
AES STANDARDS: DRAFT FOR COMMENT ONLY

Secretariat 2015/11/12 14:47 DRAFT REVISED AES70-1-xxxx

AES STANDARDS: DRAFT FOR COMMENT ONLY

STANDARDS AND

INFORMATION DOCUMENTS

Call for comment on DRAFT
AES standard for

Audio applications of networks -
Open Control Architecture -

Part 1: Framework

This document was developed by a writing group of the Audio Engineering Society Standards Committee
(AESSC) and has been prepared for comment according to AES policies and procedures. It has been brought to
the attention of International Electrotechnical Commission Technical Committee 100. Existing international
standards relating to the subject of this document were used and referenced throughout its development.

Address comments by E-mail to standards@aes.org, or by mail to the AESSC Secretariat, Audio Engineering
Society, 60 E 42nd St., New York NY 10165. Only comments so addressed will be considered. E-mail is
preferred. Comments that suggest changes must include proposed wording. Comments shall be restricted to
this document only. Send comments to other documents separately. Recipients of this document are invited to
submit, with their comments, notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

This document will be approved by the AES after any adverse comment received within six weeks of the
publication of this call on http://www.aes.org/standards/comments/, 2012-11-12, has been resolved. Any person
receiving this call first through the JAES distribution may inform the Secretariat immediately of an intention to
comment within a month of this distribution.

Because this document is a draft and is subject to change, no portion of it shall be quoted in any
publication without the written permission of the AES, and all published references to it must include a
prominent warning that the draft will be changed and must not be used as a standard.

AES STANDARDS: DRAFT FOR COMMENT ONLY

Secretariat 2015/11/12 14:47 DRAFT REVISED AES70-1-xxxx

AES STANDARDS: DRAFT FOR COMMENT ONLY

[This page intentionally blank]

AES70-1-xxxx
SC-02-12

aes70-1-xxxx-151112-cfc.docx

page 1 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

DRAFT
AES standard for

Audio applications of networks -
Open Control Architecture -

Part 1: Framework

Published by
Audio Engineering Society, Inc.
Copyright ©2015 by the Audio Engineering Society

Abstract

AES70 defines a scalable control-protocol architecture for professional media networks. It addresses device
control and monitoring only; it does not define standards for streaming media transport. However, the Open
Control Architecture (OCA) is intended to cooperate with various media transport architectures.

AES70 is divided into a number of separate parts. This Part 1 describes the models and mechanisms of the
Open Control Architecture. These models and mechanisms together form the AES70 Framework. This
document should be read together with Part 2, Class structure and Part 3, TCP/IP communications protocol.

An AES standard implies a consensus of those directly and materially affected by its scope and provisions and
is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AES
standard does not in any respect preclude anyone, whether or not he or she has approved the document, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement with the
standard. Prior to approval, all parties were provided opportunities to comment or object to any provision.
Attention is drawn to the possibility that some of the elements of this AES standard or information document
may be the subject of patent rights. AES shall not be held responsible for identifying any or all such patents.
Approval does not assume any liability to any patent owner, nor does it assume any obligation whatever to
parties adopting the standards document. Recipients of this document are invited to submit, with their
comments, notification of any relevant patent rights of which they are aware and to provide supporting
documentation. This document is subject to periodic review and users are cautioned to obtain the latest edition.

Audio Engineering Society Inc., 551 Fifth Avenue, New York, NY 10176, US.

www.aes.org/standards standards@aes.org

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 2 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Table of Contents

0 Introduction ... 6	

0.1 General .. 6	

0.2 Architectural goals and constraints .. 6	

0.3 Document conventions .. 8	

1 Scope ... 8	

2 Normative references .. 8	

3 Terms, definitions and abbreviations .. 8	

4 Top level design ... 10	

4.1 General .. 10	

4.2 Object orientation ... 10	

4.2.1 Concept ... 10	

4.2.2 Classes ... 11	

4.2.2.1.3 Proprietary classes .. 11	

4.2.3 Instantiation of classes .. 14	

4.3 Messages ... 14	

4.3.1 General .. 14	

4.3.2 Message delivery services .. 14	

5 Device model .. 14	

5.1 Device configurability ... 14	

5.2 Object addressing .. 15	

5.3 Device model elements .. 16	

5.3.1 General .. 16	

5.3.2 Managers, Workers, and Agents ... 16	

5.4 Worker classes .. 17	

5.4.1 Actuators ... 17	

5.4.2 Sensors ... 17	

5.4.3 Blocks .. 18	

5.4.4 Matrices ... 21	

5.5 Agent classes ... 25	

5.5.1 General .. 25	

5.5.2 OcaNetwork and OcaStreamNetwork ... 25	

5.5.3 OcaGrouper ... 25	

5.5.4 OcaRamper ... 29	

5.5.5 OcaNumericObserver and OcaNumericObserverList ... 29	

5.5.6 OcaLibrary ... 30	

5.5.7 OcaMediaClock ... 31	

5.5.8 OcaEventHandler .. 31	

5.6 Manager classes .. 31	

5.7 Standard Object Numbers (ONo) ... 32	

5.8 Object text identification ... 32	

5.9 Constructing objects .. 32	

5.9.1 General .. 32	

5.9.2 Block Factories .. 32	

5.10 Deleting objects ... 32	

6 Events and subscriptions .. 33	

6.1 Subscriptions, events, emitters and notifications ... 33	

6.1.1 General .. 33	

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 3 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

6.1.2 Reliable or fast subscriptions .. 33	

6.1.3 Subscription deletion ... 33	

6.1.4 Subscription event handler .. 33	

6.2 The PropertyChanged event .. 33	

6.3 Use of numeric observers .. 34	

7 Networking .. 35	

7.1 General .. 35	

7.2 Media Transport Connection Management .. 36	

7.3 OCA Adaptations ... 36	

7.3.1 General .. 36	

7.3.2 Kinds of Media Networks .. 36	

7.3.3 Examples .. 36	

7.3.4 The OcaStreamNetwork Class .. 37	

7.3.5 Mode 1: Stream-based Media Connection Management .. 37	

7.3.6 Mode 2: Channel-based media connection management ... 38	

8 Sessions .. 39	

9 Security ... 39	

10 Concurrency control .. 39	

11 Reliability .. 40	

11.1 General .. 40	

11.2 Availability .. 40	

11.2.1 Keep-alive messages .. 40	

11.2.2 Efficient reinitialization ... 40	

11.3 Robustness .. 40	

12 Device reset .. 41	

13 Firmware and software upgrade ... 41	

13.1 General .. 41	

13.2 Update Types ... 41	

13.3 Update Modes .. 42	

13.4 Update mechanisms .. 42	

13.4.1 General .. 42	

13.4.2 Active Updating ... 42	

13.4.3 Passive Updating .. 43	

Annex A (informative) - Actuator example ... 44	

A.1 General .. 44	

A.2 Properties, Methods, and Events .. 44	

Annex B (informative) - Block examples .. 46	

B.1 Simple microphone channel .. 46	

B.2 Two-channel microphone mixer .. 46	

B.3 Mixer using nested blocks ... 47	

Annex C (informative) - Network connection management examples .. 48	

C.1 Stream-based connection examples ... 48	

C.1.1 General ... 48	

C.1.2 Scenario 1: Input ... 48	

C.1.3 Scenario 2: Simple output ... 49	

C.1.4 Scenario 3: Multiple output connectors ... 49	

C.1.5 Scenario 4: Multiple output streams from one connector ... 50	

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 4 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

C.2 Channel-based connection examples ... 50	

C.2.1 Scenario 5: Input ... 50	

C.2.2 Scenario 6: Output .. 51	

Annex D (informative) - Other Media Network Control Standards ... 52	

D.1 AES64 ... 52	

D.2 SMPTE ST 2071 - Media Device Control .. 52	

D.3 Architecture for Control Networks (ACN) ... 52	

D.4 Open Sound Control (OSC) ... 52	

D.5 Ember+ .. 52	

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 5 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Foreword

This foreword is not part of this document, AES70-1-xxxx, AES standard for audio applications of networks -
Open Control Architecture - Part 1: Framework.

This document is a member of the three-document set that defines AES70, the Open Control Architecture
(OCA). AES70-11 defines the architectural framework for AES70. Other parts define the control repertoire and
the specific protocols used.

The development project for this standard was originally proposed by the Open Control Architecture Alliance
(OCA Alliance) and initiated in October 2012 as project AES-X210 to be developed in task group SC-02-12-L.
The OCA Alliance also contributed the task-group working draft and, as a direct result, there are a number of
references to "OCA" in the protocol in order to maintain compatibility with implementations already in the
field.

The members of the writing group that developed this document in draft are: J. Berryman, H. Hamamatsu,
T. Head, S. Jones, M. Lave, N. O'Neill, M. Renz, M. Smaak, G. van Beuningen, S. van Tienen, E. Wetzell.

J. Berryman led the task group.

Richard Foss
Chair, working group SC-02-12
2015-11-12

Note on normative language

In AES standards documents, sentences containing the word "shall" are requirements for compliance with the
document. Sentences containing the verb "should" are strong suggestions (recommendations). Sentences giving
permission use the verb "may". Sentences expressing a possibility use the verb "can".

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 6 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

DRAFT
AES standard for

Audio applications of networks -
Open control architecture -

Part 1: Framework

0 Introduction

0.1 General
This document describes the models and mechanisms of the AES70 Open Control Architecture (OCA) for the
control and monitoring of media networks. These models and mechanisms together form the AES70
Framework.

AES70 is for system control and monitoring only, and may be integrated with any streaming program transport
protocol scheme, as long as the underlying communication network is capable of carrying AES70 control and
monitoring traffic.

AES70 does not provide a complete device implementation model. AES70 models the control and monitoring
functions of a device, not its entire signal path. If a particular device element has no remotely controllable
features, then that element need not be represented in the device's AES70 protocol interface.

0.2 Architectural goals and constraints
AES70 is based upon the following features and requirements:

Functionality

AES70 supports the following functions:

1. Discover the AES70 devices that are connected to the network.
2. Define and undefine media stream paths between devices.
3. Control operating and configuration parameters of an AES70 device.
4. Monitor operating and configuration parameters of an AES70 device.
5. For devices with reconfigurable signal processing and/or control capabilities, define and manage

configuration parameters.
6. Upgrade software and firmware of controlled devices. Include features for fail-safe upgrades.

Security

AES70 supports the following security measures for control and monitoring data:

1. Entity authentication
2. Prevention of eavesdropping
3. Integrity protection
4. Freshness - "Freshness" in this context means certainty that replayed messages in a replay attack on a

protocol will be detected as such.

Scalability

AES70 supports networks with up to at least 10,000 application devices. AES70 imposes minimal
restriction on the physical distribution of application devices.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 7 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Availability

AES70 supports high availability by offering:

1. Device supervision of AES70 devices.
2. Supervision of network connections to AES70 devices.
3. Efficient network re-initialization following errors and configuration changes.

Robustness

AES70 supports robustness by offering:

1. A mechanism for operation confirmation.
2. A mechanism for handling loss of control data.
3. A mechanism for handling device failure of AES70 devices.
4. Recommendations on network robustness mechanisms that network implementers may use.

Safety compliance

AES70 allows implementations of media networks that conform to life-safety emergency standards.

Compatibility

As AES70 evolves, it will maximize compatibility among its different versions. A controller based on one
version of AES70 operates with a device based on another version of AES70 in the following manner:

1. For a device based on an older version of AES70, the newer-version controller will function as if it
were based on the same version of AES70 as the device.

2. For a device based on a newer version of AES70, the older-version controller will be able to control
and monitor all the functions of the device defined in the controller's version of AES70, and will not
interfere with functions defined only in the device's version of AES70.

Analyzability

AES70 defines diagnostic functions that allow access to the following information:

1. Version information of all components, hardware and software, of each device
2. Network parameters of a device - for example, MAC address, IP address
3. Device status (including status of devices' network interfaces)
4. Media stream parameters (for each active receive and/or transmit media stream of a device)
5. Communications errors

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 8 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

0.3 Document conventions
In what follows, the phrase "AES70 supports [x]", where [x] is some function or feature should be interpreted to
mean that AES70 defines one or more mechanisms by which a device will be able to implement feature [x] in
an AES70-compliant manner.

Numerical values are decimal unless otherwise stated.

A Courier typeface is used to identify programmatic names to distinguish them from regular text.

Where new terminology is first introduced in body text, the term will be set in an italic typeface.

1 Scope
AES70 defines a scalable control-protocol architecture for the control and monitoring of professional media
networks. AES70 addresses device control and monitoring only; it does not define standards for transporting
streaming media or for describing media content.

This Part 1 describes the models and mechanisms of the AES70 Open Control Architecture. These models and
mechanisms together form the AES70 Framework. This document should be read in conjunction with Part 2,
Class Structure and Part 3, TCP/IP communications protocol.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

AES70-2 AES standard for audio applications of Networks - Open Control Architecture - Part 2: Class
structure, Audio Engineering Society, New York, NY., US.

AES70-3 AES standard for audio applications of Networks - Open Control Architecture - Part 3: Protocol for
TCP/IP Networks, Audio Engineering Society, New York, NY., US.

ISO/IEC 10646-1 Information technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:
Architecture and basic multilingual plane. International Standards Organization (ISO), Geneva,
Switzerland

3 Terms, definitions and abbreviations
For the purposes of this document, the following terms and definitions apply.

3.1
AES70-compliant interface
AES70 interface
a network interface compatible with a protocol defined in compliance with this standard.

3.2
Media device
network-connected equipment that originates or accepts media signals and exposes an AES70-compliant
interface to controllers on the network to allow control and/or monitoring of its functions.

3.3
Non-media device
network-connected equipment that does not originate or accept media signals, but exposes an AES70-compliant
interface to controllers on the network to allow control and/or monitoring of non-media functions.

3.4
AES70 device
Device
a media device or a non-media device. Where the context is clear, the shorter version of the term is used.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 9 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

3.5
Non-AES70 device
network-connected equipment that does not expose an AES70-compliant interface.

3.6
Device model
the control model for the device as seen by AES70.

3.7
Controller
network-connected software element whose function is to control and/or monitor devices via an AES70-
compliant protocol interface. A controller may be hosted in a dedicated computer, or may be a software element
running in a device or in some other environment.

3.8
Control
"control" should generally be interpreted to mean "control and monitoring".

3.9
Control protocol
an application protocol whose purpose is the remote control and monitoring of the application functions of
devices attached to a network.

3.10
Media stream
a digital data stream that carries a sampled digital audio or video signal over a network or over a point-to-point
connection.

3.11
Open Control Protocol
OCP
a network protocol defined in accordance with the AES70 specification

3.12
OCP.1
protocol that implements AES70 for TCP/IP networks. Standardized in AES70-3.

3.13
Protocol data unit
PDU
in a layered system, a unit of data that is specified in a protocol of a given layer and contains data relevant to
the operation of that layer.

3.14
Object Number
ONo
an arbitrary 32-bit integer used to identify an OCA control object. Object Numbers are unique within each
given device.

3.15
Voltage-controlled amplifier
VCA
an analogue electronic amplifier whose gain is controlled by an external direct-current control voltage input.

3.16
Binary Large Object
BLOB
a contiguous block of binary data whose format and, in some cases, length are outside the scope of this
standard.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 10 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

3.17
Availability
the proportion of time a device is in a functioning condition.

3.18
Robustness
the ability of a device to cope with errors during operation despite abnormalities in signal, control input,
network operation, or operating environment.

4 Top level design

4.1 General
AES70 (OCA) supports control and monitoring of AES70 devices at the application level. It does not perform
audio or video stream transport, but is designed to integrate with various audio and video signal transport
schemes.

The AES70 protocol is extensible, to allow the orderly incorporation of new device types and device upgrades,
and generally to support upwards-compatible evolution of function in media networks.

AES70 is intended to support practical media networks that are easy to set up and operate. For simple networks
of 100 nodes or fewer using recommended switches, the setup procedure should not require technical staff to
have advanced networking knowledge. To this end:

1. AES70 networks can operate using industry-standard data network equipment.

2. AES70 devices can coexist harmlessly with non-AES70 devices.

3. AES70 networks may operate in a secure or unsecure mode, as products and applications require.

4.2 Object orientation

4.2.1 Concept
AES70 describes the control interface of a communicating device as a set of objects. Each object is a software
element that is an instantiation of a specific class, and has a state (that is, a set of data elements called
properties) and a set of procedural actions (called methods) defined by that class.

All actions and features of AES70 protocols are defined in terms of classes. The functional scope of a protocol
is equivalent to the functional repertoire of the classes it implements. The set of classes fully determines what
types of objects may be instantiated in the communicating devices.

A protocol defined in this way is termed an object-oriented protocol, and is defined by the union of the
following four sets:

1. Class definitions, which define the types of objects that may exist within devices.

2. Naming and addressing rules, which define how the objects and their attributes are identified.

3. Protocol data unit (PDU) formats, which specify the actual formats of transmitted and received data.

4. Protocol data unit (PDU) exchange rules, which define the communication sequences used to effect
information exchange (see 4.3).

NOTE This specification is expressed in object-oriented design terms. However, this does not
imply that implementations of those protocols must be programmed in an object-oriented style.
The choice of object-based or non-object-based implementation is up to the implementer

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 11 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

4.2.2 Classes
4.2.2.1 General
4.2.2.1.1 Class content
Every AES70 class shall consist of the following:

1. A set of elements (properties, methods, and events - see 4.2.2.3)

2. A unique class identifier.

3. Exactly one parent class (except for the root class, which has no parent).

NOTE Standard class names (see AES70-2) all begin with "Oca".

4.2.2.1.2 Inheritance
AES70 classes shall be defined as nodes in a hierarchical tree-like structure which shall start with single,
elemental node (the root class), and shall be arranged in order by inheritance. Inheritance means that each class
is considered to be a more specialized entity (the child class) derived from another, less specialized class (the
parent class). A class shall exhibit (inherit) all the features of its parent, except where the definition of that class
specifically overrides an inherited feature.

4.2.2.1.3 Proprietary classes
Over the lifetime of this standard, it will often occur that specific products, especially complex ones, will
require specialized control classes that are not appropriate for inclusion in the standard class tree. The standard
allows for this through four policies:

1. A proprietary class may inherit from any standard class, or from another proprietary class.
2. A proprietary class should be attached to the standard class tree at the most specific level that is

appropriate.
3. Proprietary class numbers shall be used for proprietary classes.
4. Proprietary classes shall be defined in accordance with the inheritance rules listed in 4.2.2.4.

4.2.2.1.4 Containment
In this specification, a class will sometimes be described as containing another class. This means that an object
of the given class incorporates object of the other class.

If the containing class object is deleted, the objects of the classes it contains shall be deleted.

4.2.2.1.5 Collection
In this specification, a class will sometimes be described as collecting another class. This means than an object
of the given class incorporates references to the objects of the other class.

If the collecting class object is deleted, the objects of the classes it collects shall not be deleted.

4.2.2.2 Class identifiers
A class identifier (class ID) shall consist of a lineage key and a version number.

In the following sections, a class ID is represented as {n; i1•i2•i3 ...}, where n is the class version number, and
i1•i2•i3 ... is the lineage key, as described below.

4.2.2.2.1 Lineage keys
Each class shall be identified by a hierarchical key of the form i1•i2•i3 ... where i1•i2•i3 ... shall be positive
nonzero integer values that uniquely identify a class within its siblings at a particular level of the class tree.
i1, i2, i3 and so on are referred to as class indices. Class index values may be non-consecutive.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 12 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

The lineage key of each class shall consist of a set of class indices which identifies the entire lineage of the
class, beginning from the root class, extending down through all related child classes, and ending at the class in
question. The key may contain as many class indices as needed to describe the layers of the hierarchy.

For example, for a class X whose lineage key is 1•2•12•7, the lineage key shall be interpreted left-to-right as
follows:

• 1 designates the root class.
• 1•2 designates a child of the root class.
• 1•2•12 designates a child of the class whose parent is 1•2.
• 1•2•12•7 designates class X, a child of the class whose parent is 1•2•12.

4.2.2.2.2 Standard class IDs
Every class ID includes a version number to uniquely identify the revision level of the class. Standard class IDs
shall be allocated in AES70-2, which will be revised from time to time to include new classes and new versions
of existing classes.

4.2.2.2.3 Proprietary class IDs
Proprietary class IDs may be set by the manufacturer of a device. A device's manufacturer shall be identified in
a property of its OcaDeviceManager object. Controllers of devices that include proprietary objects should
query the respective OcaDeviceManager objects to discover the manufacturers of those devices, and behave
accordingly.

NOTE 1 AES70 does not prevent two manufacturers from using the same proprietary class
index value for different objects.

If, in a proprietary class ID {n; i1•i2•i3 ...} a particular index ik is proprietary, then all indices to the right of it
shall be proprietary as well.

NOTE 2 This restriction is a corollary of the rule that a standard class shall not inherit from a
proprietary class.

Any change to a proprietary class definition shall be identified by a higher class-version number.

4.2.2.3 Methods, properties, and events
AES70 classes shall have elements which allow access to their data and operating states.

The elements of AES70 classes shall be as follows:

Properties A class shall define properties, which are variables that store the class's specific control or
monitoring parameters that are accessible from the control network.

Methods A class shall define methods, which are procedures that controllers may invoke via AES70
protocol commands to retrieve and change property values, to change class operating states, and
to perform other actions.

Events A class may define one or more events, which are callbacks initiated by devices to inform
controllers of specific occurrences. To receive events, controllers shall first subscribe to them.
See 5.7.

These elements shall be used to define protocol exchanges between devices and controllers. The manner in
which class elements shall be represented in communications-protocol elements is specific to each AES70
protocol. For one example, see AES70-3.

4.2.2.3.1 Element IDs
In the class tree, every method, property, and event shall be assigned not only a name, but also an element ID of
the form: LLtNN, where

LL shall be the two-digit level of the class tree at which the class is defined.

For example, the global base class OcaRoot is defined at level 01. Children of OcaRoot will be

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 13 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

defined at level 02. Grandchildren will be defined at level 03. And so on.

t shall be a type code: p for properties, m for methods, e for events.

NN shall be a sequence number starting at 01 for each type within each class.

Within each class, element ID values shall be unique.

EXAMPLE 1
01p01 is the first property of a class defined at tree level 01. In this case, OcaRoot is the only

class defined at level 01, so 01P01 is the first property of OcaRoot.
EXAMPLE 2

03m02 is the second method of a class defined at tree level 03. There are several classes defined
at level 03 - this ID would apply to the second method of any of these classes.

NOTE 1 Element ID rules are intended to provide a means for uniquely identifying all the
native and inherited methods in any given class, and to allow for future expansion of the tree at
any level without duplicating identifiers.

NOTE 2 For an example of this approach, see the class OcaGain in annex A.

NOTE 3 An element ID may be a property ID, a method ID, or an event ID, depending on the
type of element it identifies.

4.2.2.3.2 Protocol invariance
For any given class, the following items shall be constant, regardless of which AES70 protocol is used:

1. The set of properties, methods, and events; and
2. The set of element IDs.

4.2.2.3.3 Text format
All text in AES70 properties, method parameters, and event parameters shall be in UTF-8 format (see
ISO/IEC 10646-1).

4.2.2.4 Inheritance and updating rules
Inheritance rules ensure that, by creating new classes from existing classes, new features can be added to the
protocol in a manner that does not impact the operation of existing products or systems. Inheritance ensures that
new child classes will support, at a minimum, the functions and interfaces of their parents.

In AES-AES70, the rules for inheritance are:

1. Any given class except the root class shall inherit from exactly one other class.

2. A class shall implement all the properties, methods, and events of its parent class.

3. A child class may expand its parent’s definition by:

a. Adding new properties, methods, and/or events; and/or

b. Enhancing the definitions of existing properties, methods, and/or events, In this case, the
enhanced definitions shall support all functions defined by the parent class.

4. A child class's inherited methods and events shall retain the respective element IDs of its parent class.

5. A standard class shall not inherit from a proprietary class.

When updating an existing class, the following rules shall apply:

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 14 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

1. The class version number shall be incremented.

2. The updated class shall implement all the properties, methods, and events of the existing class.

3. The updated class may expand the existing class's definition by:

a. Adding new properties, methods, and/or events; and/or
b. Enhancing the definitions of existing properties, methods, and/or events, In this case, the

enhanced definitions shall support all functions defined by the existing class.
4. An updated class's methods and events shall retain the respective element IDs of its parent class.

4.2.3 Instantiation of classes
As required to create its network control interface, a device shall instantiate classes as objects. Each such object
shall be identified by a unique Object Number (ONo).

4.3 Messages

4.3.1 General
Control and monitoring operations shall be implemented by messages in protocol data units (PDUs) that pass
between one object and another object which may be in a different device. An AES70 message shall be of one
of the following 3 three types:

Command request devices to return data and/or perform actions.

Acknowledgement report success or failure of a command, and return requested data, if any.

Notification report the occurrence of certain events within devices, and provide related data.

With the exception of the device reset message (clause 12), every AES70 command message shall be
acknowledged by a corresponding acknowledgement message. Notification messages shall not be
acknowledged.

4.3.2 Message delivery services
AES70 recognizes two services for message delivery: Reliable and Fast.

The Reliable delivery service shall use an assured means of transport that the network offers. The Reliable
service shall not be used for multicasting. For example, in TCP/IP networks, the reliable service uses TCP.

The Fast delivery service may use a lower-overhead, lower-reliability means of transport. The Fast service may
be used for multicasting, if the network supports it. For example, in TCP/IP networks, the fast service uses
UDP.

All AES70 command and acknowledgement messages shall be transmitted using the Reliable delivery service.
Notification messages may use either service. A Fast delivery service may be used by the subscription
mechanism, described in clause 7, and shall be used by the device reset mechanism, described in clause 12.

NOTE: For some types of networks, Reliable and Fast services may be identical.

5 Device model

5.1 Device configurability
The configurability of an AES70 device may be fixed, pluggable, partially-configurable, or fully-configurable
as shown below in Table 1.

Fixed and pluggable devices are termed static devices, because controllers cannot change their configurations.
Partially-configurable and fully-configurable devices are termed dynamic devices, because their configurations
can be varied while online.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 15 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Details of configuration management are in 5.4.3 and AES70-2. Creation and deletion of objects are discussed
further in 5.7.

Table 1 - Configurability

Configurability Type Description
Fixed static The device has a permanently assigned object repertoire and signal-

flow topology, defined at time of firmware programming.
Pluggable static The object repertoire and signal-flow topology of the device may be

changed while the device is offline, by plugging and unplugging of
hardware modules, adjustment of physical controls, reloading or
readjustment of software, or other manual means.

Partially-configurable dynamic Controllers may change the signal-flow topology of the device while
online.

Fully-configurable dynamic A superset of 'partially-configurable', with the addition that
controllers may create and delete objects inside the device while
online.

5.2 Object addressing
Within an AES70 device, each object (that is, each instantiation of a specific class) shall be identified uniquely
by an object number (ONo). Depending on device configurability, ONos shall be assigned at different times, as
shown in table 2.

NOTE: In specific implementations, developers may use specific object numbering schemes to
optimize device performance and/or to ease object management. For example, a developer
might choose a device's object number values to correspond with internal table index values,
in order to facilitate rapid decoding of incoming commands.

Table 2 - ONo assignment

Configurability Time of ONo assignment

Fixed time of manufacture
Pluggable device setup time
Partially-configurable time of manufacture
Fully-configurable time of object creation

In fully-configurable devices, ONo values shall not be re-used when objects are deleted and recreated without
an intervening device reset. In the unlikely event that the ONo address space becomes exhausted, ONo values
should be re-used beginning with the oldest.

Device implementers may choose ONo values as desired, subject to the following rules:

1 Each Object Number (ONo) shall be a 32-bit integer.

2 Every object shall have a unique ONo.

3 The ONo value of zero shall not be used.

4 ONo values 01 through 4095 shall be reserved for managers (5.6) and other objects that require predefined
object numbers. They shall be reserved for AES70 standardization

5 Different ONos may not refer to the same object.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 16 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

NOTE 1 Unlike some other media control protocols, ONos are not multi-field (i•j•k. ...) values
based on some hierarchy. Using a simple 32-bit ONo value is a design choice intended to
maximize protocol efficiency and to minimize device overheads in resolving object references,
handling command responses, and managing errors.

5.3 Device model elements

5.3.1 General
Figure 1 illustrates the AES70 device model. The boxed elements are objects. Details of the classes that define
these objects are defined in AES70-2. Here we summarize the available classes, giving examples and focusing
on those with particular architectural significance.

Figure 1 - AES70 device model

5.3.2 Managers, Workers, and Agents
The AES70 device model contains three categories of objects, as follows:

1. Managers. Manager objects shall be control objects that affect or report the basic attributes and
overall states of the device. Within each device there shall be only one instance of each manager
class (that is, one Device Manager, one Security Manager, and so on). Each manager shall have a
standard object number.

Some managers are required, others are optional - see 5.6 and AES70-2.

2. Workers. Worker objects shall directly control the application functions of the device - see 5.4.
Examples include: audio mute switches, gain controls, equalizers, level sensors, overload sensors;
video camera controls, signal properties, image processing parameters, and signal processing
functions.

Workers shall be classified as follows:

Subscription
Manager

Device
Manager

Security
Manager

Firmware
Manager

Power
Manager

Network
Manager

Media Clock
Manager

Audio
Processing
Manager

Library
Manager

Workers

Agents

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 17 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Actuators control application functions (a switch, for example)
Sensors detect and report signal parameters and other values back to controllers
Blocks and
Block Factories

allow the assembling of related objects into collections

Matrices allow collections of objects to be addressed as two-dimensional arrays
Networks describe digital network connection features

3. Agents. Agent objects shall provide indirect control of Workers within a device. An Agent shall
not reflect a signal processing function, but instead may affect signal processing parameters in one
or more associated Workers, or provide other application control functions. See 5.5.

For example, an Agent named OcaGrouper implements complex grouping of control parameters in a manner
that resembles VCA grouping in analogue systems.

Detailed definitions of all of the classes in these three categories are specified in AES70-2. Rules and concepts
governing those definitions are given below.

5.4 Worker classes

5.4.1 Actuators
Actuators shall control signal-processing and housekeeping functions within a device. Actuator classes are
detailed in AES70-2. A single complete example is given in annex A.

In any device, any actuator class may be instantiated as many times as required for control of application
function.

Examples include:

OcaGain Controls a gain function - see annex A for a more detailed
description.

OcaMute Controls a signal mute function.
OcaSwitch Controls a multiposition selector.
OcaFilterParametric Controls a parametric equalizer section.
OcaDelay Controls a signal delay.
OcaDynamics Controls a limiter, compressor, expander, or gate.
OcaTemperatureActuator Controls a temperature setting

5.4.2 Sensors
Sensors shall detect the value of some parameter and transmit it back to controllers. Sensor classes are defined
in AES70-2. Examples include:

OcaLevelSensor Senses a signal level
OcaAudioLevelSensor Senses an audio signal level using standard VU or PPM averaging and

ballistics
OcaTemperatureSensor Senses a temperature

Sensor values may be transmitted automatically, on a periodic or conditional basis (for example, when it
exceeds a defined threshold), by using the OcaNumericObserver agent (see 5.5.5 and 6.3).

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 18 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.4.3 Blocks
5.4.3.1 General
A block shall be a special kind of Worker that may contain Worker objects (including other block objects)
and/or Agent objects. A block may also describe a signal-flow topology among Workers it contains. Normative
definitions of block classes are in AES70-2.

An object inside a block is referred to as a member of that block. The block which contains an object is referred
to as the container of that object. AES70 blocks may be nested to any depth.

Every Worker and every Agent shall be a member of exactly one block. Every device shall have at least one
block, known as the root block, that shall contain all of the device's Workers and Agents. In simple devices, all
the Workers and Agents may belong to the root block. In more complex devices, Workers and Agents may be
deployed into nested blocks.

Manager objects shall not belong to blocks.

Each block shall be described by a class (the block class). The base class for all block classes shall be named
OcaBlock.

NOTE 1 It is important to remember that blocks are abstract containers which make minimal
assumptions about device structure and control flow. There are no predefined block types and
no assumptions about what objects blocks might contain. Devices may have any arrangement
of blocks or no blocks other than the root block.

NOTE 2 Anticipated uses of blocks include: (1) Providing enumeration functions (5.4.3.2); (2)
Storing signal-flow information (5.4.3.6.4); (3) Supporting library functions (5.5.6); (4) For
reconfigurable devices, (a) Allowing creation and deletion of objects and signal paths, and (b)
providing an organizing mechanism for creation and deletion of aggregate processing
functions (5.9).

5.4.3.2 Block enumeration
The set of Workers and Agents that the block contains is termed the block's object set. The list of members of
an object set is termed an object list.

OcaBlock shall provide methods for retrieval of the object list of any specified block. Options shall be
provided for the device to enumerate directly contained objects only, or to enumerate recursively all directly
contained objects plus all objects inside nested blocks to any level.

NOTE To discover every Worker object in a device, a controller need only request recursive
enumeration of the root block.

5.4.3.3 Block management
Fully-configurable devices may allow the creation, modification, and deletion of blocks. AES70 defines
methods that controllers may use to perform these functions for such devices.

Deleting a block shall delete all of the objects it contains.

Details of object and block construction are specified in 5.7.

5.4.3.4 Blocks and object addressing
Addressing of objects shall be provided strictly by object number.

NOTE 1 AES70 does not define a hierarchical object-addressing scheme based on block
containment.

NOTE 2 Manufacturers are free to choose object number values that are representative of a
device's block structure, if desired. Such choices are outside the scope of AES-AES70.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 19 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.4.3.5 Blocks and control aggregation
Blocks shall not aggregate control functions, such as ganging, grouping, or mastering.

NOTE AES70 control function aggregation is provided by the OcaGrouper class. The
OcaGrouper mechanism is independent of block boundaries, and fully supports multiple
overlapping grouping functions - see 5.5.3

5.4.3.6 Signal flow
5.4.3.6.1 Ports
For the purpose of defining signal flow, every Worker object may contain one or more ports. A port is a data
element that describes one input or output signal channel of the processing function that the Worker represents.

An input port shall represent a signal flow into the processing function; an output port shall represent a signal
flow out of the processing function.

NOTE For readability in what follows, the text will generally describe signal connections
between signal processing functions in terms of the objects which represent those functions.
For example, to denote a signal connection from the processing function described by object A
to the processing function described by object B, the text will read, "a signal connection from
object A to object B".

5.4.3.6.2 Block ports
Blocks are Workers, and may therefore have ports. Such ports are termed block ports. Block ports shall be
intermediate ports that exist to define signal connection points between objects inside the block and objects
outside the block. See figure 2, below.

A block input port shall be a connection point for signals entering the block. To objects inside the block, a
block input port shall appear as a signal source. A block output port shall be a connection point for signals
leaving the block. To objects inside the block, an output block port shall appear as a signal sink.

An internal signal path is a signal path between two objects in the same block. An external signal path is a
signal path between two objects in different blocks. This is illustrated in figure 2.

5.4.3.6.3 Signal paths
The term signal path shall denote a connection between a specific output port and a specific input port in the
same device. A signal path's input and output ports may be in different objects or in the same object. A signal
path between objects in separate blocks may or may not include block ports.

NOTE The use of block ports is encouraged, but is not required. AES70 allows direct
connections between objects in separate blocks.

5.4.3.6.4 Signal flow of a block
A block's signal flow shall comprise the set of all signal paths with at least one end inside the block. The list of
signal paths in a signal flow is termed a signal-flow list.

The block's signal flow shall exclude signal paths that extend from block ports to other ports outside the block.
Such paths belong to the overall containing block. In simple cases, the containing block will be the root block.

Media transport connections between one device and another shall not be considered part of device signal flow.
Media connections between devices are described in 7.2.

OcaBlock shall provide methods for retrieval of the signal-flow list of any specified block. Options shall be
provided to enumerate directly-contained signal paths only, or to enumerate recursively all directly contained
signal paths plus all signal paths inside nested blocks to any level.

Figure 2 shows a typical signal flow.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 20 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Figure 2 - Signal flow

NOTE The illustrations in this document use small circles for Worker ports, large circles for
block ports, and simple lines for signal paths. Blocks are shown with rounded corners, other
objects with square corners.

5.4.3.7 Examples
Further examples of blocks and signal flows are given in annex B.

5.4.3.8 Block factories
In fully-configurable devices, controllers shall be able to build blocks, populate them with objects, and connect
signal paths among those objects. The primary mechanism for doing this is the Block Factory.

A block factory shall be a Worker whose job is to construct fully populated and "wired" blocks. Each block
factory shall be an instance of class OcaBlockFactory that has been configured to construct one specific kind
of block, with a predefined set of objects and signal paths.

Note: Block factories are useful when controllers must create multiple blocks, all of
the same kind.

A block factory shall be a container of prototype objects and prototype signal flows which are realized each
time the factory constructs a block.

AES70 provides two ways of creating block factories. Either or both of these methods may be implemented,
depending on device type.

1. One or more block factories may be defined at time of manufacture or, for pluggable devices, at time
of device setup. In this case, these block factories shall provide controllers with a predefined repertoire
of block types which they may instantiate.

2. The controller may create block factories, using specific AES70 commands to define the
configurations of blocks they will create. In this case, controllers shall be free to define new block
types which may be subsequently instantiated.

Root Block

External path

Internal paths
NOTE

This path
is internal to

the root
block

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 21 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.4.3.9 Block creation without block factory
A controller may create a block without using a block factory by instantiating an object of class OcaBlock,
then sending commands to the device to create and interconnect specific objects inside the new block. The
OcaBlock class shall provide the necessary methods for so doing.

5.4.4 Matrices
5.4.4.1 General
The AES70 matrix shall be a generalization of the familiar audio crosspoint matrix concept. AES70 matrices
are rectangular arrays of identical Workers that share one or more common input and output busses for the rows
and columns, respectively.

5.4.4.2 Matrix addressing
Matrix elements shall be addressed by coordinates. AES70 uses (x,y) coordinates, where x is the horizontal
(column) number, and y is the vertical (row) number (see figure 3).

Coordinate values shall range from 1 to the number of rows or columns.

The special value zero shall be used to denote the entire row or column. So, for example, (0,2) indicates the
entire second row. The use of this feature will be shown in 5.4.4.5.

Figure 3 - AES70 matrices

5.4.4.3 Complex matrices
If the Workers in a matrix are switches, the matrix could represent a conventional switching matrix. If the
Workers are gain controls, the matrix could represent a conventional mixing matrix. However, in AES70 a
matrix's Workers can be of any class, even blocks.

For example, figure 5 shows a matrix of blocks, where each block is as shown in figure 4.

Figure 4 - A complex matrix element

Y

X X

,(1 1) (2,1

, ,

,(,

1 2) (2 2

)

(2 3)1 3)

()

, 1(1 1) (,)2

2 ,

,

,) (2 2

,3

(1)

(2 3)(1)

1-in, 1-out 1-in, 3-out

in outmute gain equal-
izer delay

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 22 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Figure 5 - A matrix of complex elements

5.4.4.4 Matrix structure
A matrix shall be an instance of the OcaMatrix class, but that instance shall not contain or include the Workers
which constitute the matrix elements. The matrix elements shall be instantiated separately, and identified as
members of the matrix. Their class is termed the member class of that matrix. In other words, an AES70 matrix
shall collect its members, not contain them.

All of the members of a matrix shall be of the same class, and shall be instantiated in the same device as the
matrix instance.

In addition to the matrix and its members, the matrix shall include one additional instance of the member class,
termed the matrix proxy. The matrix proxy shall be used by controllers to access the settings of matrix members
via coordinates.

A complete matrix is illustrated in figure 6, below.

5.4.4.5 Accessing matrix elements
Controllers shall use the SetCurrentXY(x,y) and SetCurrentXYLock(x,y) methods to access matrix
members using (x,y) coordinates:

1. The controller should call the OcaMatrix method SetCurrentXY(x,y) or
SetCurrentXYLock(x,y), specifying a target coordinate set. If SetCurrentXYLock(x,y) is
called, OcaMatrix shall lock the addressed matrix elements.

2. The controller should call one or more matrix proxy Get or Set methods for the desired property or
properties. If Get is called, the current value of the property shall be reported. If Set is called, the new
value of the property shall be specified.

If SetCurrentXYLock(x,y), was called in step 1, the controller shall call the OcaMatrix method
Unlock(x,y) after calling to unlock the addressed matrix elements.

The special values x=0 and y=0 may be used to specify aggregate set operations as follows:

SetCurrentXY(x,y) New value will be set in all objects in column x of row y
SetCurrentXY(0,y) New value will be set in all objects of row y
SetCurrentXY(x,0) New value will be set in all objects of column x
SetCurrentXY(0,0) New value will be set in all objects of the whole matrix

Matrix Get methods may be used with x = 0 to retrieve a whole row, or with y = 0 to retrieve a whole column.

Y

X

M G E DM G E D

M G E DM G E D

M G E D M G E D

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 23 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Matrix Get methods shall not be used where x=0 AND y=0.

Alternatively, matrix members may be accessed directly using their object numbers. When this occurs, the
matrix mechanism is bypassed but shall not be damaged.

AES70 supports the use and management of maximum and minimum values for all object properties. If an
aggregate set operation is attempted which would result in the value of any member property to exceed its
allowable range, that operation shall be rejected with an error indication. In this case, no member property is
changed.

NOTE The maximum and minimum values of properties are specified at object creation time,
which may be time of manufacture, time of device hardware setup, or time of operation,
depending on the configurability (see 5.1) of the device.

Figure 6 - AES70 matrix structure

5.4.4.6 Matrix signal flow
A matrix shall have input and output signal ports (matrix ports) that are separate from the input and output
signal ports of its members. Matrix rows shall correspond to matrix input ports; matrix columns shall
correspond to matrix output ports. A matrix may have one or more ports per row, and may have one or more
ports per column.

In any given matrix, the number of matrix input ports per row, Nin shall be the same for all rows, and the
number of matrix output ports per column Nout shall be the same for all columns.

The input and output ports of a member of a matrix should be connected to matrix row and column ports
sequentially, according to the following rules:

Controller(s)

data
MembersMembers

OcaMatrix
instance

(x,y)

Y

X

(2,1)

(2,3)

(2,2)(1,2)

(1,3)

(1,1)
Matrix
proxy

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 24 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

1. The ith input port of a member in row y should be connected to matrix port i+ Nin (y-1).

2. The jth output port of a member in column x should be connected to matrix port j+ Nout (x-1) .

A matrix's members should have sufficient numbers of ports to support the above rules. Specifically, each
member should have at least Nin input ports and Nout output ports.

A member may have additional ports that do not connect to matrix ports. The number of such additional ports
may vary from member to member.

See figure 7 for an illustration of matrix port relationships.

Ports per row = 2

ports per column = 3

Figure 7 - Matrix port relationships

5.4.4.7 Deployment
AES70 matrices and their proxies shall be instantiated in the same device as their members. For a control
aggregation function capable of spanning devices, see OcaGrouper, clause 5.5.3.

5.4.4.8 Application notes
5.4.4.8.1 Non-mixing applications
Matrices are defined rather generally and may find use not only for the representation of traditional audio
matrix mixing, but for other applications which require addressing collections of objects as one- or two-
dimensional arrays. Such applications may or may not make use of matrix input and matrix output ports.

1 2 3 4 5

1

2

3

4

5

6

Y

X

1

4

1
2
32

(2,4)
To

elsewhere
in device

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 25 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

For example, a loudspeaker crossover might be represented as a matrix of crossover channels, with each
channel being a block containing the usual filters, gain elements, delays, and dynamics controls. In this case,
the channels might share a common input which could be represented by a matrix row port. However, they
would use separate output ports, so no matrix output ports would be required.

5.4.4.8.2 Non-summing output aggregation
When multiple member outputs connect to a single matrix column port, member signals should be summed to
create the final column signal output. However, the AES70 control abstraction does not require such behavior;
the matrix object may be used to control other output aggregation algorithms.

5.5 Agent classes

5.5.1 General
This document defines Agent class concepts and semantics. Specific Agent class properties, methods, and
events are specified in AES70-2.

5.5.2 OcaNetwork and OcaStreamNetwork
For details of these Agent classes, see clause 7.

5.5.3 OcaGrouper
5.5.3.1 General
OcaGrouper shall define an object (grouper) that associates property values in such a way as to make them
controllable as single values.

NOTE 1 Groupers support audio control functions variously known as ganging, linking,
mastering, submastering, and VCA mastering.

No signals shall pass through groupers - they shall affect control parameters only.

OcaGrouper is the root class from which specific grouper classes shall be defined. In what follows, the term
grouper means an instance of OcaGrouper or an instance of a child class of OcaGrouper.

An actuator grouper shall provide control of many actuator objects from a single input value, in the manner
described below.

A sensor grouper shall allow many sensor objects to be observed using a single output value. Sensor groupers
will be defined in a subsequent version of this standard.

NOTE 2 This version of AES70 defines only actuator groupers.

5.5.3.2 Groups
A grouper shall contain one or more groups. A group shall be a collection of Workers or Agents, all of the same
class. All groups in a grouper shall collect objects of the same class.

Groups shall aggregate whole objects, not individual properties. This aggregation shall maintain the distinctions
between the different properties of those objects.

The term group setpoint refers to a group's setting for a particular property.

For example, the OcaFilterParametric class defined in AES70-2 represents a parametric equalizer with
three primary properties - frequency, Q, and passband gain. In a group of OcaFilterParametric objects, all
of these properties shall be grouped separately. Thus, the group shall maintain separate group setpoints for each
of frequency, Q, and passband gain.

Group setpoints shall be implemented via the group proxy mechanism described in 5.5.3.4.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 26 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.5.3.3 Overlapping group membership
In a working media system, objects may be members of multiple groups.

For example, in a stereo sound reinforcement system with multi-way loudspeakers, the gain-control object of
the left-channel woofer power amplifier could be controlled by: a master gain group, a left-side gain group, and
a woofer gain group.

This document refers to groups that share one or more objects as overlapping groups.

When a property belongs to an object which is a member of two or more groups, that property's setpoint will
depend on the cumulative effect of the corresponding group setpoints of all the groups of which the object is a
member.

NOTE 1 Because all properties have range limits, it is possible that the cumulative effect of
overlapping group setpoints might drive a property value out of range. This effect must be
prevented or at least managed. In order to manage range limits, a grouper must know about all
overlapping groups and which objects belong to which groups, and must have mechanisms
which use this knowledge to handle range limit issues in the way the application requires. This
is the primary reason why OcaGrouper has been given the capability of containing multiple
groups.

NOTE 2 In order for a grouper's range limit management mechanisms to work in a particular
media network, that network should be configured so that all overlapping groups share a
common grouper. This is an application guideline.

5.5.3.4 Group structure
5.5.3.4.1 General
A grouper shall be capable of managing range limit issues for both non-overlapping and overlapping groups..

We use the following terminology:

Citizen An object of which a grouper is aware.
Group A group that a grouper defines and operates.
Enrollment The binding of a citizen to a group.
Member A citizen that is enrolled in a group.

Group proxy An object that controllers shall use to access group setpoints

A grouper shall provide the following functions:

1. Create or delete groups and group proxies.
2. Register and de-register citizens in the grouper itself.
3. Enroll or de-enroll citizens in groups.
4. Compute and set new property values when group setpoint values change.
5. Manage over-range and under-range group setpoint values in a manner that prevents citizens from

being requested to set their properties to out-of-range values.
6. Handle error conditions that arise when connections between grouper and citizen(s) are lost.

All of the citizens of a grouper shall be instances of the same class. A grouper shall collect references to its
citizens, but shall not create, destroy, or contain them. A grouper's citizens may reside anywhere on the network
- they do not need to be instantiated in the same device as the grouper.

NOTE It will be helpful to visualize a grouper as a type of data matrix whose rows are groups
and columns are citizens, and where each intersection contains information relating to the
membership of the citizen (column) in the group (row).

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 27 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

A grouper shall have one or two operating modes - master-slave mode, and/or peer-to-peer mode. A grouper
shall support either one of these modes, or may support both of them. A grouper's mode is determined by the
value of its Mode property.

5.5.3.4.2 Master-slave mode
In master-slave mode, the parameter values in each group shall be accessed via the group proxy. To change a
group setpoint, a controller shall change the corresponding property value of the group proxy.

There shall be exactly one group proxy per group. The class of the group proxy shall be identical to the class of
its group's members. As groups are created and deleted, corresponding group proxies shall be automatically
instantiated and deleted by the grouper.

Group proxies shall reside in the same device as the grouper.

5.5.3.4.3 Peer to peer mode
In peer-to-peer mode, group proxies shall not be created or used. Instead, the group setpoint shall be changed
whenever any member's setpoint is changed. In essence, all the group's members shall behave as though they
were group proxies.

5.5.3.4.4 Brief example
Figure 8 shows a typical grouper configuration for controlling a stereophonic set of three-way loudspeaker
systems.

Squares indicate objects

Circles indicate enrollments

Figure 8 - Typical grouper

P2

P5

P1

P3

P4

P6

C1 C2 C3 C4 C5 C6

GroupsGroup
Proxies

Left channel

Right channel

Tweeters

Midrange

Woofers

Everything

Citizens

Lef
t tw

eet
ers

Lef
t m

idra
nge

Lef
t w

oof
ers

Righ
t tw

eet
ers

Righ
t m

idra
nge

Righ
t w

oof
ers

GROUPER

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 28 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.5.3.5 Aggregation and saturation rules
5.5.3.5.1 General
Citizen setpoints shall be determined by aggregation rules, which determine the algorithms by which the
setpoint values are computed. Groups shall be governed by saturation rules, which determine how over-range
conditions are handled. These rules can be expected to vary from citizen class to citizen class, property type to
property type, and product to product.

5.5.3.5.2 Aggregation rule options
Groupers may be implemented with a wide range of algorithms to calculate setpoints for individual citizens.
Appropriate aggregation rules shall depend on the datatypes of the properties being grouped, on the devices
involved, and on the application.

The SUM rule may be used for continuous-value parameters such as gain and delay:

 citizen setpoint = sum(setpoints of applicable groups) + offset

where an "applicable group” is one to which the citizen belongs. Offset is a value private for each citizen that
makes its setpoint different from the group's setpoint. It may be thought of as a citizen-specific "trim" setting.

In master-slave mode, offset values result from direct controller calls to individual citizen Set(...) methods,
bypassing the grouper. In peer-to-peer mode, this behavior shall not occur.

The LINK rule may be used for ganging discrete-value parameters such as selector switch settings:

 citizen setpoint = most recently changed applicable group setpoint

For parameters such as mutes, boolean rules such as AND, OR, and XOR may be useful besides the default
LINK rule, for example:

 citizen setpoint = XOR(setpoints of applicable groups)

When objects with multiple properties are grouped (for example, parametric equalizers), the aggregation rules
may differ among the properties.

5.5.3.5.3 Saturation rule options
A group shall use one of two basic saturation rules:

Saturating The grouper shall allow all setpoint changes, but shall truncate values sent to individual
citizens so that out-of-range conditions are avoided. When group setpoints return to more
midrange values, normal operation of the aggregation rule shall resume.

Nonsaturating The grouper shall refuse to make any setpoint changes that would force any citizen's
property out of range.

5.5.3.5.4 Connection loss
When a grouper loses contact with one or more of its citizens, special processing may be needed to preserve
system integrity. This is especially important if lost citizens reconnect with the group after a time interval
during which group setpoint changes have been made.

OcaGrouper shall define an event named StatusChange to which controllers may subscribe in order to be
informed of citizen connection losses.

5.5.3.5.5 Standard OcaGrouper Rules
The standard OcaGrouper class shall define default saturation, aggregation, and connection-loss rules.

1. Default aggregation rules shall depend on the base datatype of the grouped property. The base
datatype is equivalent to its underlying machine datatype. Defaults are shown in table 3.The
default saturation rule shall be Nonsaturating.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 29 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

2. Default connection-loss behavior shall be as follows: After a connection is lost, the standard
OcaGrouper object shall continue to control any citizens that remain connected; when the
connection is restored, the grouper shall update the property values of the lost citizen(s). This
update will restore consistency as long as the lost citizen's setpoint values did not change during
the time when it was unavailable.

Table 3 - Default aggregation rules

Base Datatype Aggregation Rule
Float SUM
Integer LINK
Bool LINK
Enum LINK
String LINK
Others (not grouped)

NOTE 1 It is expected that various subclasses of OcaGrouper will be implemented to fulfill
the range of application requirements. In particular, it is anticipated that different
implementations will require differing connection-loss behaviors.

NOTE 2 Groupers may be instantiated in ordinary devices, or in dedicated AES70 control
servers, or in system controllers. Where a grouper is deployed is a product or system design
choice.

5.5.4 OcaRamper
OcaRamper shall define a mechanism (ramper) by which controllers may cause devices to execute incremental
or prescheduled parameter changes automatically.

Each ramper shall be bound to a particular Worker property. Ramper parameters shall include target property
value, ramp duration, ramp start time, and ramping interpolation law.

Each ramper shall maintain a state property whose value can be monitored by controllers to determine ramping
status, for example: waiting to start, in process, complete, or aborted.

NOTE The rationale for OcaRamper is as follows: For network performance reasons, it is
usually impractical to implement incremental changes (fade-ins, fade-outs, and crossfades) by
sending sequences of commands over the network, because the amount of control traffic
required would be excessive. Furthermore, timing accuracy of ramping actions will be more
precise if not subject to network delays. Also, it may not be possible to implement
prescheduled parameter changes in controllers, because application systems may need to
execute such changes when controllers are not running.

5.5.5 OcaNumericObserver and OcaNumericObserverList
OcaNumericObserver shall define a watcher object that monitors the value of a specified numeric property in
another object and, under certain conditions, notifies controllers of the value. OcaNumericObserver is part of
the Event and Subscription mechanism, and is described in 6.3.

OcaNumericObserverList shall define a watcher object similar to that defined by OcaNumericObserver,
except that OcaNumericObserverList shall be capable of monitoring the values of a given list of numeric
properties in other objects.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 30 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.5.6 OcaLibrary
5.5.6.1 Parameter sets
5.5.6.1.1 General
AES70 features in this area are organized around the block mechanism (see 5.4.3). The library feature is
optional - devices need not implement any library-related objects or functions.

OcaLibrary shall define a mechanism for the handling of parameter value sets that are pre-stored in devices.

NOTE: Such parameter sets have historically been given such names as "preset", "patch",
"memory", or "scene".

AES70 defines two kinds of prestored parameter sets, as follows:

5.5.6.1.2 ParamSet
A ParamSet shall be a pre-stored set of property values for one particular class of block. Read-only properties
(for example, Class ID) shall not be saved or restored by this mechanism.

The act of installing these values into an instance of the block is termed applying the ParamSet to the block. A
stored definition which specifies the application of a particular ParamSet to a particular block instance is
termed a ParamSet assignment.

A ParamSet shall not be required to contain values for all of the properties in its target block. For example, a
ParamSet may contain only one value. Applying a ParamSet to a block shall change only the property values
contained in that ParamSet, and shall leave other properties unchanged.

The block class for which a ParamSet is defined is termed the ParamSet's target block class. A single
ParamSet may be applied to any number of blocks, as long as all of the blocks are instances of the ParamSet's
target block class.

The binary format of a ParamSet is device-dependent and is not specified within this standard. Within AES70,
a ParamSet shall be treated as a BLOB. This standard includes primitives for upload, download, creation, and
management of ParamSets, but these primitives do not include functions that examine those ParamSets.

EXAMPLE Suppose a mixing console defined a block class named InChannel to represent
one input channel. Thus, a 32-input console would have 32 instances of this class. The
console could define one or more channel ParamSets for InChannel. Any of these
ParamSets could be applied to any instance of InChannel.

5.5.6.1.3 Patch
A Patch shall comprise a set of ParamSet Assignments. The act of executing all the assignments in a Patch is
termed applying the Patch to the device. Applying a Patch to a device affects only the parameter values
included in that Patch's ParamSets; other parameters shall remain unaffected.

NOTE The term "patch" inherits from the similar concept in the MIDI device control protocol. A
MIDI "patch" is a set of MIDI commands that configure a device into a particular state.

5.5.6.2 OcaLibrary structure
A collection of ParamSets is termed a ParamSet library. A collection of Patches is termed a Patch library.
The number of ParamSet libraries or Patch libraries that a device may implement is unlimited.

NOTE A Patch is not the same as a ParamSet library, because a ParamSet library is a
collection of ParamSets, but a Patch is a collection of ParamSet assignments.

Each library in a device shall be represented by an OcaLibrary instance. All of these instances, both for
ParamSet and Patch libraries, shall be collected by the OcaLibraryManager object.

5.5.6.3 Creating ParamSets
AES70 defines two ways of creating ParamSets and storing them in the device:

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 31 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

1. A controller may download a ParamSet to a designated library in the device, OR

2. The controller may request that an OcaBlock object in the device save all of its property values as a
ParamSet in a particular library in that same device. This "snapshot" action shall capture the values of
all the properties of all the objects inside the block and save them as a ParamSet in the designated
library.

5.5.7 OcaMediaClock
OcaMediaClock shall describe a particular internal or external media clock which the device uses. It shall
include features for specifying parameters including clock sources, frequencies, rates, and lock states.

A device may define any number of media clocks; each one shall be represented by its own instance of
OcaMediaClock. All of these instances shall be collected by the Media Clock Manager (class
OcaMediaClockManager).

If a device has no network-controllable clocking features, it need not instantiate OcaMediaClockManager or
OcaMediaClock.

5.5.8 OcaEventHandler
See clause 6.

5.6 Manager classes
Manager classes are listed in table 4.

Table 4 - Manager classes and standard object numbers

ONo Class name Function(s)
1 OcaDeviceManager Manages information relevant to the whole device -

including model and serial number, device name and
role, overall operating state, and device update lock.

2 OcaSecurityManager Manages security keys.
3 OcaFirmwareManager Performs firmware updating.
4 OcaSubscriptionManager Manages subscriptions, the constructs by which devices

inform controllers of significant events. See 5.7.
5 OcaPowerManager Manages device power state, including multiple power

supplies, battery supplies.
6 OcaNetworkManager Manages the control and media transport network(s) to

which the device is connected.
7 OcaMediaClockManager Manages media clock selection and control.
8 OcaLibraryManager Manages device patches and presets, the elements that

handle pre-stored device configurations and parameter
settings. See 5.5.6.

9 OcaAudioProcessingManager Manages global audio processing parameters.
10 OcaDeviceTimeManager Provides access to device time-of-day clock.

100 OcaBlock Root block.

NOTE Some manager objects will be required for required for all devices, others may be
optional - see AES70-1.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 32 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

5.7 Standard Object Numbers (ONo)
Every device shall assign standard object numbers to certain specific objects. These object numbers are given in
table 4.

5.8 Object text identification
Every AES70 object shall include a read-only text property named Role, which shall state the role of the
Worker in the device; for example, "Preamp Gain".

Additionally, every Worker object and Agent object shall include a writable text property named Label that
controllers may use to record the function of the object in the application context; for example, "Elvis Vocal
Gain".

5.9 Constructing objects

5.9.1 General
By definition, fully-configurable devices shall allow controllers to construct Worker and Agent objects. These
functions shall be provided by the OcaBlock methods:

For a fully-configurable device, a controller may call ConstructMember to construct an object. When called,
ConstructMember shall construct the object based on object-specific parameters. These parameters are termed
construction parameters, and are defined in AES70-2 for each class. When a controller calls
ConstructMember, it may pass values for some or all of the construction parameters. AES70-2 provides
default values for parameters not specified.

For example, the class OcaSwitch defines a general n-position switch with text labels for each position. At
construction time, the controller may specify the number of positions and the label text for each position. The
default is a two-position switch with blank position labels.

In fully-configurable devices, controllers shall be able to build blocks, populate them with objects, and connect
signal paths among those objects. There shall be two options for doing this, as follows:

1. A controller may call ConstructMember to construct the block, then call ConstructMember again
to construct objects within the new block. It may then call AddSignalPath as needed to define signal
flows within the block. or;

2. A controller may call ConstructMemberUsingFactory, referencing a particular block factory
object, to construct a block with a predefined set of objects and signal flows as defined by the block
factory object being used.

5.9.2 Block Factories
Each block factory shall be an instance of class OcaBlockFactory, defined in AES70-2. A block factory shall
be an object whose function shall be to construct a specific kind of block, with a predefined set of objects and
signal paths. A block factory shall reside in the same device for which it creates blocks.

There shall be three options for creating block factories. Some or all of these options may be implemented,
depending on device configurability, as follows:

1. Block factories may be defined by the device's firmware.
2. If the device is pluggable, block factories may be defined at the time of device setup.
3. If the device is fully-configurable, the controller may create block factories using AES70

commands.

5.10 Deleting objects
In some devices, an object may be deleted using the DeleteObject method of the block where it resides:

1. In static, pluggable, and partially configurable devices, no object may be deleted.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 33 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

2. In fully-configurable devices, any Worker (including block) or Agent may be deleted.

When a Worker is deleted, all signal paths that connect to it shall be deleted. When a block is deleted, all
objects within it shall be deleted.

6 Events and subscriptions

6.1 Subscriptions, events, emitters and notifications

6.1.1 General
Subscription means a persistent relationship between two objects, in which one object sends update messages to
the other object automatically, when certain specified conditions in the device occur. Such conditions are
termed events, the transmitting object is termed an emitter, and the transmitted message is termed a notification.
A notification type shall be specifically defined for each type of event. An object that sends a notification is
said to raise the related event.

An emitter may implement more than one type of event, and may therefore emit more than one type of
notification.

6.1.2 Reliable or fast subscriptions
Subscriptions shall be created by the Subscription Manager in response to controller calls to the
AddSubscription method of the Subscription Manager. A subscription may be created in either of two forms:
reliable or fast. A reliable subscription shall send notifications via the Reliable Message Delivery service; a fast
subscription shall send notifications via the Fast Message Delivery service. Message delivery service classes are
described in 4.3.2.

6.1.3 Subscription deletion
Subscriptions shall persist until the controller deletes them or until they are abandoned. An abandoned
subscription is a subscription whose subscriber no longer appears in the network. In most implementations,
such detection of subscriber failure should be done by using keep-alive messages - see 11.2.1.

When a device detects a subscriber failure, it shall delete all subscriptions which were made by the failed
subscriber.

6.1.4 Subscription event handler
The element which receives a notification is termed an event handler. An event handler is an OnEvent method
of an instance of the Agent class OcaEventHandler. The object that owns the event handler is termed the
subscriber.

When a subscribed event occurs, the emitter shall transmit a notification to the subscriber's event handler. This
notification is equivalent to a call to the OnEvent method of the subscriber. The notification shall contain
information which allows the event handler to perform the appropriate processing.

AES70 does not limit the number of subscribers to an event, nor the number of subscriptions in which an event
handler may participate.

NOTE Although there is no limit on numbers of subscribers or subscriptions, in practice there
will be implementation limits that vary from device to device.

6.2 The PropertyChanged event
The root class OcaRoot shall define an event named PropertyChanged which, when used, shall be raised
whenever any of its object's property values changes.

PropertyChanged subscriptions may be used for such purposes as:

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 34 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

• Monitoring signal-induced object state changes;
• Monitoring overall device state;
• Updating controllers to match user adjustments to front-panel controls;
• In multicontroller systems, updating parameter status among the various controllers.

An object shall raise the PropertyChanged event whenever any of its properties changes. Data returned to the
subscriber shall identify which of the object's properties has changed value.

NOTE 2 Through the class inheritance mechanism, the PropertyChanged event is defined
for every AES70 class. Thus, a controller can monitor the property values of an object simply
by subscribing to its PropertyChanged event. Since all of a device's controllable parameters
reside in its properties, the PropertyChanged event gives complete access to the device's
controllable operating state.

6.3 Use of numeric observers
The OcaNumericObserver class is defined in AES70-2. Each OcaNumericObserver object shall monitor a
specified parameter value and raise an event named observation whenever the observation criteria are met.

Where required, a numeric observer may be created in the device, assigned relevant criteria - numeric test,
periodic repetition rate, or both - and bound to the property to be observed. A controller may then subscribe to
the numeric observer's observation event. Subsequently, whenever conditions meet the numeric observer's
criteria, the numeric observer shall transmit an observation notification to the controller's event handler.

NOTE 1 Numeric observers may be created at time of device manufacture, or, for dynamic
devices, by controllers at a later time.

NOTE 2 Numeric observers will commonly be used in conjunction with sensor objects (for
example, audio level sensors), but can be used equally with any property of any object. For
example, a numeric observer may be defined that emits a notification whenever someone
raises the gain of a power amplifier above some threshold level.

Figure 9 shows an example of a numeric observer that implements a signal-present light in a controller.

Figure 9 - Using a numeric observer to implement a signal-present light

NETWORK

Criterion:
Value > -50 dB

Signal-
present

light

Device Controller

Subscription

OCA
Subscription

Manager
OCA

Numeric
Observer

OCA
AudioLevel

Sensor

Reading
Property

Observation
Event

OCA
Event

Handler

On Event
Method

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 35 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

7 Networking

7.1 General
In AES70, the concept of network shall be generalized: a network may support control and monitoring, or
streaming media transport, or both. For networks that provide media transport, the control interface shall be
generic, in order to allow AES70 to work with media networks of various types.

AES70 shall support devices that belong to more than one network at a time. The multiple networks may all be
of the same type, or they may be of assorted types.

AES70 classes involved with networks are listed in table 5.

Table 5 - Networking classes

Name Type Function(s)
OcaNetworkManager Manager Collects all networks to which the device belongs
OcaNetwork Agent Represents a network that carries control traffic

OcaStreamNetwork Agent Represents a network that streams media and optionally
carries control traffic

OcaStreamConnector Agent Represents a connection point for inbound or outbound media
streams (see below)

OcaStream Datatype Represents an inbound or outbound media stream (see below)

OcaNetworkSignalChannel Worker Allows connection of an external inbound or outbound signal
to one or more signal paths within the device.

Figure 10, below, shows the relationships between the networking classes of AES70.

NOTE in this figure, a diamond-headed arrow represents a collection relationship, with the
objects at the plain ends being collected by the object at the diamond-headed end.

Figure 10 - Network object relationships

DATA

WORKER

MGR AGENT AGENT

AGENT

DATA

Stream connector

OcaStreamConnector OcaStream

OcaPortOcaNetwork
SignalChannel

Stream descriptor

PortSignal channel

Stream
network

Control
network

Ne
tw

or
k m

an
ag

er

OcaStream
Network

OcaNetwork

Oc
aN

et
wo

rk
Ma

na
ge

r

Connector pins

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 36 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

This figure shows both an OcaStreamNetwork object and an OcaNetwork object. The OcaStreamNetwork
object shall be capable of managing both signal transport and AES70 control traffic. The OcaNetwork object
shall be capable of managing only AES70 control traffic. A device may use either or both of these classes.

• If AES70 is used to manage media transport connections, OcaStreamNetwork shall be used.

• "Control-only" devices with no media transport capability may use either OcaStreamNetwork or
OcaNetwork.

• New designs should use OcaStreamNetwork.

• If a device belongs to multiple networks, multiple instances of OcaStreamNetwork should be used as
needed.

7.2 Media Transport Connection Management
Through OcaStreamNetwork and its associated classes (figure 10), AES70 controllers shall be able to access
media network connection management functions for setting up, monitoring, and tearing down media transport
connections between devices.

7.3 OCA Adaptations

7.3.1 General
AES70 network classes shall form a foundation for managing connections of all kinds of media transport
networks. However, it is recognized that specific adjustments may be required to support particular media
transport networks. The specification of the AES70 configuration for a particular network type shall be termed
an AES70 adaptation.

In general, AES70 adaptations shall contain rules for configuring and using AES70 networking classes, and
may additionally define specific refinements (subclasses) of standard AES70 classes.

Some adaptations may require multiple OcaStreamNetwork instantiations for the same physical network. For
example, an AES70 adaptation for a network that provided TCP/IP for control and monitoring, but used a
different protocol suite for media transport, might entail two OcaStreamNetwork Agents, one for IP control
traffic, and another for the media stream(s).

AES70 adaptations are outside the scope of this standard.

7.3.2 Kinds of Media Networks
The AES70 media transport management scheme shall support both stream-based and channel-based media
networks.

• Stream-based media network shall denote a media network that collects signal channels into unidirectional
groups called streams. In such networks, applications make inter-device connections on a stream by stream
basis, and the number of channels in each stream may vary from stream to stream.

• Channel-based media network shall denote a media network in which applications make inter-device
connections on a signal-channel by signal-channel basis. In the implementation of such a network, signal
channels may or may not be grouped into streams, but, if present, such groupings will typically be managed
automatically and will be invisible to applications.

AES70 shall place no restrictions on media stream formats, sampling rates, encodings, or other media data
representations.

7.3.3 Examples
Examples of stream-based and channel-based connection management are in given annex C.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 37 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

7.3.4 The OcaStreamNetwork Class
The media network management mechanisms of AES70 shall be organized around the OcaStreamNetwork
class. OcaStreamNetwork objects shall store basic network access information and shall hold two key
collections - stream connectors and signal channels. These are defined below.

NOTE Most devices will require only a single OcaStreamNetwork object to handle all their
media and control network traffic. Multiple OcaStreamNetwork objects shall be used in
devices that belong to more than one network at a time.

Each OcaStreamNetwork instance shall provide the following features for the network it represents:

1. Functions to start up, pause, and shut down the interface for the network.

2. Standardized network status indication.

3. Ability to get and set the host name or ID by which the device advertises itself on the network.

4. Identification of the hardware link type (TCP/IP Ethernet, USB, etc.) of the network.

5. Identification of the software interface the network uses for input and output.

6. Identification of the control (if any) and media transport (if any) protocols the network uses.

7. Transmission performance and error statistics.

8. Collections of associated classes (see below).

The specific use of OcaStreamNetwork and its associated classes shall depend on whether the media network
is stream-based or channel-based. In what follows, these two modes are described separately.

7.3.5 Mode 1: Stream-based Media Connection Management
7.3.5.1 General
For stream-based connections, a stream shall connect to a stream connector, channels within the stream shall
connect to connector pins, and the connector pins shall connect to internal device signal paths. These concepts
are described below.

7.3.5.2 Stream connectors
A stream connector shall be an instance of class OcaStreamConnector.

A stream connector shall be an Agent object that defines the binding of the device to an external media
transport stream for the purpose of sending or receiving stream data.

The OcaStreamConnector object shall include methods which allow controllers to create and delete media
stream connections. As well, the OcaStreamConnector object shall be capable of informing subscribing
controllers of media stream connections that have been made or broken in response to requests from external
devices and controllers.

The OcaStreamConnector object shall include a feature for identifying a media transport connection as
secure. However, the specific implementation of media transport security shall be outside the scope of this
standard.

A stream connector may be a source (output) connector or a sink (input) connector. Bidirectional connectors
shall not be supported. Source connectors - but not sink connectors - may connect to multiple outbound streams.

For each stream connected to a stream connector, the connection parameters shall be recorded in a stream
descriptor. See 7.3.5.3.

7.3.5.3 Stream Descriptors
A stream descriptor shall be a data element defined by the OcaStream datatype class; it shall hold the
properties of a network media stream. Each stream connector shall collect a stream descriptor for each stream to

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 38 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

which it is connected. Thus, the OcaStreamConnector class has a collection relationship with OcaStream
class. See figure 10.

A source (output) stream connector may connect to multiple streams, and may therefore hold multiple stream
descriptors. A sink (input) stream connector may connect to at most one stream, and shall therefore hold at most
one stream descriptor.

7.3.5.4 Connector pins
A stream connector is analogous to a traditional multipin signal connector. Continuing this analogy, each
stream connector shall have a set of one or more connector pins. Each connector pin shall be a data element that
maps a single signal from a connected stream to an OcaNetworkSignalChannel object. The port of the
OcaNetworkSignalChannel object may in turn be connected to one or more internal signal paths inside the
device, using the normal AES70 signal flow mechanism, described in 5.4.3.6.

7.3.5.5 Signal channels
A signal channel shall be an instance of class OcaNetworkSignalChannel.

A signal channel shall be a Worker object that provides the binding of a particular connector pin to a particular
signal path or paths inside the device. Each signal channel shall contain an OcaPort property to which internal
device signal paths may be connected.

A signal channel may be a source (output) channel or a sink (input) channel. Bidirectional channels shall not be
supported.

A source (output) signal channel may be associated with multiple connector pins in multiple connectors. A sink
(input) signal channel shall be associated at most with one connector pin.

7.3.6 Mode 2: Channel-based media connection management
For channel-based connections, each inbound or outbound signal channel in the network shall connect to a
signal channel object (7.3.5.5) in the device. The signal channel object shall be an instance of the
OcaNetworkSignalChannel class. The signal channel object shall store the relevant connection information
for the channel to which it connects.

An output channel may connect to multiple channels in the network; an input channel shall connect to at most
one channel in the network. Internally, via its OcaPort each signal channel object may connect to intra-device
signal paths according to the usual AES70 signal flow rules (5.4.3.6).

There shall be an OcaStreamNetwork object to describe the network; this object shall collect all the
OcaNetworkSignalChannel objects.

These relationships are shown in figure 11.

Figure 11 - Channel-based classes

MGR AGENT WORKER DATA
Stream
network

Signal channel Port

Ne
tw

or
k m

an
ag

er OcaPortOcaNetwork
SignalChannelOca

Stream
Network

Oc
aN

et
wo

rk
Ma

na
ge

r

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 39 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

8 Sessions
AES70 protocols are session-oriented, which implies the following:

1. Requests and responses shall be correlated pairs.

2. Objects shall have permanent application relationships with other AES70 objects.

3. Prompt discovery of device failure shall be required.

4. Devices shall be able to report changing parameters to subscribing controllers on a regular and
continuing basis (for example, signal level).

5. Controller-to-device relationships shall survive or be deleted in a predictable manner when transport
interruptions occur.

NOTE Networks may contain thousands of AES70 devices. It may not be practical for a single
central controller to have direct control over hundreds or thousands of devices, maintaining a
separate transport connection with each one. In such cases, indirect control using multiple-
controller hierarchies may be implemented, with successive levels aggregating control
functionality in ways appropriate to the applications. Aggregation features - notably the
OcaGrouper class (see 5.5.3) - will aid such implementations.

9 Security
The aim of AES70 is to support networks capable of operating at levels of security sufficient to satisfy:

• international regulations governing emergency evacuation systems.
• commercial and government data security requirements.
• public media and live performance data security requirements.

AES70 security depends on the communications protocol being used.

For example, in networks using TCP/IP communications and the AES70-3 protocol, security of the control data
shall use the TCP/IP family's Transport Layer Security (TLS) protocol to provide authentication and encryption
- see AES70-3 for details.

Security of the control data may be enabled or disabled globally; that is, for the entire AES70 network. An
AES70 network shall not operate with a mix of secure and insecure devices.

NOTE The AES70 specification excludes access control. Access control defines which
devices, objects, object features, and object value ranges can be affected by each user. If
access control is required, then it may be implemented in the application, and AES70 security
may be used to secure the implementation.

10 Concurrency control
AES70 shall support applications that use multiple simultaneous controllers in which a particular object may
receive directives from more than one controller.

In such applications, certain application control events require the exchange of more than one control message.
Therefore the potential for a race condition exists. To prevent race conditions, AES70 devices shall support
single-threading via a simple object-locking mechanism with the elements listed below.

An AES70 lock is designed to prevent all access to the object by anyone other than the lockholder.

The lock interface shall be defined in the OcaRoot class, and shall therefore be inherited by every other AES70
class. However, non-lockable objects may be defined, if desired, as described below.

AES70 locking rules are as follows:

1. The lock interface shall be defined for every AES70 object.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 40 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

2. An object may be implemented as lockable or non-lockable. A non-lockable object shall
return a not-implemented status (via a response message - see 4.3) in response to all
locking-related commands.

3. A lockable object may be locked by at most one remote object (the lockholder) at a time.

4. A lock shall not survive a device reset.

5. Controller to device communication should be continuously monitored (see 11.2). When a
controller's communication with a device fails for any reason, the device shall
automatically remove all locks set by that controller.

6. It shall be possible to lock an entire device by locking its Device Manager object, provided that
none of the device's other objects are locked.

NOTE AES70 does not include a full lock management function. For example, there is no
deadlock detection, there are no non-exclusive locks, there are no multi-level locking schemes.
Such functions, if needed, are left up to the application.

11 Reliability

11.1 General
The aim of AES70 is to support networks capable of operating at levels of reliability sufficient to satisfy:

• international regulations governing emergency evacuation systems.
• commercial and government uptime and robustness requirements.
• public media and live performance uptime and robustness requirements.

"Reliability" means the cumulative effect of Availability and Robustness.

11.2 Availability

11.2.1 Keep-alive messages
The availability of AES70 networks should be monitored by continuous device supervision, using periodic
keep-alive messages defined as part of the network protocol specification. The nature of this message will
depend on the particular network protocol being used.

Devices may also monitor themselves by means of local network protocol messages sent through the complete
path from application to network and back.

11.2.2 Efficient reinitialization
In the event of errors and configuration changes, the protocol implementation should reinitialize the affected
network devices quickly and efficiently.

11.3 Robustness
To support robust implementations, AES70 shall include mechanisms to confirm operation, and shall define
fault-tolerant mechanisms that are resistant to PDU losses and device failures.

AES70 protocol implementations may use network-type-specific robustness mechanisms.

For example, when the protocol defined in AES70-3 (OCP.1) runs on Ethernet, its implementation can take
advantage of spanning-tree protocols to increase resistance to network link failures.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 41 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

12 Device reset
An AES70 device may support the device reset function to recover from catastrophic errors. A device reset
shall have the effect of returning the affected device to the state it was in immediately following power-up. A
device reset shall cause all of the device's initialization data (for example, routing information) to be deleted.

NOTE 1 It is expected that device resets will be used only in extreme situations.

A device reset shall be invoked by the device's receipt of a device-reset command. A device-reset command
shall be a special message that includes a 128-bit security key (the reset key). The value of this key shall match
a previously-stored value in the device. If it does not, the device-reset command shall have no effect.

Reset key values shall be set by a particular AES70 command, and the memory of key values shall not survive a
power-up reset. If a device has not received a reset key value since its most recent power-up reset, it shall
ignore all device-reset commands.

NOTE 2 Since a successful device-reset command causes a power-up reset, a device-reset
command will cause the affected device to forget its reset key.

Device-reset commands shall be sent via the Fast message delivery service, and may be multicast where the
protocol in use permits.

NOTE 3 When AES70 security is not being used, the reset key mechanism is insecure, since
the key may be reset at any time. Full security of the reset mechanism is only available when
overall AES70 security is enabled. For insecure implementations, the reset-key mechanism is
intended to reduce the probability of casual system resets.

13 Firmware and software upgrade

13.1 General
AES70 shall define mechanisms for reliable upgrading of device firmware or software over the network. The
implementation of such mechanisms shall be optional. In what follows, the term updater shall refer to the
AES70 controller that is driving the firmware update process.

When AES70 network upgrading is implemented, then:

1. Upgrading shall be implemented in a way which ensures the device can recover from a failed update.
Thus, the device must have a protected bootup downloader that continues to function even when the
device's program memory contains an invalid image, or no image.

2. Security of the firmware or software upgrade shall be handled through the normal security mechanism
for control data - see clause 9.

3. Implementers of AES70-compliant firmware upgrade mechanisms should take care to ensure that
firmware upgrades are properly signed and controlled. The specifics of such controls are outside the scope
of AES70.

13.2 Update Types
AES70 shall support devices with multiple firmware components per device, and shall allow devices to
support any of the four update types listed in table 6

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 42 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Table 6 - AES70 update types

Update
type

Description

1 Fully transaction-based updates, in which newly received component firmware images shall be
placed into service only when all component image loads have succeeded. If any component
update fails, the device shall revert to all of its old images.

2 Partly transaction-based updates, in which each newly received component firmware image
shall be placed into service immediately after its particular load has succeeded. If the
component's image load does not succeed, the device shall revert to the component's previous
image.

NOTE This method can cause a device to contain a mix of old and new images
at the end of a partially-successful update process. If a device's
implementation is not tolerant of this situation, the device may be rendered
nonfunctional and non-updateable.

3 Guarded non-transaction-based updates, in which incoming component firmware images shall
immediately overwrite current firmware. If an image load fails, the device shall reload failsafe
(sometimes called golden) images from internal read-only memory; these images shall provide
sufficient function for manual retry of the update and/or reversion to pre-update software
versions.

4 Unguarded non-transaction-based updates in which incoming component firmware images shall
immediately overwrite current firmware, with no failsafe mechanism to recover from failed
uploads.

NOTE Failed unguarded non-transaction-based uploads may render devices
nonfunctional and non-updateable.

13.3 Update Modes
AES70 shall support two modes by which firmware image data is updated, as follows:

1. Active updating, in which the updater shall call specific methods in the device to upload firmware
image data into said device;

2. Passive updating, in which the device shall download firmware image data from a source specified by
the updater.

13.4 Update mechanisms

13.4.1 General
All firmware updating shall be managed by the OcaFirmwareManager object, which is a mandatory
Manager in every AES70 device.

The active updating process differs from the passive updating process. Either process can support any of
the four update types described in 13.2. The choice of update type shall be a device implementation option.

13.4.2 Active Updating
The active update of a device shall proceed as set out in table 7.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 43 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Table 7 - Active updates

1. The updater shall call the OcaFirmwareManager.StartUpdateProcess() method.

2. For each firmware component image to be updated, the updater shall:

 a. Call the OcaFirmwareManager.BeginActiveImageUpdate() method to start the component
update.

 b. Call the OcaFirmwareManager.AddImage() method as many times as necessary to upload the
complete component firmware image to the device.

 c. Call the OcaFirmwareManager.VerifyImage() method, which causes the device to verify the
integrity of the uploaded component firmware image.

 d. Call the OcaFirmwareManager.EndActiveImageUpdate() method, which causes the device
to complete the update of a particular component.

3. The updater shall call the OcaFirmwareManager.EndUpdateProcess() method, which shall
cause the device to complete the update process.

In the case of fully-transaction-based updates, the device shall place the uploaded images into operation in
step 3, but only if all uploads have succeeded.

In the case of partly-transaction-based updates, the device shall place each uploaded image into operation
in step 2d, but only if the image verification has succeeded.

In the case of guarded and unguarded non-transaction-based updates, the device shall place the segments of
each uploaded image into operation at the conclusion of step 2c.

13.4.3 Passive Updating
The passive update of a device shall proceed as set out in table 8.

Table 8 - Passive updates

1. The updater shall call the OcaFirmwareManager.StartUpdateProcess() method.

2. For each firmware component image to be updated:

 a. The updater shall call the OcaFirmwareManager.BeginPassiveComponentUpdate()
method, passing the hostname of a network fileserver and the filename of the component
firmware image the device shall download from the fileserver.

 b. The device shall download the specified firmware image file.

3. When all image files have been downloaded, the updater shall call the
OcaFirmwareManager.EndUpdateProcess() method, which shall cause the device to
complete the update process.

In the case of fully-transaction-based updates, the device shall place the uploaded images into operation in
step 3, but only if all uploads have succeeded.

In the case of partly-transaction-based updates, the device shall place each uploaded image into operation
at the end of step 2b.

In the case of guarded and unguarded non-transaction-based updates, the device shall place each uploaded
image into operation at the end of step 2b.

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 44 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Annex A (informative) - Actuator example

A.1 General
To see how classes are generally constructed, we examine OcaGain in more detail. OcaGain is an actuator, but
its general way of working is the same for all classes; workers, managers, or agents.

OcaGain's class tree inheritance is shown in figure A.1. Note that the topmost three classes - OcaRoot,
OcaWorker, and OcaActuator - are abstract classes that will never be instantiated in isolation. They are
present in the class tree to express certain common characteristics of objects, workers, and actuators,
respectively.

Figure A.1 - OcaGain lineage

A.2 Properties, Methods, and Events
OcaGain's properties, methods, and events are a combination of its own specific elements and elements
inherited from its ancestors, OcaActuator, OcaWorker, and OcaRoot.

The complete set of properties is given in table A.1. These properties are accessed via method calls, shown in
table A.2. Events that may be raised by OcaGain are shown in table A.3.

As the tables show, the repertoire of method calls is relatively large - larger than simple devices may need.
AES70 defines a "not implemented" status value which objects may return for methods or method options not
implemented in the device at hand.

Table A.1 - OcaGain properties

Name ID Datatype Access Description Defined in
Object Number 01p03 ONo RO Object number of OcaGain instance OcaGain

Lockable 01p04 Boolean RO True if object can be locked. OcaRoot

Role 01p05 String RO Role of object in device, for example,
"Channel 1 Gain"

OcaRoot

Enabled 02p03 Boolean RW True if object is enabled, false if object
is disabled or the property has no effect

OcaWorker

Ports 02p04 Array of
structures DD Collection of input and output ports

that this object has
OcaWorker

Label 02p05 String RW Purpose of object in system, for
example, "Elvis Vocal Gain"

OcaWorker

Owner 02p06 ONo RO Object number of containing block OcaWorker

ClassID 04p01 Class ID RO Class ID of OcaGain class OcaGain

Class Version 04p02 Integer RO Version number of OcaGain class OcaGain

Gain 04p03 Float RW The gain value in dB OcaGain

NOTE: In the Access column of table A.1, "RO" = read-only; "RW" = read-and-write, "DD" =
device dependent

NOTE In this figure, an
open-headed arrow
represents an inherit-
ance relationship, with
an object at the plain
end being a child of the
object at the arrow-
head end.

Parent for all classes

Parent for all workers

Parent for all actuators

Gain actuator

OcaRoot

OcaWorker

OcaActuator

OcaGain

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 45 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Table A.2 - OcaGain methods

Name ID Description Defined in
GetClassIdentification() 01m01 Returns ClassID and version OcaRoot

GetLockable() 01m02 Returns value of Lockable property OcaRoot

Lock() 01m03 Locks the object OcaRoot

Unlock() 01m04 Unlocks the object OcaRoot

GetRole() 01m05 Returns value of Role property OcaRoot

GetEnabled() 02m01 Returns value of Enabled property OcaWorker

SetEnabled(...) 02m02 Sets value of Enabled property OcaWorker

AddPort(...) 02m03 Adds a signal port to the object OcaWorker

DeletePort(...) 02m04 Deletes a signal port from the object OcaWorker

GetPorts() 02m05 Returns list of the object's signal ports OcaWorker

GetPortName() 02m06 Returns name of a signal port OcaWorker

SetPortName(...) 02m07 Sets name of a signal port OcaWorker

GetLabel() 02m08 Returns value of Label property OcaWorker

SetLabel(...) 02m09 Sets value of Label property OcaWorker

GetOwner() 02m10 Returns ONo of containing block OcaWorker

GetGain() 04m01 Returns value of Gain property OcaGain

SetGain() 04m02 Sets value of Gain property OcaGain

Table A.3 - OcaGain event

Name ID Description Defined in

PropertyChanged(...) 01e01 Raised when a property of the object changes value OcaRoot

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 46 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Annex B (informative) - Block examples

B.1 Simple microphone channel
Figure B.1 shows a signal flow diagram for a typical microphone channel of a mixer.

NOTE The illustrations in this document use small circles for Worker ports, large circles for
block ports, and simple lines for signal paths. Blocks are shown with rounded corners, other
objects with square corners.

Figure B.1 - Simple microphone channel signal flow

B.2 Two-channel microphone mixer
Figure B.2 illustrates the use of blocks in larger assemblies. The microphone channel block of B.1 is replicated
and combined with another gain control to make a simple microphone mixer.

Figure B.2 - Two-channel microphone mixer

In this case, the master gain object has been given two input ports in order to represent the mixing function.

The reader might notice that there is no explicit object for the mix bus and summing amplifier. For this simple
mixer, the mix bus and summing amplifier do not have any parameters that are remotely controllable.
Therefore, they do not have a corresponding AES70 object. More sophisticated mixers might have control
and/or monitoring functions associated with the summing subsystem. In that case, the signal flow might include
an explicit summing point.

Pad
0, 20 dB

Preamp
gain

Main
channel

fader

Audio level meter
VU meter

sensor
Phantom

power

2-pos
switch

2-pos
switch

gain gainequaliser mute
outin

SW Mtr
SW G E G M

SW Mtr
SW G E G M

gain

Master
gain

in 1

in 2

out

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 47 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

B.3 Mixer using nested blocks
This example considers the equalizer object shown in the microphone channel model in Figure B.1. A typical
microphone channel equalizer might contain a high-pass filter section, followed by three parametric equalizer
sections.

AES70 defines object classes that can be used to model a high-pass filter (HPF) or a parametric equalizer. To
model our typical microphone channel equalizer, we could use one OcaFilterClassical instance, followed
by three OcaFilterParametric instances.

These could simply be added to the microphone channel in sequence - see figure B.3.

Figure B.3 - Mic channel with EQ sections inline

Alternatively, we could define a block named, say, MicEqualizer that contained all the equalizer objects and
nest it inside the microphone channel block - see figure B.4.

Figure B.4 - Microphone channel with MicEqualizer block

This arrangement will be easier to use in reconfigurable devices. It might also make controller implementation
simpler, particularly if the same equalizer were used in various parts of the device, or in other products.

Main
channel

fader

out
mutegaingain

VU meter
sensor

Audio level meter

HPF2-pos
switch

2-pos
switch

Phantom
power

Preamp
gain

Pad
0, 20 dB

in
Para-
metric

Para-
metric

Para-
metric

Main
channel
fader

outin

Pad
0, 20 dB

mute

Preamp
gain

Phantom
power

Audio level meter

VU meter
sensor

outin

MicEqualizer

2-pos
switch gain MicEqualiser mute

2-pos
switch

gain

Para-
metric

Para-
metric

Para-
metricHPF

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 48 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Annex C (informative) - Network connection management examples

C.1 Stream-based connection examples

C.1.1 General
The foregoing rules allow for a number of stream-based connection scenarios. Examples of these are illustrated
here. These examples are not based on any particular transport network architecture; they are abstract cases to
demonstrate the range of stream-based connections that AES70 is capable of managing.

C.1.2 Scenario 1: Input

Figure C.1 - Stream-based input example

In this scenario, two inbound streams are connected to two connectors and thence to 8 signal channels. AES70
does not restrict the numbers or sizes of input connectors a device may have.

The device side of the connector shows some input remapping, as pins 2 and 4 of the first connector are mapped
to signal channels 4 and 2, respectively. The device side of the signal channels shows further remapping, as is
possible with the AES70 signal flow mechanism.

Connector pins

Signal channel 1

Signal channel 2

Signal channel 3

Signal channel 4

Signal channel 5

Signal channel 6

Signal channel 7

Signal channel 8

OCA
ports

SIGNAL
CHANNELS

INPUT
CONNECTORS

INBOUND
STREAMS

DEVICE
MEDIA

PROCESSING

1

2

3

4

5

6

1

2

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 49 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

C.1.3 Scenario 2: Simple output

Figure C.2 - Simple stream-based output example

In this scenario, an 8-channel outbound stream is generated by 7 signal channels. Signal channel 2 drives two
connector pins. The device side of the signal channels shows further remapping, as is possible with the AES70
signal flow mechanism.

C.1.4 Scenario 3: Multiple output connectors

Figure C.3 - Multiple stream-based output connector example

In this scenario, two of the output signal channels drive multiple output connectors to yield a two-stream output
capability.

Signal channel 1

Signal channel 2

Signal channel 3

Signal channel 4

Signal channel 5

Signal channel 6

Signal channel 7

OCA
ports

SIGNAL
CHANNELS

OUTPUT
CONNECTORS

OUTBOUND
STREAMS

1

2

3

4

5

6

7

8

Connector pins

DEVICE
MEDIA

PROCESSING

SIGNAL
CHANNELS

OUTPUT
CONNECTORS

OUTBOUND
STREAMS

OCA
ports

DEVICE
MEDIA

PROCESSING

Signal channel 1

Connector pins

Signal channel 1

Signal channel 1

Signal channel 1

Signal channel 1

1

2

3

4

5

6

1

2

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 50 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

C.1.5 Scenario 4: Multiple output streams from one connector

Figure C.4 - Multiple output streams from one connector

In this scenario, two identical outbound streams are driven by a single output connector.

C.2 Channel-based connection examples

C.2.1 Scenario 5: Input

Figure C.5 - Channel-based input

In this scenario, eight inbound channels are connected to eight signal channels. The device side of the signal
channels shows remapping, as is possible with the AES70 signal flow mechanism.

In contrast to the stream-based mode, signal channels in channel-based mode are not linked to connector pins.
Instead, they are directly connected to network signal channels. The OcaNetworkSignalChannel class
contains properties for identifying and describing the connected network signal channels.

SIGNAL
CHANNELS

OUTPUT
CONNECTORS

OUTBOUND
STREAMS

OCA
ports

Signal channel 1

Signal channel 2

Signal channel 3

1

2

3

4

Connector pins

DEVICE
MEDIA

PROCESSING

DEVICE
MEDIA

PROCESSINGSignal channel 5

Signal channel 6

Signal channel 7

Signal channel 8

Signal channel 1

Signal channel 2

Signal channel 3

Signal channel 4

OCA
ports

SIGNAL
CHANNELS

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 51 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

C.2.2 Scenario 6: Output

Figure C.6 - Channel-based output

In this scenario, eight output channels are generated by eight signal channels. The device side of the signal
channels shows further remapping, as is possible with the AES70 signal flow mechanism.

OCA
ports

SIGNAL
CHANNELS

DEVICE
MEDIA

PROCESSING Signal channel 5

Signal channel 6

Signal channel 7

Signal channel 8

Signal channel 1

Signal channel 2

Signal channel 3

Signal channel 4

AES STANDARDS: DRAFT FOR COMMENT ONLY

aes70-1-xxxx-151112-cfc.docx

page 52 of 52

AES STANDARDS: DRAFT FOR COMMENT ONLY

Annex D (informative) - Other Media Network Control Standards

This Annex lists other media network control standards. The listed documents may be useful for comparative
study, and for development of interoperability schemes.

D.1 AES64
AES64 is a previously-published control standard from the AES:

AES64-2012: AES standard for audio applications of networks - Command, control, and connection
management for integrated media. Audio Engineering Society, New York, NY., US.

Online: http://www.aes.org/publications/standards/

D.2 SMPTE ST 2071 - Media Device Control
This standard describes a comprehensive control suite from the Society of Motion Picture and Television
Engineers (SMPTE). Four documents, as follows:

SMPTE ST 2071-1:2014 Media Device Control Framework (MDCF)

SMPTE ST 2071-2:2014 Media Device Control Protocol (MDCP)

SMPTE ST 2071-3:2014 Media Device Control Discovery (MDCD)

SMPTE ST 2071-4:201x Media Device Control Capability Interface Repository

Documents are available via the SMPTE Digital Library at http://library.smpte.org/.

D.3 Architecture for Control Networks (ACN)
ACN is an older control protocol standard that originated in the theatrical lighting industry. Its definition is
flexible, and it has been used by some audio manufacturers in recent years.

American National Standards Institute. "E1-17: Architecture for Control Networks".

Package of 17 documents plus supporting files. Online: http://webstore.ansi.org

D.4 Open Sound Control (OSC)
OSC is an open-source character-based protocol originally designed for electronic music applications. It has
occasionally been adapted for professional audio use.

M. Wright. (2002, March), "The Open Sound Control 1.0 Specification".

Latest complete specification as of this writing. Version 1.1 is in development. Online:
http://opensoundcontrol.org/spec-1_0

D.5 Ember+
Ember+ is an open-source audio device control protocol based on a programming standard called BER, for
"basic encoding rules." It is not a formal standard, but has been used for audio device control by some
manufacturers.

The specification is available at https://github.com/Lawo/ember-plus/wiki .

	AES70-1-xxxx
	Abstract
	Table of Contents
	Foreword
	Note on normative language

	0 Introduction
	0.1 General
	0.2 Architectural goals and constraints
	0.3 Document conventions

	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviations
	4 Top level design
	4.1 General
	4.2 Object orientation
	4.2.1 Concept
	4.2.2 Classes
	4.2.3 Instantiation of classes

	4.3 Messages
	4.3.1 General
	4.3.2 Message delivery services

	5 Device model
	5.1 Device configurability
	5.2 Object addressing
	5.3 Device model elements
	5.3.1 General
	5.3.2 Managers, Workers, and Agents

	5.4 Worker classes
	5.4.1 Actuators
	5.4.2 Sensors
	5.4.3 Blocks
	5.4.4 Matrices

	5.5 Agent classes
	5.5.1 General
	5.5.2 OcaNetwork and OcaStreamNetwork
	5.5.3 OcaGrouper
	5.5.4 OcaRamper
	5.5.5 OcaNumericObserver and OcaNumericObserverList
	5.5.6 OcaLibrary
	5.5.7 OcaMediaClock
	5.5.8 OcaEventHandler

	5.6 Manager classes
	5.7 Standard Object Numbers (ONo)
	5.8 Object text identification
	5.9 Constructing objects
	5.9.1 General
	5.9.2 Block Factories

	5.10 Deleting objects

	6 Events and subscriptions
	6.1 Subscriptions, events, emitters and notifications
	6.1.1 General
	6.1.2 Reliable or fast subscriptions
	6.1.3 Subscription deletion
	6.1.4 Subscription event handler

	6.2 The PropertyChanged event
	6.3 Use of numeric observers

	7 Networking
	7.1 General
	7.2 Media Transport Connection Management
	7.3 OCA Adaptations
	7.3.1 General
	7.3.2 Kinds of Media Networks
	7.3.3 Examples
	7.3.4 The OcaStreamNetwork Class
	7.3.5 Mode 1: Stream-based Media Connection Management
	7.3.6 Mode 2: Channel-based media connection management

	8 Sessions
	9 Security
	10 Concurrency control
	11 Reliability
	11.1 General
	11.2 Availability
	11.2.1 Keep-alive messages
	11.2.2 Efficient reinitialization

	11.3 Robustness

	12 Device reset
	13 Firmware and software upgrade
	13.1 General
	13.2 Update Types
	13.3 Update Modes
	13.4 Update mechanisms
	13.4.1 General
	13.4.2 Active Updating
	13.4.3 Passive Updating

	Annex A (informative) - Actuator example
	A.1 General
	A.2 Properties, Methods, and Events

	Annex B (informative) - Block examples
	B.1 Simple microphone channel
	B.2 Two-channel microphone mixer
	B.3 Mixer using nested blocks

	Annex C (informative) - Network connection management examples
	C.1 Stream-based connection examples
	C.2.1 Scenario 5: Input
	C.2.2 Scenario 6: Output
	C.1.1 General
	C.1.2 Scenario 1: Input
	C.1.3 Scenario 2: Simple output
	C.1.4 Scenario 3: Multiple output connectors
	C.1.5 Scenario 4: Multiple output streams from one connector

	C.2 Channel-based connection examples

	Annex D (informative) - Other Media Network Control Standards

