
AES70-3-xxxx
SC-02-12

aes70-3-xxxx-151112-cfc.docx

Page 1 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

DRAFT
AES standard for

Audio applications of networks -
Open Control Architecture -

Part 3: Protocol for TCP/IP Networks

Published by
Audio Engineering Society, Inc.
Copyright ©2015 by the Audio Engineering Society

Abstract

AES70 defines a scalable control-protocol architecture for professional media networks. It addresses device control
and monitoring only; it does not define standards for streaming media transport. However, the Open Control
Architecture (OCA) is intended to cooperate with various media transport architectures.

AES70 is divided into a number of separate parts. This Part 3 defines a communications protocol of AES70. This
protocol supports AES70-compliant remote control and monitoring of media devices over TCP/IP networks. This
document should be read together with Part 1, Framework, and Part 2, Class structure.

An AES standard implies a consensus of those directly and materially affected by its scope and provisions and is
intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AES standard
does not in any respect preclude anyone, whether or not he or she has approved the document, from manufacturing,
marketing, purchasing, or using products, processes, or procedures not in agreement with the standard. Prior to
approval, all parties were provided opportunities to comment or object to any provision. Attention is drawn to the
possibility that some of the elements of this AES standard or information document may be the subject of patent
rights. AES shall not be held responsible for identifying any or all such patents. Approval does not assume any
liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards document.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation. This document is subject to periodic review and
users are cautioned to obtain the latest edition.

Audio Engineering Society Inc. 551 Fifth Avenue, New York, NY., US.
www.aes.org/standards - standards@aes.org

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 2 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

Contents

0 Introduction ... 5	

0.1 General ... 5	

0.2 Documentation conventions ... 5	

1 Scope ... 5	

2 Normative references ... 5	

3 Terms, definitions and abbreviations ... 6	

4 Minimum Implementation .. 6	

5 Protocol Details .. 6	

5.1 Initialization ... 6	

5.1.1 IP Address Initialization ... 6	

5.1.2 Methods of IP address assignment ... 6	

5.1.3 Sockets and Ports .. 7	

5.1.4 Control Security ... 7	

5.2 Device Discovery .. 7	

5.2.1 General .. 7	

5.2.2 Service Discovery .. 7	

5.3 Device Supervision ... 8	

5.3.1 General .. 8	

5.3.2 Specification .. 8	

5.4 Device Reset .. 9	

5.4.1 General .. 9	

5.4.2 Reset not implemented .. 9	

5.4.3 Reset implemented .. 9	

5.5 Conventions ... 10	

5.5.1 Endianness .. 10	

5.5.2 Marshaling rules .. 10	

5.5.3 Example ... 10	

5.6 Protocol Data Units .. 11	

5.6.1 Message layout ... 11	

5.6.2 Command Message .. 12	

5.6.3 Response Message ... 14	

5.6.4 Notification Message ... 15	

5.6.5 Keep-Alive message .. 18	

5.6.6 Device reset message ... 19	

5.7 Protocol-specific datatypes .. 19	

5.7.1 General .. 19	

5.7.2 OcaNetworkAddress .. 19	

5.7.3 OcaNetworkHost ... 19	

5.7.4 OcaNetworkSystemInterfaceID ... 20	

Annex A (Informative) - Datatype index .. 21	

Annex B (informative) - UML Description of Protocol Data Unit (PDU) .. 22	

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 3 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

Foreword

This foreword is not part of this document, AES70-3-xxxx, AES standard for audio applications of networks - Open
Control Architecture - Part 3: Protocol for TCP/IP Networks.

This document is a member of the set that defines AES70, the Open Control Architecture. AES70C defines the
TCP/IP communications protocol for AES70. Other parts define the architectural framework and the specific control
repertoire.

AES70 is based on a proposed standard provided to the AES by the OCA Alliance, a trade association dedicated to
the development, standardization, promotion, and support of the Open Control Architecture.

The development project for this standard was originally proposed by the Open Control Architecture Alliance (OCA
Alliance) and initiated in October 2012 as project AES70 to be developed in task group SC-02-12-L. The OCA
Alliance also contributed the task-group working draft and, as a direct result, there are a number of references to
"OCA" in the protocol in order to maintain compatibility with implementations already in the field. The protocol for
TCP/IP networks in early drafts is also known as "OCP.1".

The members of the writing group that developed this document in draft are: J. Berryman, H. Hamamatsu, T. Head,
S. Jones, M. Lave, N. O'Neill, M. Renz, M. Smaak, G. van Beuningen, S. van Tienen, E. Wetzell.

J. Berryman led the task group.

Richard Foss
Chair, working group SC-02-12
2015-11-12

Note on normative language

In AES standards documents, sentences containing the word “shall” are requirements for compliance with the
document. Sentences containing the verb “should” are strong suggestions (recommendations). Sentences giving
permission use the verb “may”. Sentences expressing a possibility use the verb “can”.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 4 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 5 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

DRAFT
AES standard for

Audio applications of networks -
Open Control Architecture -

Part 3: Protocol for TCP/IP Networks
0 Introduction

0.1 General
This document contains the technical specification of the AES70-3 protocol of AES70, the Open Control
Architecture. AES70-3 supports AES70-compliant remote control and monitoring of media devices over TCP/IP
networks.

0.2 Documentation conventions
This document refers both to general data types that are used in all AES70 protocols and to specific data types that
are only used in AES70-3, In order to distinguish the difference, the names of the general data types start with 'Oca',
while the names of the specific data types start with 'Ocp1'.

Numerical values are decimal unless otherwise stated.

A Courier typeface is used to identify programmatic names to distinguish them from regular text.

Where new terminology is first introduced in body text, the term will be set in an italic typeface.

1 Scope
AES70 defines a scalable control-protocol architecture for professional media networks. AES70 addresses device
control and monitoring only; it does not define standards for streaming media transport.

AES70 is divided into a number of separate parts. This Part 3 specifies a protocol implementation for TCP/IP
networks. It should be read in conjunction with Part 1, Framework, and Part 2, Class Tree.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

AES70-1 AES standard for Audio applications of networks - Open Control Architecture - Framework. Audio
Engineering Society, New York, NY., US.

AES70-2 AES standard for Audio applications of networks - Open Control Architecture - Class Structure. Audio
Engineering Society, New York, NY., US.

RFC 3279 Dynamic Configuration of IPv4 Link-Local Addresses. Internet Engineering Task Force (IETF), 2005.

RFC 4279 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS). Internet Engineering Task Force
(IETF), 2005.

RFC 4862 IPv6 Stateless Address Autoconfiguration. Internet Engineering Task Force (IETF), 2007.

RFC 5246 The Transport Layer Security (TLS) Protocol, Version 1.2. Internet Engineering Task Force (IETF),
2008.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 6 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

RFC 6335 Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry. Internet Engineering Task Force (IETF), 2011

RFC 6762 Multicast DNS. Internet Engineering Task Force (IETF), 2013.

RFC 6763 DNS-Based Service Discovery. Internet Engineering Task Force (IETF), 2013.

3 Terms, definitions and abbreviations
For the purposes of this document, the following terms, definitions, and abbreviations apply. See also clause 3 of
AES70-1.

3.1
AES70-3 device
a device compliant with this standard

4 Minimum Implementation
Each AES70-3 device shall implement this entire specification.

This specification includes certain options that will be described below.

5 Protocol Details

5.1 Initialization

5.1.1 IP Address Initialization
The initialization steps described next shall take place during initialization of the OcaNetwork or
OcaStreamNetwork object(s) that the device uses (see AES70-2).

The ControlProtocol property of such objects shall have the value "OCP01".

5.1.2 Methods of IP address assignment
An AES70-3 device shall implement at least one of IPv4 and IPv6 network addressing standards. In this document,
an AES70-3 device that implements IPv4 is called an IPv4 device. A device that implements IPv6 is called an IPv6
device. A device may implement both IPv4 and IPv6, that is it may be both an IPv4 device and an IPv6 device.

Each IPv4 device should implement a DHCP client and use a DHCP server. Each IPv6 device should implement a
DHCPv6 client and use a DHCPv6 server. In what follows, these clients and servers will be collectively termed
IP address clients and IP address servers, respectively.

If a device belongs to multiple IP subnetworks, it should have an IP address client for each subnetwork. When
commencing operation on a subnetwork, the device should start the IP address client associated with that
subnetwork.

If an IP address client connects to an IP address server within the address assignment timeout, the device shall use
the address assigned by that server.

When an IP address server is not found within the timeout, or when the device does not implement an IP address
client:

1. An IPv4 device should use an IPv4 link-local address as defined in RFC 3279.

2. An IPv6 device should use the IPv6 link-local address that is automatically assigned by IPv6, as defined in
RFC 4862.

When the device does not implement link-local addressing, the IP address shall be assigned by manual means.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 7 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.1.3 Sockets and Ports
After acquiring an IP address, a device shall open either a TCP listen socket for incoming insecure AES70-3
sessions, or a TCP listen socket for incoming secure AES70-3 sessions, or both. Secure sessions are described in
5.1.4.

The device shall use TCP Port numbers in the standard IANA dynamic port range (49152 to 65535, see RFC 6335).
Within this range, the device may bind the insecure listen socket to any available TCP port, and the secure listen
socket to any other available TCP port. These ports shall be advertised, as explained in 5.2.2.

5.1.4 Control Security
Secure AES70-3 connections shall use the Transport Layer Security (TLS) protocol (RFC 5246) with the following
ciphersuite (RFC 4279):

TLS_DHE_PSK_WITH_AES_128_CBC_SHA

The previously shared key (PSK) identity that is exchanged in the TLS handshake may be any string. A device may
use multiple PSKs (with multiple PSK identities) in order to be used in multiple systems that use different PSKs.
The default PSK identity to be used shall be the following string:

OCA-PSK

The PSK used shall have a length of 1 to 512 bytes.

5.2 Device Discovery

5.2.1 General
Device discovery means the mechanism by which AES70-3 devices connected to the network make themselves
known to a commonly accessible directory service, and the mechanisms by which other devices in the network may
use that directory service for finding and addressing devices.

The AES70 device discovery process shall have a service discovery architecture, in which AES70-3 devices shall
register themselves in a directory of network services which may subsequently be queried by network entities
needing to know device IP addresses.

Service discovery shall be implemented using DNS-based Service Discovery (see RFC 6763).

NOTE: Another common use of the term "discovery" relates to discovery of device capabilities. In
AES70, capability discovery is implemented by enumeration methods of the device's root block
and, if present, inner blocks. Such enumerations are normal AES70 command-response
sequences with no special dependence on network type. Hence, they are not within the scope of
this document. For details, please see details of the OcaBlock class in AES70-1 and AES70-2.

5.2.2 Service Discovery
If an AES70-3 device has opened a listen socket for insecure AES70-3 connections, it shall register a service of the
following type:

_oca._tcp

If an AES70-3 device has opened a listen socket for secure AES70-3 connections, it shall register a service of the
following type:

_ocasec._tcp

For both secure and insecure services, the service name registered shall be equal to the NameAdvertised property
of the OcaNetwork or OcaStreamNetwork object that the connection is using. If this name is changed, the device
shall deregister the old service and register the new service under the new name.

Registration may be done in any desired domain; in most applications the local domain would be expected.
Registration in the local domain shall use the multicast DNS (mDNS) protocol (see RFC 6762).

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 8 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

When registering in the local domain, service name collisions are automatically resolved by the multicast DNS
protocol. When a service name is changed by multicast DNS to avoid a collision, the device whose service name has
been changed shall automatically update the NameAdvertised property.

NOTE: Name collisions are not automatically resolved when registration is done in a non-local
domain. Therefore, a unique default service name should be selected for AES70-3 devices if
registration in non-local domains is foreseen.

The ports registered for the services shall agree with those chosen for the device in accordance with 5.1.3.

The TXT records of both the insecure and secure registrations shall contain at least two key/value pairs, following
the version tag recommendations of RFC 6763, section 6. The first key/value pair shall be:
 txtvers=1 [OCA service registration version]

The second key/value pair shall contain the AES70 version in the following format:
 protovers=x

where ‘x’ is the decimal AES70 version as specified in the device's OcaDeviceManager object (see AES70-2).

The TXT record may contain more data, as long as the record contains the two mentioned key/value pairs, and as
long as the data follows the rules as explained in section 6 of RFC 6763. The TXT record shall start as shown in
figure 1. If the decimal AES70 version is greater than 9, the second length field shall become 0C16.

0916 txtvers=1 0B16 protovers=x

Figure 1 - TXT record starting fields

A controller may discover the AES70-3 devices in a network by performing a DNS-SD service browse in the
required domain, seeking the '_oca._tcp’ service, the ‘_ocasec._tcp’ service, or both.

Browsing in the local domain shall use multicast DNS (see RFC 6762).

5.3 Device Supervision

5.3.1 General
Device supervision means relatively constant (usually periodic) verification of device availability on the network.
AES70-3 defines a device supervision mechanism that may be used to supervise connected AES70-3 devices.

5.3.2 Specification
 Every AES70-3 device shall implement the supervision mechanism; controllers may enable or disable it, as
applications require.

At any time after establishing a secure or insecure connection to a device, a controller may start the device
supervision process by sending the device a KeepAlive message (see 5.6.5). From that moment until power-off or
device reset, both the device and the controller shall use the HeartbeatTime value to ensure that both the device
and the controller send a message every (HeartbeatTime) seconds. This message may be a KeepAlive message
or any other message.

The HeartbeatTime value shall be specified in the KeepAlive message, and may be changed at any time. Devices
shall support different HeartBeatTime values for different connections.

Once the supervision process has started, both the controller and the device shall keep track of the time between
received AES70-3 messages on the established connection. If either the controller or the device does not receive a
message for a length of time equal to three times the HeartBeatTime, the connection shall be considered lost, and
the controller or device shall close it. Critical AES70 applications shall use the KeepAlive mechanism, and not rely
on TCP/IP for connection loss detection.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 9 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

EXAMPLE
If the controller sends a HeartBeatTime of 2 seconds in its first KeepAlive message, both the
controller and the device are obliged to send a message every two seconds. If no message is
received for 6 seconds, the device and controller will consider the connection to be lost.

NOTE: If a controller does not send a KeepAlive message after establishing a connection, the
device supervision mechanism is not started on that connection. In this case, connection loss will
not be detected on idle connections (that is, connections with no control traffic) unless detected by
the TCP keep-alive mechanism. With typical parameter settings, the TCP keep-alive mechanism's
detection timeout is unacceptably slow - often hours. Furthermore, not all TCP/IP stacks implement
the keep-alive mechanism properly.

When a connection is lost, both the controller and the device shall perform appropriate termination processing, if
possible. Locks and subscriptions that were made on the connection shall be removed, and connection information
shall be cleared.

5.4 Device Reset

5.4.1 General
An AES70-3 device may implement the AES70 device reset mechanism.

5.4.2 Reset not implemented
If the device does not implement the reset mechanism, it shall respond to the SetResetKey message with a
NotImplemented status, and perform no other action. Otherwise, the following specification applies.

5.4.3 Reset implemented
Following power-on reset, the device's reset mechanism shall be disabled. To enable it, a controller shall first call
the device's OcaDeviceManager method SetResetKey. When calling SetResetKey, the controller shall pass the
following parameters:

ResetKey. A 128-bit device reset key; and

ResetAddress. The OcaNetworkAddress (see 5.7.10) on which the device shall listen for DeviceReset
messages (see 5.6.6). This address shall contain a UDP port number and, optionally, an IPv4 or IPv6 multicast
address.

Upon receipt of a SetResetKey message, the device shall arm the mechanism by opening a UDP socket on the port
specified in the ResetAddress parameter. If the ResetAddress parameter also specifies a multicast address, the
device shall join the specified multicast group.

If multiple SetResetKey messages are received, the parameters given in the most recent SetResetKey message
shall apply.

Once the reset mechanism is armed, the device shall monitor the UDP socket for a DeviceReset message
containing the given device reset key. If such a reset message is received the device shall perform a power-on reset.
If the given ResetAddress does not contain a multicast address, the reset message shall be sent directly to the
device via the specified port. If the ResetAddress does contain a multicast address, the reset message shall be sent
directly to the device, or to the multicast group, in both cases to the specified port.

If a DeviceReset message is received that contains a reset key value other than the specified one, the message
shall be ignored and no reset shall occur.

After a device has been reset or powered off, the device shall disarm its reset mechanism. The mechanism may be
re-armed by the procedure described above.

NOTE: If device reset keys are sent over insecure OCP connections, they could be intercepted and
used maliciously to sabotage systems. When it is desired to use the device reset mechanism in

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 10 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

applications where there is a sabotage threat, SetResetKey messages should only be sent over
secure OCP connections.

Devices which implement the device reset mechanism should provide a manual means (for example: switch, jumper,
or panel command) to disable the feature.

5.5 Conventions

5.5.1 Endianness
AES70-3 shall use network byte order (that is, big-endian or MSB first) for the basic AES70 integer data types, and
floating point numbers that consist of more than 1 byte.

5.5.2 Marshaling rules
The OcaBoolean datatype shall be marshaled as a single byte, where the value 0 identifies Boolean value false and
all other values identify Boolean value true.

Composed datatypes that are defined in AES70-2 shall be marshaled (that is, turned into network byte streams)
using the following rule:

• Each individual property of the composed datatype shall be marshaled in order of occurrence in the
datatype definition specified in AES70-2.

Furthermore, the following marshaling rules shall apply for the interfaces defined in AES70-2:

• The number of input parameters of a class method shall be passed in the parameterCount property of the
Ocp1Parameters structure of the Ocp1Command. See section 5.6.2.

• Input parameters of methods shall be marshaled into an Ocp1Parameters structure of Ocp1Command in
the order specified in AES70-2. See 5.6.2.

• The number of output parameters of a class method shall be passed in the parameterCount property of
the Ocp1Parameters structure of Ocp1Response. See 5.6.3.

• Output parameters of methods shall be marshaled into an Ocp1Parameters structure of the
Ocp1Response in the order specified in AES70-2. See 5.6.3.

• The number of parameters of an event shall be added to the parameterCount property of the
Ocp1NtfParams structure of Ocp1Notification.

• Parameters of events shall be marshaled into an Ocp1EventData structure of the Ocp1NtfParams
structure of Ocp1Notification in the order specified in AES70-2. See 5.6.4.

5.5.3 Example
For example consider the composed datatype OcaClassIdentification, which is specified in OCC as following:

OcaClassIdentification = { OcaClassID ClassID,
OcaClassVersionNumber
ClassVersion }

OcaClassID = { OcaUint16 FieldCount, OcaUint16[] Fields }

OcaClassVersionNumber = { OcaUint16 Value }

Now consider a specific class identification instance with the following values:
OcaClassIdentification classIdentification = {

ClassID = { 2, { 1, 3 } },
ClassVersion = 1 }

By the marshaling rules given above, this instance would be represented on the network by the following byte
sequence (decimal values, leftmost is transmitted first):

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 11 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

0, 2, 0, 1, 0, 3, 0, 1

5.6 Protocol Data Units

5.6.1 Message layout
5.6.1.1 General
Each AES70-3 message shall have the format shown in figure 2.

Figure 2 - General message layout

The c-style definition of the message protocol data unit shall be as follows:
struct {
 OcaUint8 syncVal; // Synchronization value
 Ocp1Header header; // OCP header
 OcaUint8 data[]; // Message data
} Ocp1MessagePdu;

where the parameters shall be as follows:

syncVal Message synchronization value indicating the start of a new AES70-3 message.
The synchronization value shall be the constant 3B16.

header AES70-3 header containing the general message fields.

data Data array holding the actual message data.

Receivers shall always check that every AES70-3 message starts with the synchronization value. If a received
message does not start with the standard synchronization value, the receiver shall close the connection to the sender.

NOTE: Following such a disconnect, the controller involved may choose to reopen the connection.
AES70 does not define a standard recovery sequence.

5.6.1.2 Header
The c-style definition of the AES70-3 data structure shall be as follows:
struct {
 OcaUint16 protocolVersion; // Version number of AES70C
 OcaUint32 pduSize; // Size of the PDU (in bytes)
 OcaMessageType pduType; // Type of the PDU
 OcaUint16 messageCount; // Message count
} Ocp1Header;

where the elements shall be as follows:

Sync
value header Data

ProtocolVersion MessageSize Message
Type MessageCount

protocolVersion
(length = 2 bytes)

Version number of the AES70-3 protocol. AES70 classes have their own version
numbers, so this protocol version shall only change if there is an update in the AES70-3

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 12 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.6.2 Command Message
5.6.2.1 Format
A command message shall have the format shown in figure 3.

Figure 3 - Command message

The c-style definition of the command message protocol data unit shall be as follows:
struct {
 OcaUint8 syncVal; // Synchronization value
 Ocp1Header header; // OCP Header
 Ocp1Command commands[messageCount]; // Array of commands
} Ocp1CommandPdu;

where the parameters shall be as follows:

syncVal
(length = 1 byte) Message synchronization value (see 5.6.1.1).

 Sync

value
header Command 1 Command 2 ...

Command
<Message

Count>

CommandSize Handle Target
ONo MethodID Parameters

TreeLevel MethodIndex Parameter
Count

Parameter
1

Parameter
2

Parameter
<Parameter

Count>
...

protocol described in this document.
pduSize
(length = 4 bytes)

Size of the entire PDU in bytes, including the header, excluding the synchronization
value.

pduType
(length = 1 byte)

Indicates the type of the PDU; that is, what message type the PDU contains. One of the
following message types shall be used (the value is given between brackets):

OcaCmd (0) Command - no Response Required

OcaCmdRrq (1) Command - Response Required

OcaNtf (2) Notification

OcaRsp (3) Response (to a command or notification)

OcaKeepAlive (4) Keep-alive message used for device supervision.

messageCount
(length = 2 bytes)

Message count indicating how many messages (of type pduType) are present in the ‘data’
field. This message count shall always be at least 1. If the pduType is equal to
OcaKeepAlive, the message count shall be 1.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 13 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

header
(length = 9 bytes) General message fields. See the Ocp1Header definition in 5.6.1.1.

commands
(variable length)

Array of (messageCount) commands. The command format is defined by the
Ocp1Command datatype - see 5.6.2.2.

5.6.2.2 Ocp1Command
The c-style definition of the Ocp1Command data structure shall be as follows:
struct {
 OcaUint32 commandSize; // Size of the individual command
 OcaUint32 handle; // Command handle
 OcaONo targetONo; // Destination ONo
 OcaMethodID methodID; // MethodID of method to invoke
 Ocp1Parameters parameters; // Parameters of the method to invoke
} Ocp1Command;

where the parameters shall be as follows:

commandSize
(length = 4 bytes)

Size of the individual command, in bytes. This shall be the size of the complete
Ocp1Command structure including this commandSize field.

handle
(length = 4 bytes)

Arbitrary 32 bits used as a reference ‘handle’ to the command. Responses shall use
the same handle value as the command that triggers the response. Controllers may
freely assign handle values to commands; devices shall match those handle values
in the respective responses. Handles shall be private to each TCP session between a
controller and a device.

targetONo
(length = 4 bytes)

Destination object number (OcaONo) within the controlled device. An OcaONo shall
have a size of 4 bytes (that is, an OcaUint32).

methodID
(length = 4 bytes)

Method ID (OcaMethodID) of the method to invoke (that is, the method of the
destination object to invoke). See 5.6.2.3.

parameters
(variable length)

Input parameters of the method to invoke. Even if the method to invoke does not
have any parameters this structure shall be present.

5.6.2.3 OcaMethodID
The c-style definition of the OcaMethodID data structure shall be as follows:
struct {
 OcaUint16 treeLevel; // Class tree level
 OcaUint16 methodIndex; // Index of the method
} OcaMethodID;

where the elements shall be defined as follows:

treeLevel
(length = 2 bytes) Level in the tree of the class which defines this method (1=root).

methodIndex
(length = 2 bytes)

The index of the method. The definition of the class that defines the method shall
determine the value of this index. Indexing shall start at 1 for each tree level.

See AES70-1 for details on class element identification.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 14 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.6.2.4 Ocp1Parameters

The c-style definition of the OcpParameters data structure shall be as follows:
struct {
 OcaUint8 parameterCount; // Number of parameters
 OcaUint8 parameters[]; // Parameters
} Ocp1Parameters;

where the elements shall be defined as follows:

parameterCount
(length = 1 byte)

Number of parameters present in the parameter array. This value may be zero, in
which case no parameter data shall be present.

parameters
(variable length)

Parameter array holding the actual (marshaled) parameters of the command. The
parameters shall be configured for the particular method being invoked. The specific
parameters required by each method of each class are defined in AES70-2.

5.6.3 Response Message
5.6.3.1 Format

A response message shall have the format shown in figure 4.

Figure 4 - Response message

The c-style definition of the response message protocol data unit shall be as follows:
struct {
 OcaUint8 syncVal; // Synchronization value
 Ocp1Header header; // OCP Header
 Ocp1Response responses[messageCount]; // Array of responses
} Ocp1ResponsePdu;

where the elements shall be defined as follows:

syncVal
(length = 1 byte) Message synchronization value. See 5.6.1.1.

header
(length = 9 bytes) General message fields. See 5.6.1.1.

responses
(variable length)

Array of (messageCount) responses. The response format is defined by the
Ocp1Response datatype - see 5.6.3.2.

5.6.3.2 Ocp1Response
The c-style definition of the OcpResponse data structure shall be as follows:
struct {
 OcaUint32 responseSize; // Size of the individual response
 OcaUint32 handle; // Response handle

Sync
value header Response

1
Response

2
...

Response
<Message
Count>

ResponseSize Handle StatusCode Parameter
Count

Parameter
1

Parameter
<Parameter
Count>

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 15 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

 OcaStatus statusCode; // Status code of the response
 Ocp1Parameters parameters; // Response parameters
} Ocp1Response;

where the elements shall be defined as follows:

responseSize
(length = 4 bytes)

Size of the individual response (in bytes). This shall be the size of the complete
Ocp1Response structure including this responseSize field.

handle
(length = 4 bytes)

Arbitrary 32 bits used as a reference ‘handle’ to the response. This handle value shall be
the same as the handle value of the command that triggered the response.

statusCode
(length = 1 byte)

The status code that identifies the result of the method invocation the response belongs to.
Status code values are defined in AES70-2.

parameters
(variable length)

Response parameters (output parameters of the method that was invoked). Even if the
method that was invoked does not have any output parameters this structure shall be
present with a parameterCount value of zero. The parameter datatype
Ocp1Parameters is defined in 5.6.2.4.

5.6.4 Notification Message
5.6.4.1 Format
A notification message shall have the format shown in figure 5.

The c-style definition of the notification message protocol data unit shall be as follows:
struct {
 OcaUint8 syncVal; // Synchronization value
 Ocp1Header header; // OCP Header
 Ocp1Notification notifications[messageCount]; // Array of notifications
} Ocp1NotificationPdu;

where the elements shall be defined as follows:

syncVal
(length = 1 byte) Message synchronization value. See 5.6.1.1.

header
(length = 9 bytes) General message fields. See 5.6.1.1.

notifications
(variable length)

Array of (messageCount) notifications. The notification format is defined by the
Ocp1Notification datatype - see 5.6.4.2.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 16 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

Figure 5 - Notification message

5.6.4.2 Ocp1Notification
The c-style definition of the Ocp1Notification data structure shall be as follows:
struct {
 OcaUint32 notificationSize; // Size of the individual notification
 OcaONo targetONo // Target ONo
 OcaMethodID methodID; // MethodID of method to invoke
 Ocp1NtfParams parameters; // Parameters of the event
} Ocp1Notification;

where the elements shall be defined as follows:

notificationSize
(length = 4 bytes)

Size of the individual notification (in bytes). This shall be the size of the complete
Ocp1Notification structure including this notificationSize field.

targetONo
(length = 4 bytes)

Target object number, that is the object number of the event handler object that
defines the callback method.

methodID
(length = 4 bytes) Method ID of the callback method that is invoked when the event is raised. See 5.6.2.

parameters
(variable length)

Parameters of the event. Every notification message shall have at least one
parameter. The parameter format is defined by the Ocp1NtfParams datatype - see
5.6.4.3.

 Sync
value header Notification

1
Notification

2
Notification
<Message

Count>

Notification
Size

Target
ONo MethodID Parameters

TreeLevel MethodIndex Parameter
Count Context EventData

...

Event Parameter
2

Parameter
<Parameter

Count>

Emitter ONo EventID

TreeLevel EventIndex

...

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 17 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.6.4.3 Ocp1NtfParams
The c-style definition of the Ocp1NtfParams data structure shall be as follows:
struct {
 OcaUint8 parameterCount; // Number of parameters
 OcaBlob context; // Arbitrary context
 Ocp1EventData eventData; // The event data
} Ocp1NtfParams;

where the elements shall be defined as follows:

parameterCount
(length = 1 byte)

Number of parameters present in the Parameters array. As each notification message
will at least contain the OcaEvent that was raised (see 5.6.4.4), this count shall be at
least 1. If the event contains additional event parameters, the count shall exceed 1.

context
(length = 4 bytes)

Arbitrary value that was passed by the subscriber when subscribing to the event. This
value shall be passed back unchanged.

eventData
(variable length) The data of the event. See 5.6.4.4.

5.6.4.4 eventData
The c-style definition of the eventData data structure shall be as follows:
struct {
 OcaEvent event; // The OcaEvent that was triggered
 OcaUint8 eventParameters[]; // Event parameters
} Ocp1EventData;

where the elements shall be defined as follows:

event The OcaEvent identifying the event that triggered this notification - see 5.6.4.5.

eventParameters

Parameter array holding the other parameters of the event, if any. The parameters are
determined by the type of event that triggered this notification, and are defined in
AES70-2.
If an event does not have any parameters this array shall not be present, and the value of
parameterCount in Ocp1NtfParams shall be 1.

5.6.4.5 OcaEvent
The c-style definition of the OcaEvent data structure shall be as follows:
struct {
 OcaONo emitterONo; // Object number of the emitter object
 OcaEventID eventID; // EventID of the event
} OcaEvent;

where the elements shall be defined as follows:

emitterONo
(length = 4 bytes) Emitter object number; that is, the object number of the object that raised the event.

eventID
(length = 4 bytes)

Event ID of the event that is notified in this message. The format of an event ID is defined
by the OcaEventID datatype - see 5.6.4.6

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 18 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.6.5.6 OcaEventID
The c-style definition of the OcaEventID data structure shall be as follows:
struct {
 OcaUint16 treeLevel; // Class tree level
 OcaUint16 eventIndex; // Index of the event
} OcaMethodID;

where the elements shall be defined as follows:

treeLevel
(length = 2 bytes) Level in the tree of the class which defines this method (1=root).

eventIndex
(length = 2 bytes)

The index of the event. The definition of the class that defines the event shall determine
the value of this index.

See AES70-1 for details on class element identification.

5.6.5 Keep-Alive message
5.6.5.1 Format
A keep-alive message shall have the format shown in figure 6.

Figure 6 - Keep-alive message

The c-style definition of the keep-alive message protocol data unit shall be as follows:

Option 1:
struct {
 OcaUint8 syncVal; // Synchronization value
 Ocp1Header header; // Header (see 5.6.1.2)
 OcaUint16 heartBeatTime; // Heartbeat time in seconds
} Ocp1KeepAlivePdu;

Option 2:
struct {
 OcaUint8 syncVal; // Synchronization value
 Ocp1Header header; // Header (see 5.6.1.2)
 OcaUint32 heartBeatTime; // Heartbeat time in milliseconds
} Ocp1KeepAlivePdu;

where the elements shall be defined as follows:

syncVal
(length = 1 byte) Message synchronization value. See 5.6.1.1.

header
(length = 9 bytes) General message fields. See 5.6.1.1.

heartBeatTime Time interval between sending of keepAlive messages on this AES70-3 link. See 5.3.

Option 1
(length = 2 bytes)

Time in seconds

Option 2
(length = 4 bytes)

Time in milliseconds

 Sync
value header HeartBeatTime

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 19 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

Devices shall distinguish between Option 1 and Option 2 by testing message length.

5.6.6 Device reset message
5.6.6.1 Format
A DeviceReset message shall have the format shown in figure 7.

Figure 7 - DeviceReset message

The sentinel shall be a 64-bit constant with a hexadecimal value of:
DEAF DADA CAFE BABE

The reset key shall have a length of 128 bits (8 bytes). Reset key values shall be set by a Device Manager method.
See AES70-1 for details.

5.7 Protocol-specific datatypes

5.7.1 General
This clause describes the protocol-specific datatypes that are used in AES70-3. In AES70-2, protocol-specific
datatypes are defined as generic OcaBlob elements. This clause defines the mapping of those OcaBlob elements to
AES70-3-specific datatypes.

AES70-2 defines OcaBlob as having exactly one property. That property is named Data. The following
specifications describe how the value of that Data property shall be interpreted in AES70-3.

5.7.2 OcaNetworkAddress
For AES70-3, the OcaNetworkAddress datatype shall be interpreted as follows:
struct {
 OcaString ipAddress; // IPv4 or IPv6 address
 OcaUint16 port; // IP port
} Ocp1NetworkAddress;

where ipAddress shall be a string representing the IPv4 or IPv6 address and port shall be a 16-bit unsigned integer
representing the port of the network address.

An IPv4 address shall be in dotted decimal notation (for example ‘192.168.1.1’).

An IPv6 address shall be in hexadecimal colon separated notation (for example ‘2001:0ba0::’).

5.7.3 OcaNetworkHost
For AES70-3, the OcaNetworkHost datatype shall be interpreted as follows:
struct {
 OcaString hostName; // hostname of the network host
} Ocp1NetworkHost;

where hostName shall be a string representing the hostname of the network host.

Sentinel ResetKey

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 20 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.7.4 OcaNetworkSystemInterfaceID
For AES70-3, the SystemInterfaceHandle property of OcaNetworkSystemInterfaceID datatype shall be
interpreted as follows:
struct {
 OcaUint32 interfaceIndex; // The interface index
 OcaUint8 subnetMaskLength; // Subnet mask length
 OcaString defaultGateway; // The default gateway address
 OcaString dnsServer; // DNS server address
 OcaString dnsDomainName; // DNS domain name
 OcaBoolean linkUp; // Indicates if the link is up
 OcaUint64 adapterSpeed; // Link speed, system interface
 Ocp1IPParametersType parametersType; // The source of the information
 OcaBlobFixedLen<6> macAddress; // MAC address
} Ocp1NetworkSystemInterfaceID;

where the elements shall be defined as follows:

interfaceIndex Index of the system interface.

subnetMaskLength Length of the subnet mask of the network IP address of the system interface.

defaultGateway Default gateway (IP address as string) of the system interface.

dnsServer DNS server (IP address as string) of the system interface.

dnsDomainName DNS domain of the system interface.

linkUp Indicates if the (Ethernet) link of the system interface is up.

adapterSpeed Current adapter speed of the system interface in bits per second (for example, 1000000 for
a 1 Gbps link).

parametersType

Indicates the type of the IP parameters, that is the source of the information. One of the
following parameter types shall be used (the value is given between brackets):

Unknown (0) The source of the information is unknown.

LinkLocal (1) The network information is assigned via link local addressing.

DHCP (2) The network information is assigned via DHCP.

Static (3) The network information is assigned statically.

macAddress A 6-byte blob representing the MAC address of the system interface.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 21 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

Annex A (Informative) - Datatype index

Table A.1 shows each datatype used in this standard, a short description of it represents, and a reference to the
clause within this document where it is described in detail.

Table A.1 - Datatypes

Datatype Description
see

clause
Ocp1MessagePdu General message protocol data unit. 5.6.1

Ocp1Header Header of every AES70-3 message. 5.6.1.2

Ocp1CommandPdu Command message protocol data unit (which can contain multiple
individual commands).

5.6.2.1

Ocp1Command Individual command that can be part of a Ocp1CommandPdu. 5.6.2.2

Ocp1Parameters Parameters structure containing parameters of a command/response
message. For a command these amount to the input parameters of the
method. For a response these amount to the output parameters of the
method.

5.6.2.4

Ocp1ResponsePdu Response message protocol data unit (which can contain multiple
individual responses).

5.6.3.1

Ocp1Response Individual response that can be part of a Ocp1ResponsePdu. 5.6.3.2

Ocp1NotificationPdu Notification message protocol data unit (which can contain multiple
individual notifications).

5.6.4.1

Ocp1Notification Individual notification that can be part of a Ocp1NotificationPdu. 5.6.4.2

Ocp1NtfParams Parameters structure of a notification message (containing the parameters
of the event), This parameters structure will always at least contain the
event itself. If the event has additional parameters they will also be part of
this structure.

5.6.4.3

Ocp1EventData Event data structure containing the event itself (so that the receiver of the
event knows which event triggered the notification) and the parameters of
the event (if any).

5.6.4.4

Ocp1KeepAlivePdu Keep-alive message protocol data unit. 5.6.5.1

Ocp1NetworkAddress AES70-3 interpretation of the more general OcaNetworkAddress. 5.7.2

Ocp1NetworkHost AES70-3 interpretation of the more general OcaNetworkHost. 5.7.3

Ocp1NetworkSystem
InterfaceID

AES70-3 interpretation of the more general
OcaNetworkSystemInterfaceID.

5.7.4

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-3-xxxx-151112-cfc.docx

Page 22 of 22

AES STANDARDS: DRAFT FOR COMMENT ONLY

Annex B (informative) - UML Description of Protocol Data Unit (PDU)

The content of this Annex is an external XMI 2.1 document, as described above in clause 4. It may be downloaded
from:

www.aes.org/standards/models/AES70-3-AnnexB-151112-tcpip-protocol-1.xmi

NOTE: For ease of access, users may prefer to refer to the equivalent proprietary Enterprise
Architect version:

www.aes.org/standards/models/AES70-3-AnnexB-151112-tcpip-protocol-1.eap

	AES70-3-xxxx
	Abstract
	Contents
	Foreword
	Note on normative language

	0 Introduction
	0.1 General
	0.2 Documentation conventions

	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviations
	4 Minimum Implementation
	5 Protocol Details
	5.1 Initialization
	5.1.1 IP Address Initialization
	5.1.2 Methods of IP address assignment
	5.1.3 Sockets and Ports
	5.1.4 Control Security

	5.2 Device Discovery
	5.2.1 General
	5.2.2 Service Discovery

	5.3 Device Supervision
	5.3.1 General
	5.3.2 Specification

	5.4 Device Reset
	5.4.1 General
	5.4.2 Reset not implemented
	5.4.3 Reset implemented

	5.5 Conventions
	5.5.1 Endianness
	5.5.2 Marshaling rules
	5.5.3 Example

	5.6 Protocol Data Units
	5.6.1 Message layout
	5.6.2 Command Message
	5.6.3 Response Message
	5.6.4 Notification Message
	5.6.5 Keep-Alive message
	5.6.6 Device reset message

	5.7 Protocol-specific datatypes
	5.7.1 General
	5.7.2 OcaNetworkAddress
	5.7.3 OcaNetworkHost
	5.7.4 OcaNetworkSystemInterfaceID

	Annex A (Informative) - Datatype index
	Annex B (informative) - UML Description of Protocol Data Unit (PDU)

