
- Many *time-varying functions* — “gestures”
 (we counted more than 10)
- Complete sampling of bowed strings on the level of pianos has apparently never been done
- Rule-driven navigation of the *most useful* recorded playing regimes has worked well (*e.g.*, *Synful Orchestra*)
- *Model*-based approaches greatly reduce data requirements:
 - Spectral models (inspired by sound *perception*)
 - Physical models (model the sound *source*)
Spectral Modeling Synthesis
(Historical Summary)
Classic Vocoder Analysis & Resynthesis (Dudley 1939)

Overview
Early Digital Synthesis
Spectral Modeling
- Vocoder
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future
Physical Modeling
Summary

Data Compression, Transmission, Storage, Manipulation, Noise reduction, ...

Analysis

Synthesis

Processing

magnitude, or magnitude and phase extraction

\[x(t) \rightarrow x_0(t) \rightarrow \hat{x}_0(t) \]
\[x_1(t) \rightarrow \hat{x}_1(t) \rightarrow \hat{x}(t) \]

\[x(t) = x_0(t) + x_1(t) + \ldots + x_{N-1}(t) \]

\[\hat{x}(t) = \hat{x}_0(t) + \hat{x}_1(t) + \ldots + \hat{x}_{N-1}(t) \]
Phase Vocoder Channel Model

Analysis Model

Synthesis Model

- Early “channel vocoder” implementations (hardware) only measured amplitude $a_k(t)$ (Dudley 1939)
- The “phase vocoder” (Flanagan and Golden 1966) added phase tracking in each channel
- Portnoff (1976) developed the FFT phase vocoder, which replaced the heterodyne comb in computer-music additive-synthesis analysis (James A. Moorer)
- Inverse FFT synthesis (Rodet and Depalle 1992) gave faster sinusoidal oscillator banks
Amplitude and Frequency Envelopes

\[a_k(t) \]

\[\Delta \omega_k(t) = \dot{\phi}_k(t) \]

- Early Digital Synthesis
- Spectral Modeling
 - Vocoder
 - Vocoder Examples
 - Sinusoidal Modeling
 - Spectral Trajectories
 - Sines + Noise
 - S+N Examples
 - S+N FX
 - S+N XSynth
 - Sines + Transients
 - S + N + Transients
 - S+N+T TSM
 - S+N+T Freq Map
 - S+N+T Windows
 - HF Noise Modeling
 - HF Noise Band
 - S+N+T Examples
 - SM Summary
 - Spec Future

Julius Smith

AES-2006 Heyser Lecture – 28 / 84
Channel Vocoder Sound Examples

- **Original**

- 10 channels, sine carriers
- 10 channels, narrowband-noise carriers

- 26 channels, sine carriers
- 26 channels, narrowband-noise carriers
- 26 channels, narrowband-noise carriers, channels reversed

- **Phase Vocoder**: Identity system in absence of modifications

- The FFT Phase Vocoder next transitioned to the Short-Time Fourier Transform (STFT) (Allen and Rabiner 1977)
Tracking Spectral Peaks in the Short-Time Fourier Transform

- STFT peak tracking at CCRMA: mid-1980s (PARSHL program)
- Motivated by vocoder analysis of piano tones
- Independently developed for speech coding by McAulay and Quatieri at Lincoln Labs

Overview

Early Digital Synthesis

Spectral Modeling
- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling

Summary
Example Spectral Trajectories

Overview

Early Digital Synthesis

Spectral Modeling
- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
 - Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling

Summary

Overview
Early Digital Synthesis
Spectral Modeling
- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling
Summary

\[y(t) = \sum_{i=1}^{4} A_i(t) \cos \left[\int_0^t \omega_i(t) dt + \phi_i(0) \right] + (h_t * u)(t) \]
Sines + Noise Sound Examples

Xavier Serra 1989 thesis demos (Sines + Noise signal modeling)

- Piano
 - Original
 - Sinusoids alone
 - Residual after sinusoids removed
 - Sines + noise model

- Voice
 - Original
 - Sinusoids
 - Residual
 - Synthesis
Musical Effects with Sines+Noise Models (Serra 1989)

- Piano Effects
 - Pitch downshift one octave
 - Pitch flattened
 - Varying partial stretching

- Voice Effects
 - Frequency-scale by 0.6
 - Frequency-scale by 0.4 and stretchpartials
 - Variable time-scaling, deterministic to stochastic
Cross-Synthesis with Sines+Noise Models (Serra 1989)

- Voice “modulator”
- Creaking ship’s mast “carrier”
- Voice-modulated creaking mast
- Same with modified spectral envelopes
Sines + Transients Sound Examples (Serra 1989)

In this technique, the sinusoidal sum is phase-matched at the cross-over point only (with no cross-fade).

- **Marimba**
 - Original
 - Sinusoidal model
 - Original attack, followed by sinusoidal model

- **Piano**
 - Original
 - Sinusoidal model
 - Original attack, followed by sinusoidal model
Multiresolution Sines + Noise + Transients (Levine 1998)

Why Model Transients Separately?

- Sinusoids efficiently model spectral *peaks* over time
- Filtered noise efficiently models spectral *residual* vs. t
- Neither is good for *abrupt transients* in the waveform
- Phase-matched oscillators are expensive
- More efficient to switch to a *transient model* during transients
- Need sinusoidal *phase matching* at the switching times

Transient models:

- Original waveform slice (1988)
- Wavelet expansion (Ali 1996)
- MPEG-2 AAC (with short window) (Levine 1998)
- Frequency-domain LPC (time-domain amplitude envelope) (Verma 2000)
Time Scale Modification of Sines + Noise + Transients Models

Overview

- Early Digital Synthesis
- Spectral Modeling
 - Vocoder
 - Vocoder Examples
 - Sinusoidal Modeling
 - Spectral Trajectories
 - Sines + Noise
 - S+N Examples
 - S+N FX
 - S+N XSynth
 - Sines + Transients
 - S + N + Transients
 - S+N+T TSM
 - S+N+T Freq Map
 - S+N+T Windows
 - HF Noise Modeling
 - HF Noise Band
 - S+N+T Examples
 - SM Summary
 - Spec Future

Physical Modeling

Summary

Time-Scale Modification (TSM) becomes *well defined*:

- Transients are *translated* in time
- Sinusoidal envelopes are *scaled* in time
- Noise-filter envelopes also *scaled* in time
- Dual of TSM is *frequency scaling*
Sines + Noise + Transients Time-Frequency Map

Overview

Early Digital Synthesis

Spectral Modeling
- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling

Summary

(Levine 1998)
Corresponding Analysis Windows

Overview

Early Digital Synthesis

Spectral Modeling
- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling

Summary
Quasi-Constant-Q (Wavelet) Time-Frequency Map

Overview

Early Digital Synthesis

Spectral Modeling

- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling

Summary

Julius Smith

AES-2006 Heyser Lecture – 41 / 84
Bark-Band Noise Modeling at High Frequencies (Levine 1998)

Overview

Early Digital Synthesis

Spectral Modeling

- Vocoder
- Vocoder Examples
- Sinusoidal Modeling
- Spectral Trajectories
- Sines + Noise
- S+N Examples
- S+N FX
- S+N XSynth
- Sines + Transients
- S + N + Transients
- S+N+T TSM
- S+N+T Freq Map
- S+N+T Windows
- HF Noise Modeling
- HF Noise Band
- S+N+T Examples
- SM Summary
- Spec Future

Physical Modeling

Summary
Amplitude Envelope for One Noise Band

For more information, see Scott Levine’s thesis.²
Sines + Noise + Transients Sound Examples

Mozart’s Le Nozze di Figaro

- Original
- Compressed using MPEG-AAC at 32 kbps
- Compressed using sines+transients+noise at 32 kbps
- Multiresolution sinusoids alone
- Residual Bark-band noise
- Transform-coded transients (AAC)
- Bark-band noise above 5 kHz
Rock Example

“It Takes Two” by Rob Base & DJ E-Z Rock

- Original
- MPEG-AAC at 32 kbps
- Sines+transients+noise at 32 kbps

- Multiresolution sinusoids
- Residual Bark-band noise
- Transform-coded transients (AAC)
- Bark-band noise above 5 kHz
Time Scale Modification using Sines + Noise + Transients

Time-Scale Modification (pitch unchanged)
- S+N+T time-scale factors [2.0, 1.6, 1.2, 1.0, 0.8, 0.6, 0.5]

S+N+T Pitch Shifting (timing unchanged)
- Pitch-scale factors [0.89, 0.94, 1.00, 1.06, 1.12]
Spectral Modeling History Highlights

- Fourier’s theory (1822)
- Teleharmonium (1906)
- Hammond organ (1930s)
- Channel Vocoder (1939)
- Phase Vocoder (1966)
- “Additive Synthesis” (1969)
- FFT Phase Vocoder (1976)
- Sinusoidal Modeling (1977, 1979, 1985)
- Sines+Noise (1989)
- Sines+Transients (1989)
- Sines+Noise+Transients (1998)

Perceptual audio coding:
- Princen-Bradley filterbank (1986)
- Auditory masking usage
- Dolby AC2
- Musicam
- ASPEC
- MPEG-I, II, IV (incl. S+N+T “parametric sounds”)

Julius Smith
Observations:

- Sinusoidal modeling of sound is “Unreasonably Effective”
- Basic “auditory masking” discards $\approx 90\%$ information
- Interesting neuroscience observation:

 “... most neurons in the primary auditory cortex A1 are silent most of the time ...”

(from “Sparse Time-Frequency Representations”, Gardner and Magnasco, PNAS:103(16), April 2006)

- What is a true and correct “psychospectral model” for sound?
 - The cochlea of the ear is a real-time spectrum analyzer
 - How is the “ear’s spectrogram” represented at higher levels?
Physical Modeling Synthesis
(Historical Summary)
Kelly-Lochbaum Vocal Tract Model

Glottal Pulse
Train or Noise

\(e(n) \)

Kelly-Lochbaum Vocal Tract Model (Piecewise Cylindrical)

\(y(n) \)

John L. Kelly and Carol Lochbaum (1962)
Digital Waveguide Models (1985)

Lossless digital waveguide \triangleq bidirectional delay line at some wave impedance R

Useful for efficient models of
- strings
- bores
- plane waves
- conical waves
Signal scattering is caused by a change in wave impedance R:

$$k_1 = \frac{R_2 - R_1}{R_2 + R_1}$$

If the wave impedance changes every spatial sample, the Kelly-Lochbaum vocal-tract model results.
Load each delay line with half of initial string displacement.

Sum of upper and lower delay lines = string displacement.
Ideal Struck String (Velocity Waves)

Overview

Early Digital Synthesis

Spectral Modeling

Physical Modeling
- KL Music
- Digital Waveguide
- Signal Scattering
- Plucked String
- Struck String
- Karplus Strong
- EKS Algorithm
- Clarinet
- Wind Examples
- Bowed Strings
- Distortion Guitar
- Acoustic Strings
- Sound Examples
- Linearized Violin
- Commuted Piano
- Pulse Synthesis
- Complete Piano
- Sound Examples
- Phy Audio Coding
- Phy Audio Coding?

Summary

Julius Smith

Hammer strike = momentum transfer = velocity step:

\[m_h v_h(0-) = (m_h + m_s) v_s(0+) \]
Karplus-Strong (KS) Algorithm (1983)

- Discovered (1978) as “self-modifying wavetable synthesis”
- Wavetable is preferably initialized with random numbers.

\[
y^+(n) = \frac{1}{2} y(n) + \frac{1}{2} y(n-N)
\]
Karplus-Strong Sound Examples

- “Vintage” 8-bit sound examples:
 - Original Plucked String: (WAV) (MP3)
 - Drum: (WAV) (MP3)
 - Stretched Drum: (WAV) (MP3)
EKS Algorithm (Jaffe-Smith 1983)

\[N = \text{pitch period (}2 \times \text{ string length) in samples} \]

\[H_p(z) = \frac{1 - p}{1 - pz^{-1}} = \text{pick-direction lowpass filter} \]

\[H_\beta(z) = 1 - z^{-\beta N} = \text{pick-position comb filter, } \beta \in (0, 1) \]

\[H_d(z) = \text{string-damping filter (one/two poles/zeros typical)} \]

\[H_s(z) = \text{string-stiffness allpass filter (several poles and zeros)} \]

\[H_\rho(z) = \frac{\rho(N) - z^{-1}}{1 - \rho(N)z^{-1}} = \text{first-order string-tuning allpass filter} \]

\[H_L(z) = \frac{1 - R_L}{1 - R_Lz^{-1}} = \text{dynamic-level lowpass filter} \]
STK EKS Sound Examples

- Synthesis Tool Kit (STK) by Perry Cook, Gary Scavone, and others — distributed by CCRMA:

 Google search: STK ToolKit

STK Plucked String: (WAV) (MP3)

- Plucked String 1: (WAV) (MP3)
- Plucked String 2: (WAV) (MP3)
- Plucked String 3: (WAV) (MP3)
Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

- Executed in real time on one Motorola DSP56001 (20 MHz clock, 128K SRAM)
- Developed for the NeXT Computer introduction at Davies Symphony Hall, San Francisco, 1988
- Solo violin part was played live by Dan Kobialka of the San Francisco Symphony
Digital Waveguide Single Reed, Cylindrical Bore Model (1986)

Overview
- Early Digital Synthesis
- Spectral Modeling
- Physical Modeling
 - KL Music
 - Digital Waveguide
 - Signal Scattering
 - Plucked String
 - Struck String
 - Karplus Strong
 - EKS Algorithm
 - Clarinet
 - Wind Examples
 - Bowed Strings
 - Distortion Guitar
 - Acoustic Strings
 - Sound Examples
 - Linearized Violin
 - Commuted Piano
 - Pulse Synthesis
 - Complete Piano
 - Sound Examples
 - Phy Audio Coding
 - Phy Audio Coding?

Digital waveguide clarinet

- Control variable = mouth half-pressure
- Total reed cost = two subtractions, one multiply, and one table lookup per sample
Digital Waveguide Wind Instrument Sound Examples

- STK Clarinet: (WAV) (MP3)
 Google search: *STK clarinet*

- Synthesis Tool Kit (STK) by Perry Cook, Gary Scavone, and others — distributed by CCRMA:
 Google search: *STK ToolKit*

- Staccato Systems Slide Flute
 (based on STK flute, ca. 1995): (WAV) (MP3)

- Yamaha VL1 “Virtual Lead” synthesizer demos (1994):
 - Shakuhachi: (WAV) (MP3)
 - Oboe and Bassoon: (WAV) (MP3)
 - Tenor Saxophone: (WAV) (MP3)
Digital Waveguide Bowed Strings (1986)

- Reflection filter summarizes all losses per period (due to bridge, bow, finger, etc.)
- Bow-string junction = *memoryless* lookup table (or segmented polynomial)
“Electric Cello” Sound Examples (Peder Larson)

- Staccato Notes: (WAV) (MP3)
 (short strokes of high bow pressure, as from a bouncing bow)
- Bach’s First Suite for Unaccompanied Cello: (WAV) (MP3)
Soft Clipper

\[f(x) = \begin{cases}
-\frac{2}{3}, & x \leq -1 \\
-x^3/3, & -1 \leq x \leq 1 \\
\frac{2}{3}, & x \geq 1
\end{cases} \]
Amplifier Distortion + Amplifier Feedback

Sullivan 1990

Distortion output signal often further filtered by an amplifier cabinet filter, representing speaker cabinet, driver responses, etc.

Pre-distortion gain

Amplifier Feedback Delay

Nonlinear Distortion

Output Signal

Distortion output level

Gain

Feedback

Amplifier

Pre-distortion output level

String 1

String N

...
Distortion Guitar Sound Examples

(Stanford Sondius Project, ca. 1995)

- Distortion Guitar: (WAV) (MP3)
- Amplifier Feedback 1: (WAV) (MP3)
- Amplifier Feedback 2: (WAV) (MP3)
Commuted Synthesis of Acoustic Strings (1993)

Overview

Early Digital Synthesis

Spectral Modeling

Physical Modeling

- KL Music
- Digital Waveguide
- Signal Scattering
- Plucked String
- Struck String
- Karplus Strong
- EKS Algorithm
- Clarinet
- Wind Examples
- Bowed Strings
- Distortion Guitar
- Acoustic Strings
- Sound Examples
- Linearized Violin
- Commuted Piano
- Pulse Synthesis
- Complete Piano
- Sound Examples
- Phy Audio Coding
- Phy Audio Coding?

Summary

Julius Smith

Schematic diagram of a stringed musical instrument.

Equivalent diagram in the linear, time-invariant case.

Use of an aggregate excitation given by the convolution of original excitation with the resonator impulse response.
Commuted Components

Overview

Early Digital Synthesis

Spectral Modeling

Physical Modeling
- KL Music
- Digital Waveguide
- Signal Scattering
- Plucked String
- Struck String
- Karplus Strong
- EKS Algorithm
- Clarinet
- Wind Examples
- Bowed Strings
- Distortion Guitar
- Acoustic Strings
- Sound Examples
- Linearized Violin
- Commuted Piano
- Pulse Synthesis
- Complete Piano
- Sound Examples
- Phy Audio Coding
- Phy Audio Coding?

Summary

Julius Smith

```
Aggregate Excitation
```

```
<table>
<thead>
<tr>
<th>Trigger</th>
<th>Aggregate Excitation</th>
<th>a(t)</th>
<th>String</th>
<th>x(t)</th>
<th>Output</th>
</tr>
</thead>
</table>
```

“Plucked Resonator” driving a String.

```
<table>
<thead>
<tr>
<th>s(t)</th>
<th>Bridge Coupling</th>
<th>Guitar Body</th>
<th>Air Absorption</th>
<th>Room Response</th>
<th>y(t)</th>
<th>Output</th>
</tr>
</thead>
</table>
```

Possible components of a guitar resonator.
Sound Examples

Electric Guitar (Pick-Ups and/or Body-Model Added) (Stanford Sondius Project → Staccato Systems, Inc. → ADI, ca. 1995)

- Example 1: (WAV) (MP3)
- Example 2: (WAV) (MP3)
- Example 3: (WAV) (MP3)
- Virtual “wah-wah pedal”: (WAV) (MP3)

STK Mandolin

- STK Mandolin 1: (WAV) (MP3)
- STK Mandolin 2: (WAV) (MP3)
Sound Examples

More Recent Acoustic Guitar

- Bach Prelude in E Major: (WAV) (MP3)
- soundexample.wav

Virtual performance by Dr. Mikael Laurson, Sibelius Institute

Virtual guitar by Helsinki Univ. of Tech., Acoustics Lab

3 http://www.acoustics.hut.fi/
Commuted Synthesis of Linearized Violin

- Assumes *ideai Helmholtz motion* of string
- Sound Examples (Stanford Sondius project, ca. 1995):
 - Bass: (WAV) (MP3)
 - Cello: (WAV) (MP3)
 - Viola 1: (WAV) (MP3)
 - Viola 2: (WAV) (MP3)
 - Violin 1: (WAV) (MP3)
 - Violin 2: (WAV) (MP3)
 - Ensemble: (WAV) (MP3)
Commuted Piano Synthesis (1995)

Hammer-string interaction pulses (force):

Overview

Early Digital Synthesis

Spectral Modeling

Physical Modeling
- KL Music
- Digital Waveguide
- Signal Scattering
- Plucked String
- Struck String
- Karplus Strong
- EKS Algorithm
- Clarinet
- Wind Examples
- Bowed Strings
- Distortion Guitar
- Acoustic Strings
- Sound Examples
- Linearized Violin
- Commuted Piano
- Pulse Synthesis
- Complete Piano
- Sound Examples
- Phy Audio Coding
- Phy Audio Coding?
Faster collisions correspond to *narrower* pulses *(nonlinear filter)*

For a *given velocity*, filter is linear time-invariant

Piano is “linearized” for each hammer velocity
Multiple Hammer-String Interaction Pulses

Superimpose several individual pulses:

\[\delta_1 \rightarrow \text{LPF1} \rightarrow \text{Impulse 1} \]
\[\delta_2 \rightarrow \text{LPF2} \rightarrow \text{Impulse 2} \]
\[\delta_3 \rightarrow \text{LPF3} \rightarrow \text{Impulse 3} \]

\[\text{Impulse 1} + \text{Impulse 2} + \text{Impulse 3} \rightarrow \text{String Input} \]
Multiple Hammer-String Interaction Pulses

Superimpose several individual pulses:

As impulse amplitude grows (faster hammer strike), output pulses become *taller and thinner*, showing less overlap.
Complete Piano Model

Natural Ordering:

Commuted Ordering:

- Soundboard and enclosure are *commuted*
- Only need a stored recording of their *impulse response*
- An enormous digital filter is otherwise required
Piano and Harpsichord Sound Examples

(Stanford Sondius Project, ca. 1995)

- Piano: (WAV) (MP3)
- Harpsichord 1: (WAV) (MP3)
- Harpsichord 2: (WAV) (MP3)
More Recent Harpsichord Example

- Harpsichord Soundboard Hammer-Response: (WAV) (MP3)
- Musical Commuted Harpsichord Example: (WAV) (MP3)

Reference:

“Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model”,

by Vesa Välimäki, Henri Penttinen, Jonte Knif, Mikael Laurson, and Cumhur Erkut

JASP-2004

Google search: Harpsichord Sound Synthesis
Physical Modeling in Audio Coding

Spectral modeling synthesis is finding application in audio coding. Can physical modeling synthesis be used as well?

- MPEG-4/SAOL already supports essentially all sound synthesis methods
- Ability to *encode* sounds *automatically* is limited
 - Codebook-Excited Linear Prediction (CELP) is a successful *source-filter* model (not quite physical)
 - There are many isolated examples of model-fitting to recorded data
 - Good *model-based denoising* results have been obtained
 - Coder problem much harder when many sources are mixed
Best Known Model-Based Audio Coders

Overview

Early Digital Synthesis

Spectral Modeling

Physical Modeling

- KL Music
- Digital Waveguide
- Signal Scattering
- Plucked String
- Struck String
- Karplus Strong
- EKS Algorithm
- Clarinet
- Wind Examples
- Bowed Strings
- Distortion Guitar
- Acoustic Strings
- Sound Examples
- Linearized Violin
- Commuted Piano
- Pulse Synthesis
- Complete Piano
- Sound Examples

- Phy Audio Coding
- Phy Audio Coding?

Summary

Julius Smith

A “cover band” can put together a very convincing facsimile of popular music performance

JOS high-school band “Bittersweet”
Future Physical Modeling in Audio Coding?

A “Cover Band” Approach to Model-Based Audio Coding:

1. Recognize individual “audio streams” in a mix (CASA) (“I hear a trap set, electric bass, Fender Rhodes, and a strat”)
2. For each stream, calibrate its model heuristically (“Here is what I hear the bass part doing: ...”)
3. Fine-tune the synthetic mix to the real mix (joint “maximum likelihood estimation”)

Features of “Cover-Band Coding” (CBC):

- The “playing experience” of each “virtual performer” prevents artifacts — “musically unreasonable” parameters are made unlikely (“Bayesian priors”)
- An incorrect instrument must “imitate” its assigned stream
- New arrangements can be synthesized by deliberately choosing a new ensemble!
Summary

We have reviewed a “CCRMA-centric slice” of the history of digital sound synthesis (usually starting with results from Bell Labs):

- Wavetable (one period)
- Subtractive
- Additive
- FM
- Sampling
- Spectral Modeling
- Physical Modeling (more in tomorrow’s 4:30 PM masterclass)
- Connections to audio coding
Sound Acknowledgment
Sound Acknowledgment

Thanks to Emu / Creative Labs for providing a superb-quality external D/A converter for this talk (an E-Mu 0404/USB)