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Background literature

"Communication acoustics – Introduction to Speech, Audio and
Psychoacoustics" Textbook. Ch 12: Spatial hearing, Pulkki &
Karjalainen 2015, Wiley

"Parametric time-frequency-domain spatial audio" Contributed book
with 15 chapters. eds Pulkki, Delikaris-Manias and Politis, Wiley, early
2017
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Where and what?
Localization of sources

Beam-forming towards different directions

clop
swooh

clipwind sound

chirp chirp

quack!

squawk

brr

swooh
rustle

toot!
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Human eye

The cells in the eye are a priori sensitive to direction of light

Response to quite limited range of wavelengths (380-740nm)
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Human spatial hearing

Response to very large range of wavelengths (2cm–30m)

Ear canal diameter <1cm, sound just bends into the canal

One ear alone knows quite little of the spatial position of the source
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Human spatial hearing

c©J. Blauert

The sources are localized by signal analysis by the brains

Signal characteristics in one ear / Signal differences between two ears
Hearing mechanisms estimate the most probable position for source
Hearing can be fooled easily by audio techniques!
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This chapter

Basic concepts

Head-related acoustics

Localization cues

Localization accuracy

Perception of direction in presence of echoes

Ability to listen selectively specific direction

Distance perception
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Coordinate system
Azimuth-elevation / median plane

Frontal plane
Median plane

Horizontal plane

front

r
δ

ϕ x

y

z
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Coordinate system 2
Cone of confusion

Cone of confusion

r

ϕccδcc
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Basic concepts
Listening conditions

Monaural hearing (hearing processes and cues that need signal from only
one ear)
Binaural hearing (differences in ear signals have also an effect)

Spatial sound reproduction methods
Monotic (signal fed to only one ear)
Diotic (same signal fed to both ears)
Dichotic (different signal fed to ears)
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Dichotic listening with headphones

τ        ph1 τ        ph2 a 1 a2

a) b)

attenuators

signalsignal

delays
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Head-related acoustics
Let us consider only free field first
How does incoming sound change as it hits the listener?
What is the transfer function from source to ear canal?

X 

Y   = H   Xleft

Y l

left 
y    =h    (t)*x(t)
left left
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Head-related acoustics measurements
Transfer function from source to ear canal

Place a microphone to ear canal or use dummy heads

Head-related transfer function, head-related impulse response

Depends heavily on the direction of the source
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Head related transfer function (HRTF)
Measured with real subject for three directions

Magnitude response
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Head related impulse response (HRIR)
HRIR == HRTF in time domain, quite often HRIRs are also called
HRTFs
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HRTF in horizontal plane
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HRIR in horizontal plane
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HRTF in median plane
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HRIR in median plane
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Localization cues
HRTFs impose some spatial information to ear canal signals

What information do we dig out from those?
Binaural localization cues

Interaural time difference, ITD
Interaural level difference, ILD

Monaural localization cues: spectral cues

Dynamic cues
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Interaural time difference (ITD)
Sound arrives a bit earlier to one ear than the other
ITD varies between -0.7ms and +0.7ms
JND of ITD is of order of 20µs

τ =
D
2c

(ϕ+ sin ϕ)

D Computed from 
equation
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Interaural time difference (ITD)
We are sensitive to

phase differences at low frequencies
time differences between envelopes at higher frequencies

left

right

ITD ITD

time/phase delay btw carriers
high frequencies > ~1600 Hz
time delay btw envelopes

low frequencies ~200 − ~1600 Hz
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Interaural time difference
HRTFs measured from a human, ITD of noise sound source in free field
computed with an auditory model
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Interaural level difference (ILD)

Head shadows incoming sound
Effect depends on

wavelength, no shadowing at low frequencies
distance, larger ILD at very short distances (< 1m)

ILD varies between -20dB and 20dB

JND is of order of 1dB for sources near median plane
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Interaural level difference
HRTFs measured from a human, ILD of sound source in free field
computed with an auditory model
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Basic lateralization results
Subjects report the position of internalized auditory source on interaural
axis

τ        ph1 τ        ph2 a 1 a2
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Addtional cues

Binaural cues (ITD and ILD) in principle resolve only the cone of
confusion where the source lies
Other cues are used to resolve the direction inside the cone

monaural spectral cues
dynamic cues (effect of head movements to cues)

cone of confusion

sound 
source

ccδ

ccθ

Spatial hearing 27/72
Pulkki June 6, 2016
Dept Signal Processing and Acoustics



Monaural spectral cues
Effect of pinna diffraction

Effect of reflections/diffraction from torso
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Monaural spectral cues
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Monaural spectral cues

Source has to have relatively flat spectrum

Relatively reliable cue for most natural sounds

Narrow-band sounds hard to localize (mosquito in dimmed room)

Humans adapt relatively fast to new HRTFs, especially of visual cues
are available

The ears also grow throughout the life, constant adaptation
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Dynamic cues
When head rotates, ITD and ILD and spectral cues change

Powerful though coarse cue

Resolves efficiently front/back/inside-the-head locations, but not fine
details

ITD & ILD
change a lot

ITD & ILD 
constant

head rotation
ITD & ILD

in opposite direction
change a lot
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Interaction between spatial hearing and vision
Both senses try to find out "where" is the source

If visual cue is clear, vision dominates

Ventriloquism, within about 30◦ area visual image captures auditory
image

If visual cue is blurry, or not prominent, auditory cue wins

In some cases two events occur, visual event and auditory event
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Accuracy of localization

How well do we localize point-like sources?

What is the accuracy of directional hearing?

Azimuth / elevation / 3D

Accuracy of perception of spatial distribution of wide sound sources
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Localization accuracy in horizontal plane

179,3°180°
±5,5°

281,6°

±10°

359°
±3,6°

80,7°
±9,2°

0°

90°

Direction of sound event
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270°

ϕ

Adapted from Blauert (1996)
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Localization accuracy in median plane

Direction of 
sound event

Direction of
auditory event

 = 0o

 = 36o+68o+74o

±22o±13o

±9o

+27o

±15o

+30o

±10o

 = 36o

 = 90o

 = 0o

 = 180o= 0o
0o

Adapted from Damaske and Wagener (1969)

Monaural cues are effective only after adaptation with visual reference,
thus field-of-vision has better accuracy
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Accuracy of 3D localization
Task: "Point with nose to the direction of auditory event"

Adapted from Middlebrooks (1992)
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Accuracy of perception of spatial distribution of
sources

13 loudspeakers in free field,
black squares denote
loudspeakers that produced
pink noise

Task: "Tell which
loudspeakers are on"

Incorrect perception of
distribution in complex cases

Perception of spatial
distribution of 1, 2, or 3
loudspeakers correct
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Directional hearing in enclosed spaces
Previous results in free field

What about rooms?

Humans are relatively ok in localization in rooms. How come?

direct path

early reflections
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Precedence effect
Free-field exists only for short time 1–10ms after direct sound has
arrived, and reflections not yet
The short time dominates in direction perception
Reflections (2 - 30ms) are perceived to arrive from the direction of direct
sound
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Precedence effect, experiments with two sounds
Direct sound S0: "lead"

Reflected sound ST : "lag"
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Binaural Advantages in Timbre Perception

Try to listen selectively certain direction

Binaural detection

Binaural decolouration
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Binaural intelligibility level difference
Minimum understandable level of
speech source in different
directions in diffuse noise

Reference condition: binaural
listening with source in back

Binaural intelligibility level
difference (BILD)

Monaural intelligibility level
difference (MILD)

MILD: best heard with source on
same side

BILD gives few decibels advantage
to ipsilateral MILD

"Better-ear" listening explains most
of the effect

Binaural hearing assists by few dB
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Adapted from Blauert (1996)



Perception of the distance of source

Cues

Loudness

Room effect

Spectral content

Binaural cues
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Distance cue 1: Loudness

Amplitude of direct sound decreases with 1/r law

The sound energy carried by the surface of a sphere (A = 4πr2) is
constant, and pressure is related to square root of energy

SPL decreases 6dB with every doubling of distance

If we know the source (human talker, insect, walking sounds), the
distance is perceived relatively accurately in short

In free field with real human speaker, similar effect is found:
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Distance cue 2: Effect of room

Direct-to-reverberant ratio (DRR) is often mentioned as "perceptual
cue", though it is rather a physical measure

If the listener has heard a source in a specific room, the change in DRR
leads into perception of approaching or distancing source

Effect depends on signal.

Easily perceivable on harmonic tone complexes
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Distance cue 2: Effect of room

The characteristics in ear canal signals change with DRR = one of
distance cues

The cue is not known well / which modification in the signal produces
the perception

One possibility is the sensitivity of ear to phase

Zero-phase cosine signal

Random-phase
(scrambled by the room
effect) version



Response of cochlea to 100Hz sawtooth with
phase modifications

Hypothesis: what more "buzzy" is signal, that closer it is perceived (in a
room)
Original sound phase scrambled with flat magnitude response

Adapted from Laitinen et al. 2013
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Distance cue 3: Effect of air absorption

shear viscosity, thermal conductivity or heat dissipation, and molecular
relaxation due to oxygen, nitrogen, and water vapor vibrational,
rotational, and translational energy

depends on temperature, humidity, static pressure

low-pass effect

can for instance have values [1-100]dB/km

known sounds are perceived closer if they have more energy at high
frequencies

hissing is perceived closer than normal speech
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Distance cue 4: short-range binaural cues

with plane waves, the ILD at low frequencies is negligible

e.g., when source is 3cm from one ear, it is 30cm from the other ear

1/r law makes ILD to have high magnitude

excess-ILD re ITD brings perceived source closer
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Accuracy of distance perception

In many studies
source is perceived too far in short distances
source is perceived too close in high distances

Acoustic horizon, maximum perceived distance of auditory event

Perception depends on signal, listening conditions and source directivity

Absolute accuracy low

Relative accuracy good (Is the source approaching?)
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Spatial sound reproduction

Target: relay the perception of sound!
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Spatial sound reproduction

Could we do the same with sound than with video camera

Create narrow beam for each loudspeaker

Audible sound includes wave lengths from 2 cm to about 30 m

Impossible to build a microphone having constant narrow beam width
without coloration and noise problems

Higher-order Ambisonics try to do it
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Spatial sound reproduction

Holography then, perhaps?

Lots of spaced microphones

Lots of loudspeakers

Wave field synthesis
Problems

High price
Requirements for microphones and loudspeakers are high
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Human spatial hearing
Signals from different sources summed in ear canals

Sound localization is based on signal analysis in brains

At one auditory frequency band one can perceive directions in limited
manner

c©J. Blauert
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Human spatial hearing

Directional cues
Interaural time difference (ITD)
Interaural level difference (ILD)
Pinna- and torso-related spectral cues

Dynamic change of cues with head movements

Suppression of effect of early reflections on directional cues,
precedence effect
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Spatial sound reproduction

Can we exploit knowledge of human spatial hearing?

Hearing can be fooled easily

E.g. two coherent sources produce one virtual source in the middle

Compare with vision: coherent sources do not produce virtual sources

Assumption: at one frequency band humans perceive only one direction
and one coherence cue
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Parametric spatial sound reproduction

Capture the sound

Analyze spatial parameters

Reproduce the sound in a way which recreates the spatial parameters

Design the system to avoid any timbral artifacts, sacrifice spatial
properties first

 micro-
phone 
or 
loudspeaker

signals 

time-
frequency
analysis

spatial
analysis

spatial
synthesis

signals in TF
domain

spatial
metadata
in TF 
domain

loudspeaker 
or headphone
signals
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Directional audio coding

Basic flow diagram

MICROPHONE
CHANNELS IN

TIME-FREQUENCY
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MEASURED 
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REPRODUCTION AUDIO 
OUT

Short-time 
Fourier analysis 
OR
Filterbank 

DIRECTION and
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Energetic 
analysis 

elevation ϕ(t,f )

diffuseness  ψ(t,f )

Point-like
virtual 
sources

Diffuse 
reproduction

1

2

N

1 or M microphone channels

ANALYSIS TRANSMISSION SYNTHESIS

azimuth θ(t,f )

cross-fade

1

2

M
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"Teleconference" implementation
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Properties of teleconference-DirAC

Perfect quality with few sources in free field

Diffuse reverberation subject to spatial and timbral artifacts
With several simultaneous sources sharing the same time-frequency
position

Timbral artifacts: "added room effect", "smearing of transients"
Spatial artifacts: "sources pull each other"
Sources near noise masking threshold: impossible to localize

Why these artifacts?
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"HQ" implementation

Virtual 
cardioid 
microphones

Directional
and 
diffuseness 
analysis

1 - Ψ Ψ

VBAP

Loudspeaker
setup information

Loudspeaker
setup 
information

Filterbank

B-format 
microphone
channels in

N frequency
channels

Sum over
frequency 
channels

Loudspeaker
signals

Direction (azi, ele)

Diffuseness (Ψ)

gain 
factors

B-format audio

single-channel 
audio

parameter

∫ 1

∫ 2

∫ 3 ∫ 3

Decorrelation

Decorrelation

This works better, but dont exactly know why (2007).
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Properties of HQ-DirAC

All teleconference-DirAC artifacts are mitigated largely

Some artifacts still present
Challenging acoustical conditions

Surrounding applause signals
Small rooms with strong early reflections
Strong unwanted sources

Potential loss of energy
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What did we find out

In challenging acoustical conditions sound arrives from multiple
directions in one time-frequency position

diffuseness will be analyzed to be high
sound arrives from many directions, the physical properties of the field
resemble diffuse field
original sound scene is still perceived to be not similar with diffuse
reverberation

sound is routed to non-diffuse stream

Decorrelation of free-field components causes artifacts, mainly timbral
ones

Avoid decorrelation!
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How to avoid decorrelation

Processing of transients separately
Recognize transients
Use better time resolution / bypass decorrelation

Covariance-domain processing
minimize decorrelated energy

Divide sound field into sectors from higher-order recording
perform separate analysis for each sector

Perform more complex analysis to sound field (multiple DOA values etc)
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Processing transients

Spatial hearing 66/72
Pulkki June 6, 2016
Dept Signal Processing and Acoustics



Processing transients separately

remove transients, reproduce using simple matrixing.

mitigates "transient smearing" effects

"added room" -effects still present with some signals

needs high temporal resolution in processing

solves "surrounding applause" cases

[Laitinen et al: JAES 59:1/2]
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Covariance-domain processing

Least-squares optimized solution for synthesis

the covariance matrix of output is dictated by directional parameters

optimized mixing solution leads to minimization of decorrelated energy

applicable to many other spatial sound rendering tasks

[Vilkamo et al: JAES 61:6]
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Covariance-domain processing
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Solutions with different model of the sound field

Higher number of microphones gives more information about sound
field

How to use that information in sound reproduction?

Divide sound field into sectors (Pulkki, Politis), perform lower-order
reproduction for each

Analyze multiple DOAs, and then reproduce (FhG, FORTH, Harpex)
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Sector-based parametric spatial sound reproduc-
tion

[Pulkki et al: AES 134], [Politis et al: IEEE manuscript]
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Sector-based parametric spatial sound reproduc-
tion

"Higher-order DirAC"

Challenging acoustical conditions occur rarely within sectors

Parameters computed with N:th -order input

Audio signals used in synthesis obtained with (N-1):th -order input

Self-noise issue of higher-order microphones are also avoided

System does not lose acoustic energy in any case
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