Impact and Audibility of Distortion in Automotive Audio Applications

Workshop on 146th AES Dublin 2019
Joachim Schlechter
Klippel GmbH
Audio System Evaluation over the product life cycle

Standard Measurement Condition
- Product Specification
- Development (components, system)
- Physical Evaluation

Production
- EOL Testing

Target Application Condition
- Definition
- Target Performance
- Physical + Perceptual Assessment
- Service
- Field Monitoring

Target Application Condition
- EOL Testing
- Production
Desired and Undesired Components?

Generation of Signal Distortion in an Audio System

Desired Small Signal Performance

Undesired time variance (heating, ageing)

Desired Large Signal Performance (motor, suspension)

Undesired Defects

• Rubbing coils, buzzing parts
• Wire beat, coil bottoming
• Loose particles, air leak noise
• Parasitic vibration of other components

Impact and Audibility of Distortion in Automotive Audio Applications, 4
What is a critical defect?

- Related to customer complaints
- Observable in in-situ condition
 - Impulsive distortion (panel buzzing, loose particles, loose electrical connection)
 - Significant air noise caused by a leakage of the enclosure (Subwoofer)
 - Excessive nonlinear distortion caused by motor instability and severe asymmetries
Evaluation in Final Application

Standard Measurements
- using R&D equipment (artificial head, analyzer, ...)
- limited to type approval test
- artificial test signal can be used
- operated by engineer

In-situ Measurements
- applicable to all units
- ordinary audio signals used as stimulus
- external
- Using existing hardware
- operated by end-user

Impact and Audibility of Distortion in Automotive Audio Applications, 7
Impact and Audibility of Distortion in Automotive Audio Applications

Listening Tests

STIMULI
(critical, typical program material)

Prototype, competitive products

Listening conditions

- How to make listening test more effective? (meaningful, valid, reliable data in a shorter time!!)
- How to cope with the influence of the listening conditions (stimuli, room, location)?
- How to understand relationship between physics, audibility of distortion and preference of the product?

Psychometric methods
(double blind testing)

Audibility, Preference

→ **Auralization Techniques**
Reduce complexity of the testing
Focus on critical questions, hypothesis
Systematic test using virtual loudspeaker modifications
Auralization of Signal Distortion

OBJECTIVE:
Virtual enhancement or attenuation of the distortion components
Audibility and Preference
Distortion generated Motor and Suspension

10 = “high”
100%
75%
50%
5 = “medium”
0 = “low”

rate of correct responses

audibility threshold
inaudible
just audible
audible
undesired
rated sound quality

target performance

Scaling of Signal Distortion S_{DIS}

0 dB
-6 dB
-12 dB
6 dB
12 dB

Impact and Audibility of Distortion in Automotive Audio Applications, 15
Audibility and Preference

Impulsive distortion generated by rub&buzz and other loudspeaker defects

Rate of correct responses

10 = “high”
100%

75%

50%

5 = “medium”

0 = “low”

0 dB
-6 dB
-12 dB
6 dB
12 dB

Audibility threshold
Psychometric function of audibility

Audible
Inaudible
Just audible
Target performance
Undesired
Rated sound quality

Impact and Audibility of Distortion in Automotive Audio Applications, 16
Combining Physical and Perceptual Evaluation of the Audio Product Measured in Target Application

- **Objective Evaluation**
 - Engineering
 - Objective
 - Physical Data
 - Distortion, Maximal Output
 - Displacement, Temperature
 - Evaluation of Design Choices
 - Clues for Improvements

- **Subjective Evaluation**
 - Marketing Management
 - Subjective
 - Audibility of distortion Preference
 - Defining target specification
 - Tuning to the market

- **Perceptual Modeling**
 - Performance/cost ratio

- **Listening Test + Auralization**

- **S_DIS**

Impact and Audibility of Distortion in Automotive Audio Applications, 17