
COMMITTEE USE ONLY — NOT FOR PUBLICATION

Secretariat 2024/04/17 16:24 DRAFT REVISED AES31-2-xxxx

COMMITTEE USE ONLY — NOT FOR PUBLICATION

STANDARDS AND

INFORMATION DOCUMENTS

Call for comment on DRAFT
AES standard for

audio applications of networks -
Open Control Architecture -

Part 3: OCP.1 Binary protocol

This document was developed by a writing group of the Audio Engineering Society Standards Committee
(AESSC) and has been prepared for comment according to AES policies and procedures. It has been brought to
the attention of International Electrotechnical Commission Technical Committee 100. Existing international
standards relating to the subject of this document were used and referenced throughout its development.

Address comments by E-mail to standards@aes.org, or by mail to the AESSC Secretariat, Audio Engineering
Society, 697 Third Ave., Suite 405, New York NY 10017. Only comments so addressed will be considered.
E-mail is preferred. Comments that suggest changes must include proposed wording. Comments shall be
restricted to this document only. Send comments to other documents separately. Recipients of this document are
invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

This document will be approved by the AES after any adverse comment received within six weeks of the
publication of this call on http://www.aes.org/standards/comments/, 2024-04-18, has been resolved. Any person
receiving this call first through the JAES distribution may inform the Secretariat immediately of an intention to
comment within a month of this distribution.

Because this document is a draft and is subject to change, no portion of it shall be quoted in any
publication without the written permission of the AES, and all published references to it must include a
prominent warning that the draft will be changed and must not be used as a standard.

COMMITTEE USE ONLY — NOT FOR PUBLICATION

Secretariat 2024/04/17 16:24 DRAFT REVISED AES31-2-xxxx

COMMITTEE USE ONLY — NOT FOR PUBLICATION

[This page intentionally blank]

AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

DRAFT
AES standard for audio applications of networks

- Open Control Architecture -
Part 3: OCP.1 Binary protocol

Published by
Audio Engineering Society, Inc.
Copyright © 2015, 2018 2023, 2024 by the Audio Engineering Society

Abstract

AES70 is a suite of standards for control and monitoring of devices in professional media networks. This
Standard, AES standard for audio applications of networks - Open Control Architecture -Part 3: Binary protocol,
defines a binary protocol for using AES70 over IP networks and point-to-point links. Other standards in
the AES70 suite specify concepts and mechanisms, control and monitoring functional repertoire, and
media transport management applications.

AES70 does not specify a media transport scheme. Rather, it is designed to operate with media transport
schemes such as the one specified by AES67.

AES70's intended range of use spans networks of all sizes. This includes mission-critical applications,
high-security applications, IP and non-IP networks, and local and wide-area applications. AES70 can
control real or virtual devices located on premises or hosted by cloud services. AES70 consumes little
computing power and uses network bandwidth lightly.

AES70 architecture is network-agnostic. Current AES70 standards define protocols for use over IP
networks and simple byte-stream networks, but other network types may readily be accommodated.

AES70 is based on the Open Control Architecture (OCA), originally developed by the OCA Alliance.

Audio Engineering Society Inc., 697 Third Avenue, Suite 405, New York, NY 10017, US.

www.aes.org/standards standards@aes.org

 - i - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Foreword

This foreword is not part of this Standard, AES standard for audio applications of networks - Open Control
Architecture -Part 3: Binary protocol.

The role of AES standards. An AES standard implies a consensus of those directly and materially
affected by its scope and provisions and is intended as a guide to aid the manufacturer, the consumer,
and the general public. Prior to the publication of an AES standard, all parties, including the general
public, are given opportunities to comment or object to any provision. Nevertheless, the existence of an
AES standard shall not preclude anyone, whether or not he or she has approved the document, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement
with the standard.

Patent rights. Attention is drawn to the possibility that some of the elements of this AES standard or
information document may be the subject of patent rights. AES shall not be held responsible for
identifying any or all such rights. Approval by the AES does not assume any liability to any patent
owner, nor does it assume any obligation whatever to parties adopting the document.

Recipients of this Standard are invited to submit, with their comments, notification of any relevant patent
rights of which they are aware and to provide supporting documentation.

Review and revision. This Standard is subject to periodic review and possible revision. Users are
cautioned to obtain the latest edition.

AES70 Structure

The AES70 standard is a suite of standards, classified into two divisions. The Core Standards division,
contains standards essential to all implementations of AES70; the Adaptation Standards division
contains application-specific standards. This Standard, AES standard for audio applications of networks -
Open Control Architecture -Part 3: Binary protocol, is a Core Standard.

AES70-3 Version history

Original standard (AES70-3-2015). The members of the writing group that developed this Standard in
draft were: J. Berryman, K. Dalbjorn, H. Hamamatsu, T. Head, T. Holton, S. Jones, M. Lave, N. O'Neill,
M. Renz, S. van Tienen, P. Stevens, E. Wetzell, and U. Zanghieri. Additional contributions were made by
M. Smaak, and G. van Beuningen of the OCA Alliance.

2018 revision. The members of the writing group that developed this Standard in draft were: F.
Bergholtz, J. Berryman, K. Dalbjorn, A. Gödeke, J. Grant, T. Holton, S. Jones, A. Kuzub, M. Lave, G. Linis,
S. Price, M. Renz, A. Rosen, G. Shay, P. Stevens, P. Treleaven, S. van Tieneen, E. Wetzell, and U.
Zanghieri. Additional contributions were made by T. de Brouwer and M. Smaak of the OCA Alliance.

2023 revision. The standards in this revision are collectively known as AES70-2023. For AES70-2023, all
standards in the suite have been updated. New features in the Core Specification include: a new
connection management architecture, large dataset storage and retrieval, documentation improvements,
and numerous small additions and enhancements. More details can be found in Annex G of the
AES70-1-2023 standard.

2024 revision. The AES70-2024 suite comprises new releases of AES70-1, AES70-2, and AES70-3. It
contains a number of adjustments, corrections, and enhancements to the AES70-2023 suite. This
Standard, AES70-3, has been reorganized for clearer reading, and now includes a specification for using

 - ii - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

the OCP.1 protocol over simple point-to-point links. Accordingly, the title has been changed from
"Binary protocol for IP networks" to simply "Binary protocol". AES70's network-agnostic architecture
allows the use of AES70 in many kinds of networks.

The members of the writing group that developed this Standard in draft were: J. Berryman, B. Escalona
Espinosa, A. Gödeke, E. Hoehn, S. Jones, M. Lave, G. Linis, M. Renz, A. Rosen, S. Scott, P. Stevens, P.
Treleaven, S. van Tienen, M. Versteeg, and E. Wetzell.

J. Berryman led the task group for all four revisions.

Morten Lave
Chair, AES SC-02-12, Working Group on Audio Applications of Networks
2024-04-12

Note on normative language

In AES standards documents, sentences containing the word "shall" are requirements for compliance with
the document. Sentences containing the verb "should" are strong suggestions (recommendations).
Sentences giving permission use the verb "may". Sentences expressing a possibility use the verb "can".

 - iii - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Contents

0. Introduction ... 1
0.1. General ... 1
1. Scope .. 1
2. References ... 1
3. Terms, definitions, and abbreviations .. 1
4. Document structure and conventions ... 2
4.1. Structure .. 2
4.2. Conventions .. 2
4.2.1. General .. 2
4.2.2. Datatype naming ... 2
4.2.3. Programmatic data structure definitions ... 3
5. Minimum implementation .. 3
6. The OCP.1 binary protocol .. 4
6.0. General ... 4
6.1. Control Sessions.. 4
6.2. Protocol Data Units .. 4
6.2.1. General Message layout ... 4
6.2.2. Command Message ... 6
6.2.3. Response Message ... 9
6.2.4. Notification Message .. 10
6.2.5. Keep-alive Message ... 14
6.2.6. Device Reset Message ... 15
6.3. PDU construction rules .. 16
6.3.1. Endianness ... 16
6.3.2. Marshaling ... 16
6.4. Device availability monitoring mechanism .. 19
6.4.1. General .. 19
6.4.2. Specification ... 19
6.4.3. System operation (Informative)... 20
6.5. Device Reset mechanism ... 20
6.5.1. General .. 20
6.5.2. Reset not implemented ... 20
6.5.3. Reset implemented .. 20
7. Control Classes and Datatypes ... 21
7.1. General ... 21
7.2. The OCP.1 Networking model ... 21
7.3. NAC Stack ... 21
7.4. OCP.1 programming options .. 22
7.4.1. Option A: no NAC Stack ... 22
7.4.2. Option B: full NAC Stack ... 22
7.4.3. Other options: partial NAC stack ... 23
7.5. Class and datatype details ... 23
7.6. Redundant OCP.1 connections (Informative) .. 23
8. OCP.1 over IP networks ... 23
8.1. Network addresses ... 24

 - iv - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.1.1. OcaNetworkAddress and Ocp1IPNetworkAddress datatypes .. 24
8.1.2. IP address assignment .. 24
8.2. Device Availability Monitoring .. 24
8.2.1. Implementation options ... 25
8.3. Device Reset .. 25
8.3.1. ResetAddress parameter ... 25
8.3.2. Device Reset processing rules .. 25
8.4. Control Sessions.. 26
8.4.1. Control Session Transport Types .. 26
8.4.2. Use of IP Ports .. 27
8.4.3. Control Session configuration details ... 27
8.5. Device Discovery .. 30
8.5.1. General .. 30
8.5.2. Service types and names .. 30
8.5.3. Registration domain .. 30
8.5.4. Registered ports ... 30
8.5.5. TXT records .. 31
8.5.6. Controller activity ... 31
8.6. Programming considerations.. 32
8.6.1. Class and datatype details ... 32
8.6.2. Detailed NAC Stack example for IP.. 34
8.6.3. Connection sharing with IP media transport (Informative) .. 35
9. OCP.1 over Point-to-Point Links .. 36
9.0. General ... 36
9.1. Network addresses ... 36
9.2. Device Availability Monitoring .. 36
9.3. Device Reset .. 36
9.4. Notification Delivery Modes... 36
9.5. Programming considerations.. 36
9.5.1. Class and datatype details for Point-to-Point OCP.1 ... 36
Annex A. (Informative) – UML Description of Protocol Data Unit (PDU) .. 38
Annex B. (Informative) - WebSocket security .. 39
Annex C. (Normative) Deprecated EV1 notification ... 40
C.1. Format .. 40
C.2. Ocp1Notification1 datatype ... 41
C.3. OcaMethodID datatype ... 41
C.4. Ocp1NtfParams1 datatype .. 41
C.5. Ocp1EventData1 datatype ... 42
C.6. OcaEvent and OcaEventID datatypes .. 42

Tables

Table 1. Clause groups ... 2
Table 2. Datatype-specific Marshaling rules ... 17
Table 3. Class and datatype detail clauses in this Standard .. 23
Table 4. Control Session Transport Types for IP networks ... 26
Table 5. Required key/value pairs in registered TXT records... 31

 - v - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 6. OcaNetworkApplication property values for IP networks ... 32
Table 7. OcaNetworkInterfaceAssignment field values for IP networks 32
Table 8. OcaNetworkAdvertisement field values for IP networks ... 33
Table 9. OcaNetworkInterface property values for IP networks ... 33
Table 10. OcaNetworkApplication property values for Point-to-Point Links 37
Table 11. OcaNetworkInterfaceAssignment field values for Point-to-Point Links 37
Table 12. OcaNetworkInterface property values for Point-to-Point Links 37

Figures

Figure 1. General message layout .. 4
Figure 2. Command message ... 6
Figure 3. Response message .. 9
Figure 4. EV2 Notification message .. 10
Figure 5. PropertyChanged notification example .. 14
Figure 6. Keep-alive message .. 14
Figure 7. DeviceReset PDU... 15
Figure 8. OCP.1 class subtree .. 21
Figure 9. OCP.1 NAC Stack - overview .. 22
Figure 10. OCP.1 NAC Stack with dual-network redundancy .. 23
Figure 11. Detailed NAC Stack example ... 34
Figure 12. IP network shared between OCP.1 and AES67 media transport 35
Figure 13. EV1 notification message .. 40

 - 1 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

DRAFT
AES standard for audio applications of networks

- Open Control Architecture -
Part 3: OCP.1 Binary protocol

0. Introduction

0.1. General

AES70 is a standards suite for media system control and monitoring via computer networks.

The AES70 standards suite has a number of separate parts. This Standard should be read in conjunction
with [AES70-1], the framework standard, and [AES70-2], the class structure standard.

This Standard is a part of the 2024 version of the AES70 suite.

1. Scope

This Standard contains the technical specification of the OCP.1 protocol of AES70, the Open Control
Architecture. OCP.1 is a compact binary protocol that supports AES70-compliant remote control and
monitoring of media devices over IP networks and Point-to-Point Links.

AES70 does not define a standard for streaming media transport.

AES70 models the control and monitoring functions of a Device, not its internal implementation. A
Device's AES70 protocol interface represents only elements chosen to be exposed for AES70 control and
monitoring.

2. References

 Normative references - see [AES70-1(Normative references)].
 Nonnormative references - see [AES70-1(Bibliography)].

3. Terms, definitions, and abbreviations

For this Standard, the definitions in [AES70-1(Terms, definitions and abbreviations)], plus the following
additional definitions, apply.

1. Point-to-Point Device
Device that uses one or more Point-to-Point Links for OCP.1 traffic.

2. Point-to-Point Link
simple data connection capable of bidirectional transmission of arbitrary octets. Full definition is in
Clause 9.

3. Point-to-Point OCP.1
OCP.1 transmitted over a Point-to-Point Link.

 - 2 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

4. Control Session
Session for the exchange of AES70 Commands, Responses, and Notifications between a Controller and a
Device

5. Control Session Transport Type
set of transport protocol(s) used for transport of Commands, Responses, and Notifications in a Control
Session - see Clause 6.1.

6. Device Discovery
mechanism by which Devices connected to the network make themselves known to each other

7. IP Device
IPv4 Device or IPv6 Device

8. IPv4 Device
Device that uses IP version 4 for its OCP.1 traffic

9. IPv6 Device
Device that uses IP version 6 for its OCP.1 traffic

10. Marshal
convert data from native format to network byte stream format in preparation for network transmission.

4. Document structure and conventions

4.1. Structure

The clauses of this Standard are grouped as described in Table 1.

Table 1. Clause groups

Group Clauses

Introductory topics 0 ... 5

OCP.1 protocol and control structures 0 ... 7

OCP.1 implementations for various
Control Session Transport Types

8...9

Informative annexes Annex A ... Annex C

4.2. Conventions

4.2.1. General

This Standard adheres to the document conventions set forth in [AES70-1(Document conventions)].

4.2.2. Datatype naming

This Standard refers both to datatypes that are used in AES70 generally and to specific datatypes that are
only used in OCP.1. To differentiate between the general and the specific data types, the names of the
general data types start with 'Oca', while the names of the specific data types start with 'Ocp1'.

 - 3 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

4.2.3. Programmatic data structure definitions

All definitions of programmatic data structures use C programming language style.

5. Minimum implementation

To be AES70-3 compliant, a Device shall implement this specification for at least one of the supported
Control Session Transport Types defined in Clauses 8 and 9.

 - 4 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6. The OCP.1 binary protocol

6.0. General

OCP.1 is a remote procedure call protocol with an event notification mechanism. In normal operation:

 Controllers send Command PDUs to Devices.

 Devices respond to each Command with a Response PDU, unless the Command was sent with
no response requested.

NOTE. Suppressing Responses is not recommended.

 Controllers can subscribe to Device events; when a subscribed event occurs, the Device sends a
Notification PDU to all controllers that have subscribed to that event.

 A Controller and a Device may optionally use Keep-alive PDUs to monitor each other's
operational availability.

OCP.1 PDUs are compact binary structures, the format and contents of which are described in Clause 6.2.

Implementations of OCP.1 for particular Control Session Transport Types may define additional PDU
types for specific purposes.

6.1. Control Sessions

"Control Session" is defined in Definition 4.

OCP.1 Control Sessions can be implemented using various data transport mechanisms. Each such
mechanism is termed a Control Session Transport Type. Each Control Session Transport Type specifies
the transport protocol(s) to be used for transport of OCP.1 protocol data units.

As specified in [AES70-1(Notification Delivery Mode)], Notifications shall travel in one of two modes,
termed Normal and Lightweight, as elected by the Controller. Every Control Session Transport Type
specifies a protocol for both of these modes. In some cases, the same protocol is used for both.

6.2. Protocol Data Units

6.2.1. General Message layout

6.2.1.1. General

Each OCP.1 message shall have the format shown in Figure 1.

Figure 1. General message layout

SyncVal
=0x3B Ocp1MessagePdu

Ocp1Header

DataHeader

Protocol
Version

PduSize PduType
Message

Count

 - 5 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The message protocol data unit shall be defined as follows:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // OCP header
 OcaArray1D<OcaUint8> Data; // Message data
} Ocp1MessagePdu;

where the parameters shall be as follows:

SyncVal
Message synchronization value indicating the start of a new OCP.1 message.
The synchronization value shall be the constant 0x3B for all PDU types.

Header OCP.1 header containing the general message fields.

Data Data array holding the actual message data.

Receivers shall always check that every OCP.1 message starts with the synchronization value. If a
received message does not start with the standard synchronization value, the receiver shall close the
connection to the sender.

6.2.1.2. Ocp1Header Message header datatype

The OCP.1 header datatype shall be defined as follows:

struct {
 OcaUint16 ProtocolVersion; // Version number of OCP.1
 OcaUint32 PduSize; // Size of the PDU (in bytes)
 Ocp1MessageType PduType; // Type of the PDU
 OcaUint16 MessageCount; // Message count
} Ocp1Header;

with

enum Ocp1MessageType {
Ocp1Cmd = 0, // Command - no response required
Ocp1CmdRrq = 1, // Command - response required
Ocp1Ntf1 = 2, // Notification, version EV1 - see Annex C
Ocp1Rsp = 3, // Response to a Command
Ocp1KeepAlive = 4, // Keep-alive message - see Clause 6.4
Ocp1Ntf2 = 5 // Notification, version EV2 - see Clause 6.2.4

};

 - 6 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where fields shall be as follows:

ProtocolVersion

Version number of the OCP.1 protocol. AES70 classes have their own individual
version numbers; this protocol version field shall only change if there is an
update in the OCP.1 protocol described in this Standard.

The protocol version number for this (2023) version of AES70 shall be 1.

PduSize Size of the entire PDU in bytes, including the header, excluding the
synchronization value.

PduType

Indicates the type of the PDU; that is, what message type the PDU contains. One
of the following message types shall be used (the value is given between
brackets):

Ocp1Cmd (0) Command - no Response Required

Ocp1CmdRrq (1) Command - Response Required

Ocp1Ntf1 (2) Notification, version EV1. Deprecated - see Annex C.

Ocp1Rsp (3) Response to a command

Ocp1KeepAlive (4) Keep-alive message - see Clause 6.2.5

Ocp1Ntf2 (5) Notification, version EV2 - see Clause 6.2.4

MessageCount
Message count indicating how many messages (of type PduType) are present in
the ‘data’ field. This message count shall always be at least 1. If the PduType is
equal to Op1KeepAlive, the message count shall be 1.

6.2.2. Command Message

6.2.2.1. Format

A command message shall have the format illustrated in Figure 2.

Figure 2. Command message

Ocp1CommandPDUHeader Commands
[2]

Commands
[n]

Parameter
Count
= m

Parameters
[m]

Parameters
[1]

Commands
[1]

Command
Size Handle Target

ONo
Method

ID Parameters Ocp1Command

DefLevel Method
Index Ocp1Parameters

OcaMethodID

SyncVal
=0x3B

 - 7 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.2.2. Ocp1CommandPDU datatype

The message protocol data unit shall be defined as follows:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // OCP.1 Header
 OcaArray1D<Ocp1Command> Commands; // Commands
} Ocp1CommandPdu;

where the fields shall be as follows:

SyncVal Message synchronization value - see Clause 6.2.1.1

Header
General message fields. See the Ocp1Header definition in Clause 6.2.2.2).
The value of Header.PduType shall be Ocp1Command or
Ocp1CommandRrq.

Commands
Array of (Ocp1Header.MessageCount) commands. The command format
is defined by the Ocp1Command datatype - see Clause 6.2.2.3.

6.2.2.3. Ocp1Command datatype

The Ocp1Command data structure shall be defined as follows:

struct {
 OcaUint32 CommandSize; // Size of the individual command
 OcaUint32 Handle; // Command handle
 OcaONo TargetONo; // Destination ONo
 OcaMethodID MethodID; // MethodID of method to invoke
 Ocp1Parameters Parameters; // Parameters of the method to invoke
} Ocp1Command;

 - 8 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where the fields shall be as follows:

CommandSize
Size of the individual command, in bytes. This shall be the size of the
complete Ocp1Command structure including this CommandSize field.

Handle

Arbitrary 32 bits used as a reference ‘handle’ to the command. Responses
shall use the same handle value as the command that triggers the
response. Controllers may freely assign handle values to commands;
Devices shall match those handle values in the respective responses.
Handles shall be private to each session between a Controller and a
Device.

TargetONo Destination object number (OcaONo) within the controlled Device. An
OcaONo shall have a size of 4 bytes (that is, an OcaUint32).

MethodID Method ID (OcaMethodID) of the method to invoke (that is, the method of
the destination object to invoke).

Parameters
Input parameters of the method to invoke. When the method has no
parameters, this structure shall be present with a ParameterCount value
of zero.

6.2.2.4. OcaMethodID datatype

OcaMethodID is defined normatively in [AES70-2A] as follows:

struct {
 OcaUint16 DefLevel; // Class tree level
 OcaUint16 MethodIndex; // Index of the method
} OcaMethodID;

See [AES70-1] for concepts of class element identifiers such as OcaMethodID.

6.2.2.5. Ocp1Parameters datatype

The OcpParameters data structure shall be defined as follows:

struct {
 OcaUint8 ParameterCount; // Number of parameters
 OcaArray1D<OcaUint8> Parameters; // Parameters
} Ocp1Parameters;

where the fields shall be defined as follows:

ParameterCount Number of parameters present in the parameter array. This value may be
zero, in which case no parameter data shall be present.

Parameters

Parameter array holding the actual (marshaled) parameters of the
command. The parameters shall be configured for the particular method
being invoked. The specific parameters required by each method of each
class are defined in [AES70-2].

 - 9 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.3. Response Message

6.2.3.1. Format

A response message shall have the format illustrated in Figure 3.

Figure 3. Response message

6.2.3.2. Ocp1ResponsePDU datatype

The response message protocol data unit shall be defined as follows:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // OCP.1 Header
 OcaArray1D<Ocp1Response> Responses; // Responses
} Ocp1ResponsePdu;

where the fields shall be defined as follows:

SyncVal Message synchronization value - see Clause 6.2.1.1.

Header General message fields - see Clause 6.2.1.

Responses Array of (MessageCount) responses. The response format is defined by the
Ocp1Response datatype - see Clause 6.2.3.3.

6.2.3.3. Ocp1Response datatype

The Ocp1Response datatype shall be defined as follows:

struct {
 OcaUint32 ResponseSize; // Size of the individual response
 OcaUint32 Handle; // Response handle
 OcaStatus StatusCode; // Status code of the response
 Ocp1Parameters Parameters; // Response parameters
} Ocp1Response;

Header Responses
[1]

Parameter
Count
= m

Status
Code

Response
(n)

HandleResponse
Size

Responses
[2] Ocp1ResponsePDU

Ocp1ResponseParameters
[1]

Parameters
[m]

SyncVal
=0x3B

 - 10 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where the fields shall be defined as follows:

ResponseSize
Size of the individual response (in bytes). This shall be the size of the
complete Ocp1Response structure including this ResponseSize field.

Handle
Arbitrary 32 bits used as a reference ‘handle’ to the response. This handle
value shall be the same as the handle value of the command that triggered
the response.

StatusCode
Status code that specifies the result of the method invocation the response
belongs to. Status code values are defined by the OcaStatus datatype
defined in [AES70-2A].

Parameters

Response parameters (output parameters of the method that was invoked).
When the method has no output parameters, this structure shall be present
with a ParameterCount value of zero. The parameter datatype
Ocp1Parameters is defined in Clause 6.2.2.5.

6.2.4. Notification Message

6.2.4.1. Versions

In AES70-2023, the event and subscription mechanism was revised. The new version of the mechanism is
identified as EV2; the old version is identified as EV1. EV1 is deprecated as of AES70-2023.

This clause specifies the EV2 notification message format. For reference, the deprecated EV1 format is
specified in Annex C.

6.2.4.2. Format (EV2)

An EV2 notification message shall have the format illustrated in Figure 4.

Figure 4. EV2 Notification message

Header

DataNotification
Size

Ocp1Notification2PDU

Ocp1Notification2

OcaEventID

OcaEvent

Notification
TypeEvent

Emitter
ONo EventID

DefLevel Event
Index

Notifications
[1]

Notifications
[2]

Notifications
[n]

SyncVal
=0x3B

 - 11 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.4.3. Ocp1Notification2PDU datatype

The notification message protocol data unit shall be defined as follows:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // OCP Header
 OcaArray1D<Ocp1Notification2> Notifications; // Array of notifications
} Ocp1Notification2Pdu;

where the fields shall be defined as follows:

SyncVal Message synchronization value. See Clause 6.2.1.1.

Header General message fields. See Clause 6.2.1.1.

Notifications
Array of (MessageCount) notifications. The notification format is defined
by the Ocp1Notification2 datatype - see Clause 6.2.4.4.

6.2.4.4. Ocp1Notification2 datatype

The Ocp1Notification2 datatype shall be defined as follows:

struct {
 OcaUint32 NotificationSize; // Size of this notification in bytes
 OcaEvent Event; // The OcaEvent that was triggered
 Ocp1Notification2Type NotificationType; // The type of notification
 OcaArray1D<OcaUint8> Data; // Event or exception data
} Ocp1Notification2;

with

enum Ocp1Notification2Type {
Event = 0, // Normal notification
Exception = 1 // Exception notification

};

 - 12 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where the fields shall be defined as follows:

NotificationSize
Size in bytes of the complete Ocp1Notification2 structure including the
NotificationSize field.

Event
OcaEvent structure that specifies the emitting event and its source -
see Clause 6.2.4.5.

NotificationType

Type of notification:
 Event (value = Event). Normal event.
 Exception (value = Exception) - see Clause 6.2.4.6.

Data
(variable length byte
array)

Event-or exception-specific data.
 For events, the format of this value shall depend on the particular type

of event. Event data formats are defined normatively in [AES70-2A].
 For exceptions, the value shall be in the format defined by

Ocp1Notification2ExceptionData, defined in Clause 6.2.4.7.

6.2.4.5. OcaEvent and OcaEventID datatypes

OcaEvent is defined normatively in [AES70-2A] as follows:

struct {
 OcaONo EmitterONo; // Object number of the emitter object
 OcaEventID EventID; // EventID of the event
} OcaEvent;

OcaEventID is defined normatively in [AES70-2A] as follows:

struct {
 OcaUint16 DefLevel; // Class tree level
 OcaUint16 EventIndex; // Index of the event
} OcaEventID;

See [AES70-1] for concepts of class element identifiers such as OcaEventID.

6.2.4.6. Notification type

The enum Ocp1Notification2Type shall identify the notification type. It is defined normatively as
follows:

 An Event notification shall announce the occurrence of the associated event.

 An Exception notification shall announce the termination of a subscription - see Clause 6.2.4.7.
Other types of exceptions may be defined in future versions of this Standard.

 - 13 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.4.7. Exception notifications and the Ocp1Notification2ExceptionData datatype

An Exception notification is a notification whose NotificationType property’s value is Exception, and
whose Data property is a value of datatype Ocp1Notification2ExceptionData.

The Device shall emit an Exception notification whenever a subscription is terminated for any reason
other than explicit subscription cancellation.

Ocp1Notification2ExceptionData and related types shall be defined as follows:

struct {
 Ocp1Notification2ExceptionType ExceptionType; // Type of Exception
 OcaBoolean TryAgain; // TRUE when subscription can be re-attempted
 OcaBlob Data; // Device-specific data associated with exception
} Ocp1Notification2ExceptionData

with

enum Ocp1Notification2ExceptionType {
Unspecified = 0, // Unspecified reason for Exception
CancelledByDevice = 1, // Device cancelled subscription
ObjectDeleted = 2, // Object was deleted
DeviceError = 3 // Something went wrong in the Device.

}

The value of the ExceptionData property shall be implementation-dependent and is not defined by this
Standard.

 - 14 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.4.8. Example: OcaGain PropertyChanged notification

Figure 5 illustrates the notification PDU that is emitted when the Gain property of an OcaGain object
with Object number 10001 is changed to 22.0 dB.

Figure 5. PropertyChanged notification example
Dimensions are byte lengths.

6.2.5. Keep-alive Message

This message supports the Device Availability Monitoring mechanism specified in Clause 6.4.

6.2.5.1. Format

A Keep-alive message shall have the format shown in Figure 6.

Figure 6. Keep-alive message

Notification
Size
= 22

Notification
Type
= 0

(event)

DefLevel
=1

EventIndex
=1

Message
Count

= 1

Protocol
Version

= 1

PduType
= 5

(notification2)

PduSize
= 31

Header Notifications[1]

DefLevel
=4

Property
Index

=1

2 4 1

14 4 4

8 1

1 9

9

22

2 2 2 2

4

4

2

SyncVal
=0x3B

Emitter
ONo

=10001

Property
Value
=-22.0

Change
Type
= 1

EventID Property ID

Event Data

Header Heartbeat
Timeout Ocp1KeepAlivePduSyncVal

=0x3B

 - 15 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The Keep-alive message protocol data unit shall be defined as follows:

Option 1 - Heartbeat time specified in seconds:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // Header - see Clause 6.2.1.2
 OcaUint16 HeartbeatTimeout; // Heartbeat timeout in seconds
} Ocp1KeepAlivePdu;

Option 2 - Heartbeat time specified in milliseconds:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // Header - see Clause 6.2.1.2
 OcaUint32 HeartbeatTimeout; // Heartbeat timeout in milliseconds
} Ocp1KeepAlivePdu;

where the fields shall be defined as follows:

SyncVal Message synchronization value - see Clause 6.2.1.1

Header General message fields - see Clause 6.2.1.2

HeartbeatTimeout Maximum interval between messages on this OCP.1 link - see Clause 6.4
Option 1: Timeout in seconds
Option 2: Timeout in milliseconds

Devices shall distinguish between Option 1 and Option 2 by testing message length.

6.2.6. Device Reset Message

This message supports the Device Reset mechanism specified in Clause 6.5.

6.2.6.1. PDU

A DeviceReset PDU shall have the format shown in Figure 7.

Figure 7. DeviceReset PDU

The Sentinel field shall be a 64-bit constant with a hexadecimal value of:

DEAF DADA CAFE BABE

The ResetKey field shall have a length of 128 bits (16 bytes). Reset Key values shall be set by a Device
Manager method. See [AES70-1] for details.

Sentinel
=0xDEAFDADACAFEBABE ResetKey

 - 16 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.3. PDU construction rules

6.3.1. Endianness

OCP.1 shall use network byte order (that is, big-endian or MSB first) for the basic AES70 integer data
types, and floating point numbers that consist of more than 1 byte.

6.3.2. Marshaling

“Marshal” is defined in definition 10.

6.3.2.1. Marshaling datatypes

The following Marshaling datatypes are defined. They are used in the rules below.

 Ocp1List

template<datatype DT>
struct {

OcaUint16 Count // List item count
DT item[] // items

} Ocp1List ;

 Ocp1LongList

template<datatype DT>
struct {

OcaUint32 Count // List item count
DT Item[] // items

} Ocp1LongList ;

 Ocp1MapItem

template-<datatype KeyDT, datatype ValueDT>
struct {

KeyDT Key
ValueDT Value

} Ocp1MapItem;

 Ocp1Utf8CodePOint

typedef byte[] Ocp1Utf8CodePoint // Byte string as specified by [UNICODE]

6.3.2.2. General rules

The following rules apply to the Marshaling process generally:

 Each individual property of a composed datatype shall be Marshaled in order of occurrence in
the datatype definition specified in [AES70-2A].

1. An array shall be marshaled by writing the array members in order of appearance, i.e. the
entry with the lowest index value shall be written first.

2. In Command messages, method call input parameters shall be Marshaled into an
Ocp1Parameters structure of Ocp1Command in the order specified in [AES70-2].

3. In Response messages, method call output parameters shall be Marshaled into an
Ocp1Parameters structure of the Ocp1Response in the order specified in [AES70-2].

 - 17 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

4. In EV2 event Notifications, parameters shall be marshaled into the Ocp1Notification2.data
property - see Clause 6.2.4.4.

5. In EV1 event Notifications, parameters shall be marshaled into an Ocp1EventData structure
of the Ocp1NtfParams structure of Ocp1Notification1 in the order specified in [AES70-2]. See
Clause and Clause C.3 in Annex C.

6.3.2.3. Datatype-specific marshaling rules

Table 2 lists Marshaling rules for specific datatypes.

Table 2. Datatype-specific Marshaling rules

Datatype Marshaled as

OcaBoolean Unsigned 8-bit integer. zero value = FALSE; other values = TRUE
OcaInt8 Signed 8-bit integer
Oca1nt16 Signed 16-bit integer
OcaInt32 Signed 32-bit integer
OcaInt64 Signed 64-bit integer
OcaUint8 Unsigned 8-bit integer
OcaUint16 Unsigned 16-bit integer
OcaUint32 Unsigned 32-bit integer
OcaUint64 Unsigned 64-bit integer
OcaFloat32 IEEE 32-bit floating-point value as specified in [IEEE-754]
OcaFloat64 IEEE 64-bit floating-point value as specified in [IEEE-754]

OcaString

Ocp1List of Ocp1Utf8CodePoint items.
The format of UTF-8 codepoints is defined normatively in [UNICODE]. Note
that UTF-8 codepoints may be one or more bytes long. Thus, the Ocp1List item
count will not be equal to the byte length of the string when non-ASCII
characters are used.

OcaBitstring

Sequence of the following items:
N number of bits - 16 bit unsigned integer
byte(0) bits 0...7; MSB is bit 0.
byte(1) bits 8...15; MSB is bit 8.
...
byte(nB) last bits. Last part of the byte may be unused.

where nB = ceiling(N/8)

OcaBlob Ocp1List of OcaUint8 items
OcaLongBlob Ocp1LongList of OcaUint8 items
OcaBlobFixedLen<N> Sequence of (N) OcaUint8 items

OcaArray1D
Sequence N of items, all of the same datatype and are individually Marshaled
according to the rules in this clause:
item(0) ... item(N-1)

OcaArray2D

Sequence of nested 1D arrays, all of the same datatype and are individually
Marshaled according to the rules in this clause:

nX column count - 16 bit unsigned integer
nY row count - 16 bit unsigned integer

 - 18 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Datatype Marshaled as

item(0,0) ... item(nX-1,0) first row

item(0,1) ... item(nX-1,1) second row
...
item(0,nY) ... item(nX-1,nY-1) last row

OcaList Ocp1List

OcaList32 Ocp1LongList

OcaList2D

Ocp1List of Ocp1Lists, with the column list being outermost
(DT is the datatype of the items):

N column count
Ocp1List<DT> column 1 - Ocp1List<DT>
Ocp1List<DT> column 2 - Ocp1List<DT>
...
Ocp1List<DT> column N - Ocp1List<DT>

OcaMap Ocp1List of Ocp1MapItem items
OcaMultiMap Ocp1List of Ocp1MapItem items

OcaVariant

Sequence of two items, as follows:
K semantics selector - 16 bit unsigned integer
Data the data - datatype is determined by the value of K,
where K is zero for the first datatype specified for the variant, 1 for the second,
and so on.

OcaBitSet16 16-bit unsigned integer

 - 19 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.3.2.4. Example

For example, consider the composed datatype OcaCounter, which is specified in [AES70-2] as follows:

struct {
OcaID16 ID // Counter identifier
OcaUint64 Value // The count
OcaUint64 InitialValue // Value that a reset sets
OcaString Role // Name of counter in context
OcaList<OcaONo> Notifiers // List of ONos of attached Notifiers

}

Now consider a specific instance of OcaCounter with the following values:

ID 3
Value 100
InitialValue 0
Role "Errors"
Notifiers (empty list)

By the marshaling rules given above, this instance would be represented on the network by the following
byte sequence (decimal numeric values, leftmost is transmitted first):

0 3 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 6 "E" "r" "r" "o" "r" "s" 0 0
| | | | |
ID Value InitialValue Role Notifiers

6.4. Device availability monitoring mechanism

6.4.1. General

OCP.1 defines a Device availability monitoring mechanism. Controllers may enable or disable it, as
applications require. This mechanism uses periodic Keep-alive messages (see Clause 6.2.5) to ensure that
Device availability is verified on a timely basis.

6.4.2. Specification

The maximum interval between Device availability verifications is known as the Heartbeat timeout. The
Device shall use the Heartbeat timeout value to ensure that a message is sent at least every (Heartbeat
timeout) interval. This message may be a Keep-alive message or any other message.

The Heartbeat timeout value shall be specified in the Keep-alive message, and may be changed at any
time. Devices shall support different Heartbeat timeout values for different Controller connections.

The monitoring mechanism shall behave as follows:

 When the Device receives no message from the Controller within the Heartbeat timeout interval,
the Device shall assume that an availability issue exists. After three lost messages, the Device
shall conclude that the Controller connection has failed.

 When the Controller receives no message from the Device within Heartbeat timeout interval, the
Controller shall assume that an availability issue exists. After three lost messages, the Controller
shall conclude that the Device has become unavailable.

 - 20 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 When a connection is lost, the Device shall perform appropriate termination processing, if
possible. Locks and subscriptions that were made on the connection shall be removed, and
connection information shall be cleared.

6.4.3. System operation (Informative)

At any time after establishing a secure or insecure connection to a Device, a Controller starts the Device
availability monitoring process by sending the Device a KeepAlive message (see Clause 6.2.5). From that
moment until power-off or Device Reset, both the Device and the Controller use the HeartbeatTime value
to ensure that both the Device and the Controller send a message every (HeartbeatTime) seconds. This
message can be a KeepAlive message or any other message.

Once the Device availability monitoring process has started, both the Controller and the Device keep
track of the time between received OCP.1 messages on the established connection. If either the Controller
or the Device does not receive a message within the expected time interval, the connection is considered
lost, and the Controller or Device closes it.

EXAMPLE

If a Controller sends a HeartbeatTime of 2 seconds in its first KeepAlive message, both the
Controller and the Device are obliged to send a message every two seconds. If no message is
received for 6 seconds, the Device and Controller will consider the connection to be lost.

6.5. Device Reset mechanism

6.5.1. General

A Device may implement the AES70 Device Reset mechanism (see [AES70-1(Device Reset)]).

6.5.2. Reset not implemented

When a Device does not implement the Device Reset mechanism, its OcaDeviceManager object method
SetResetKey shall perform no action and return the status value NotImplemented.

6.5.3. Reset implemented

When a Device implements the Device Reset mechanism, that mechanism shall be disabled following a
power-on reset. To enable Device Reset, a Controller shall call the Device's OcaDeviceManager method
SetResetKey.

When calling SetResetKey, the Controller shall pass the following parameters:

 Key 128-bit Device Reset key; and
 ResetAddress Format depends on transport type.

Reset processing rules depend on transport type.

 - 21 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

7. Control Classes and Datatypes

7.1. General

This clause describes the Control Classes and protocol-specific Control Datatypes that provide Controller
access to the communication parameters for the OCP.1 protocol mechanism. These parameters control
the Device's OCP.1 communications connection(s) and specify service advertising details.

NOTE 1: These class and datatype specifications differ from those of earlier AES70 versions;
users of previous AES70 versions are cautioned to consult the respective earlier versions of the
AES70-3 standard.

NOTE 2: Although AES70-2023 classes and datatypes are new, the actual AES70-2023 OCP.1
protocol is compatible with that of previous versions.

In this clause, the phrase OCP.1 Control Structure means the assemblage of objects and data structures a
Device implements to manage its OCP.1 protocol communication.

7.2. The OCP.1 Networking model

OCP.1 Control Structure specifications in this clause are based on the AES70 Network Application
Control (NAC) model specified normatively in [AES70-1(Networking model)] and the relevant classes
and datatypes in [AES70-2A].

Figure 8 illustrates the OCP.1 class subtree.

Figure 8. OCP.1 class subtree

7.3. NAC Stack

The term NAC Stack denotes a complete set of NAC networking objects and their linkages for a given
Network Application. Depending on use case, an OCP.1 Control Structure may implement a full NAC
Stack, a partial NAC Stack, or no NAC Stack.

An overview of a full OCP.1 NAC Stack is in Figure 9. This figure indicates which NAC objects a Device
shall implement for each of the options B, C, and D that are described in Clause 7.4. Option A is not
shown because it involves no NAC classes.

 - 22 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 9. OCP.1 NAC Stack - overview

Figure 9 illustrates a case in which there is only one OCP.1 service in the application. Other OCP.1
applications might have more than one OCP.1 service. For example, a Device might offer both secure and
insecure OCP.1 access. In such cases, there shall be one instance of the OcaNetworkInterfaceAssignment
datatype for each service.

7.4. OCP.1 programming options

Implementation options exist for managing a Device's OCP.1 data connection(s). The options are
distinguished by the degree and type of AES70 management they offer over the data transport
mechanism used for OCP.1 protocol traffic. Options range from no AES70 control to full AES70 control.

Connection parameters not managed by AES70 can be controlled by mechanisms such as, built-in
webservers, custom configuration interfaces, front-panel controls, and hardwired values.

Structurally, the various options are distinguished mainly by which elements of the OCP.1 NAC Stack are
implemented.

NOTE This clause (7.4) applies only to management of the data connection(s) used for transport
of OCP.1 protocol traffic. Device media stream connections, if any, are a separate issue and are
not addressed here. AES70 media stream connection management is specified in
[AES70-1(Media transport application model)] and [AES70-2A].

7.4.1. Option A: no NAC Stack

In this option, no NAC Stack classes are implemented. All network connection parameters, all network
security parameters, and all OCP.1 discovery parameters are controlled by non-AES70 mechanisms.

7.4.2. Option B: full NAC Stack

In this option, all applicable NAC Stack classes and data structures are implemented and appropriately
populated. AES70 Controllers can control all aspects of the Device's OCP.1 connection(s).

 - 23 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

7.4.3. Other options: partial NAC stack

In these options, some, but not all, OCP.1 protocol traffic connection functions are managed by AES70.

7.5. Class and datatype details

Class and datatype details depend on the connection type used. Table 3 shows the detail clauses for the
connection types this Adaptation supports.

Table 3. Class and datatype detail clauses in this Standard

Connection type Class and datatype details clause

IP network 8.6.1

Point-to-Point Link 9.5.1

Normative definitions of these classes and datatypes are in [AES70-2A].

7.6. Redundant OCP.1 connections (Informative)

Redundant Controller connections can be supported using multiple OcaNetworkInterface objects and
multiple OcaNetworkInterfaceAssignment instances, as described in [AES70-1(NAC Stacks)]. The
Control Structure of a use case D example for a singly redundant implementation is illustrated in Figure
10.

Figure 10. OCP.1 NAC Stack with dual-network redundancy
(ancillary data structure details omitted)

8. OCP.1 over IP networks

This clause specifies the mechanisms and rules for use of OCP.1 over IP networks. Several types of IP
data transport are supported, as specified in Clause 8.4.1.

 - 24 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.1. Network addresses

8.1.1. OcaNetworkAddress and Ocp1IPNetworkAddress datatypes

For OCP.1 over IP, the OcaNetworkAddress datatype, an alias of OcaBlob, shall be treated as an instance
of the Ocp1IPNetworkAddress datatype, which is defined as follows:

 For IPv4 implementations:

struct {
OcaIP4Networkaddress Address; // IPv4 address
OcaUint16 Port; // IP port

} Ocp1IPNetworkAddress;

6. For IPv6 implementations:

struct {
OcaIP6Networkaddress Address; // IPv6 address
OcaUint16 Port; // IP port

} Ocp1IPNetworkAddress;

8.1.2. IP address assignment

To use OCP.1 over an IP network, a Device shall implement at least one of IPv4 and IPv6 network
addressing standards. In this Standard, a Device that implements IPv4 is called an IPv4 Device, and a
Device that implements IPv6 is called an IPv6 Device. A Device may implement both IPv4 and IPv6; that
is, it may be both an IPv4 Device and an IPv6 Device.

Each IPv4 Device should implement a DHCP client and use a DHCP server. Each IPv6 Device should
implement a DHCPv6 client and use a DHCPv6 server. In what follows, these clients and servers will be
collectively termed IP Address Clients and IP Address Servers, respectively.

If a Device belongs to multiple IP subnetworks, it should have an IP Address Client for each subnetwork.
When commencing operation on a subnetwork, the Device should start the IP Address Client associated
with that subnetwork.

When an IP Address Client connects to an IP Address Server within the address assignment timeout, the
Device shall use the address assigned by that server.

When an IP Address Server is not found within the timeout, or when the Device does not implement an
IP Address Client:

1. An IPv4 Device should use an IPv4 link-local address as defined in [RFC 3927].
2. An IPv6 Device should use the IPv6 link-local address that is automatically assigned according to

IPv6, as defined in [RFC 4862].

When the Device does not implement link-local addressing, the IP address shall be assigned by means
outside the scope of this Standard.

8.2. Device Availability Monitoring

This clause specifies the IP-specific use of the Device Availability Monitoring mechanism defined in
Clause 6.4.

 - 25 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.2.1. Implementation options

8.2.1.1. TCP, TLS, and WebSocket protocol transport

For IP Devices using TCP, TLS, or WebSocket for protocol transport, implementation of the Device
Availability Monitoring mechanism is optional.

NOTE Critical TCP-based and WebSocket-based AES70 application designers are strongly
advised to use the OCP.1 Device Availability Monitoring mechanism, and not to rely on TCP's
supervision mechanism for connection loss detection. With typical parameter settings, the TCP
connection supervision mechanism's detection timeout is unacceptably slow - often hours.
Furthermore, not all TCP/IP stacks implement the supervision mechanism properly.

8.2.1.2. UDP protocol transport

For IP Devices using UDP for protocol transport, implementation of the Device Availability Monitoring
mechanism is mandatory.

When using UDP, a Controller shall send a Keep-alive message to the Device before sending other
messages. A Device using UDP shall ignore all messages received from a Controller prior to receipt of a
Keep-alive message from that Controller.

8.3. Device Reset

This clause specifies the IP-specific use of the Device Availability Monitoring mechanism defined in
Clause 6.5.

For IP Devices, implementation of this mechanism is optional. When it is implemented, the rules set forth
in the remainder of this clause (8.3) shall apply.

8.3.1. ResetAddress parameter

For IP Devices, the ResetAddress parameter of the SetResetKey(...) method (see Clause 6.5.3) shall be an
Ocp1IPNetworkAddress (see Clause 8.1) with field values as follows:

.Address IPv4 or IPv6 address from which Device Reset commands shall be accepted. A null
value shall allow DeviceReset messages to be accepted from any address.
This address may be a unicast or multicast address.

.Port UDP port on which the Device shall listen for DeviceReset messages.

8.3.2. Device Reset processing rules

When the reset address value is a unicast IP address, the Device shall accept DeviceReset messages only
from the given address. When it is a multicast IP address, it specifies which IP multicast channel the
Device shall monitor for DeviceReset messages.

Upon receipt of a SetResetKey command, the Device shall arm the mechanism by opening a UDP socket
on the port specified in the ResetAddress.Port field.

When the ResetAddress.Address field is a multicast address, the Device shall join the specified multicast
group.

 - 26 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Once the reset mechanism is armed, the Device shall monitor the specified UDP port for a DeviceReset
message that contains the given Device Reset key. When such a reset message is received, the Device shall
perform a power-on reset.

No reset shall occur when:

 A DeviceReset message is received that contains a Device Reset key value other than the
specified one; or

 ResetAddress.Address has been specified with a nonnull value and a DeviceReset message is
received from a unicast or multicast address other than the one specified.

If multiple SetResetKey commands are received, the parameters given in the most recent SetResetKey
command shall apply.

After a Device has been reset or has powered off, the Device shall disarm its Device Reset mechanism.
The mechanism may be re-armed by the procedure described above.

NOTE: If Device reset keys are sent over insecure OCP connections, they could be intercepted and
used maliciously to sabotage systems. When it is desired to use the Device Reset mechanism in
completely secure applications, SetResetKey messages should only be sent over secure OCP
connections.

8.4. Control Sessions

"Control Session" is defined in Definition 4.

8.4.1. Control Session Transport Types

Table 4.specifies the supported Control Session Transport Types for IP Devices. For each Transport Type,
this table specifies the transport protocols that shall be used for Commands, Responses, and Normal and
Lightweight Notifications, and the DNS-SD service names that the Device shall register. Device
discovery details are in Clause 8.5.

Table 4. Control Session Transport Types for IP networks

Type Secure

Command &
Response
transport
protocol

Notification
transport protocol Registered

Service Name
See Clause 8.5.

Note
Normal
mode

Lightweight
mode

TCP No TCP TCP UDP _oca._tcp

TLS Yes TCP+TLS TCP+TLS UDP _ocasec._tcp
Using Lightweight Mode in
this case will create a security
loophole

UDP No UDP UDP UDP _oca._udp

WebSocket No WebSocket
Web

Socket UDP _ocaws._tcp
In this case, Lightweight Mode
may not work with browser-
based controllers

 - 27 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.4.2. Use of IP Ports

A Device shall open at least one IP port on which it listens for incoming AES70 commands. Details of
these ports follow for each Control Session Transport Type.

When a device implements multiple Control Session Transport Types, each such implementation shall be
bound to a unique IP Port. No IP Port shall be used for more than one transport type at a time.

8.4.3. Control Session configuration details

This clause describes Control Session configuration details for each Control Session Transport Type. In
the text below, a Control Session that uses a particular Control Session Transport Type "x" will be referred
to as an "x Control Session".

8.4.3.1. TCP Control Sessions

8.4.3.1.1. Ports

After acquiring an IP address, a Device shall open a TCP listen socket for incoming OCP.1 traffic. The
Device shall use TCP Port numbers in the standard IANA dynamic port range (49152 to 65535, see
[RFC 6335]). This port shall be advertised, as described in Clause 8.5.2.

8.4.3.1.2. Session opening and closing

A TCP Control Session shall be opened when its TCP listen socket has been successfully opened, and
shall be closed when its TCP socket has been closed. A TCP Control Session shall not survive the closing
of its TCP connection.

8.4.3.1.3. Lightweight Notification Delivery Mode

When creating a Subscription that uses Lightweight Notification Delivery Mode, the Controller shall
supply the destination IP address and port (an Ocp1IPNetworkAddress, see Clause 8.1.1). The resulting
Notifications shall be sent to this destination as UDP datagrams.

The destination IP address may be a unicast address, a multicast address, or a null string. If it is a null
string, the Notifications shall be sent to the Subscribing Controller.

8.4.3.2. TLS Control Sessions

8.4.3.2.1. Ports

After acquiring an IP address, a Device shall open a TCP listen socket for incoming OCP.1 traffic. The
Device shall use TCP Port numbers in the standard IANA dynamic port range (49152 to 65535, see
[RFC 6335]). This port shall be advertised, as described in Clause 8.5.

8.4.3.2.2. Security

The TCP connection shall use the Transport Layer Security (TLS) protocol [RFC 5246] with the following
ciphersuite [RFC 4279]:

TLS_DHE_PSK_WITH_AES_128_CBC_SHA

 - 28 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The previously shared key (PSK) identity that is exchanged in the TLS handshake may be any string. A
Device may use multiple PSKs (with multiple PSK identities) in order to be used in multiple systems that
use different PSKs. The default PSK identity to be used shall be the following string:

OCA-PSK

The PSK used shall have a length of 1 to 512 bytes.

8.4.3.2.3. Session opening and closing

A TLS Control Session shall be opened when its TLS security handshake has been successfully concluded,
and shall be closed when its TCP socket has been closed. A TCP Control Session shall not survive the
closing of its TCP connection.

8.4.3.2.4. Lightweight Notification Delivery Mode

When creating a Subscription that uses Lightweight Notification Delivery Mode, the Controller shall
supply the destination IP address and port (an Ocp1IPNetworkAddress, see Clause 8.1.1). The resulting
Notifications shall be sent to this destination as UDP datagrams.

The destination IP address may be a unicast address, a multicast address, or a null string. If it is a null
string, the Notifications shall be sent to the Subscribing Controller.

NOTE Using Lightweight Notification Delivery Mode in this case will create a security loophole.

8.4.3.3. UDP Control Sessions

8.4.3.3.1. Ports

After acquiring an IP address, a Device shall open a UDP socket to listen for incoming OCP.1 traffic. The
Device shall use a UDP Port number in the standard IANA dynamic port range (49152 to 65535, see
[RFC 6335]). Within this range, the Device may bind the insecure listen socket to any available UDP port.
This port shall be advertised, as described in Clause 8.5.

8.4.3.3.2. Session opening and closing

A UDP Control Session shall be opened when a Controller has sent the first KeepAlive message to a
Device, and shall be closed when its UDP socket has been closed. A UDP Control Session shall not
survive the closing of its UDP socket.

8.4.3.3.3. Lightweight Notification Delivery Mode

When creating a Subscription that uses Lightweight Notification Delivery Mode, the Controller shall
supply the destination IP address and port (an Ocp1IPNetworkAddress, see Clause 8.1.1). The resulting
Notifications shall be sent to this destination as UDP datagrams.

The destination IP address may be a unicast address, a multicast address, or a null string. If it is a null
string, the Notifications shall be sent to the Subscribing Controller.

 - 29 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.4.3.3.4. Reliability (Informative)

UDP is an unreliable transmission protocol. When using UDP for Command transport, the reliability for
commands is implemented by command acknowledgements, not by the transport protocol, as is the case
when TCP is used as transport protocol.

Since Notifications are not acknowledged (as described in [AES70-1]), Notification delivery is always
unreliable for this Control Session Transport Type.

8.4.3.3.5. Intended scale (Informative)

The intended purpose of UDP-based OCP.1 is the control of simple Devices over small networks, where
Controller to Device connections are confined to a single IP broadcast domain. The use of this Control
Session Transport Type for applications that span multiple IP subnetworks is discouraged.

8.4.3.3.6. Security

No secure UDP Control Session Transport Type is defined by this Standard. When control security is a
requirement, UDP Control Session Transport shall not be used.

8.4.3.4. WebSocket Control Sessions

8.4.3.4.1. Ports

After acquiring an IP address, a Device shall open a TCP listen socket for incoming WebSocket traffic.
The Device shall use either TCP port number 80 or a number from the IANA dynamic port range (49152
to 65535, see [RFC 6335]). The port shall be advertised, as described in Clause 8.5.

8.4.3.4.2. Session opening and closing

To create a WebSocket Control Session, a Controller shall offer the protocol "AES70-OCP.1" in an initial
HTTP Request to the Device. Once the WebSocket connection has been accepted by the Device, a
WebSocket Control Session shall be opened.

The WebSocket Control Session shall be closed when its WebSocket connection is closed.

8.4.3.4.3. Lightweight Notification Delivery Mode

When creating a Subscription that uses Lightweight Notification Delivery Mode, the Controller shall
supply the destination IP address and port (an Ocp1IPNetworkAddress, see Clause 8.1.1). The resulting
Notifications shall be sent to this destination as UDP datagrams.

The destination IP address may be a unicast address, a multicast address, or a null string. If it is a null
string, the Notifications shall be sent to the Subscribing Controller.

NOTE Because it uses UDP, Lightweight mode may not work with web-browser-based
Controllers. If a browser-based Controller cannot receive UDP datagrams, it should not register
Lightweight mode Subscriptions.

8.4.3.4.4. Exchange rules

OCP.1 messages shall be exchanged in WebSocket binary frames.

 - 30 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Individual WebSocket frames need not contain complete OCP.1 messages; the payload of consecutive
WebSocket binary frames shall be interpreted as a byte stream.

Devices and Controllers shall implement the complete WebSocket protocol, in particular the handling of
PING, PONG and CONTINUATION frames.

If a Controller or a Device receives a WebSocket text frame, it shall close the WebSocket connection with a
protocol error code UNEXPECTED (code 1011).

If a Controller or a Device receives a malformed OCP.1 message, it shall close the WebSocket connection
with a protocol error code BAD_DATA (code 1007).

8.4.3.4.5. Extensions

Devices and Controllers may support WebSocket protocol extensions; their usage shall be negotiated
during the WebSocket protocol handshake as described in [RFC 6455].

8.4.3.4.6. Security (Informative)

WebSocket security is out of scope of this Standard. WebSocket security issues are described
informatively in Annex B.

8.5. Device Discovery

8.5.1. General

OCP.1 over IP shall have a Service Discovery architecture, in which Devices shall register themselves in a
directory of network services which may subsequently be queried by network entities needing to know
Device addresses and other access information. This architecture shall be implemented using DNS-based
Service Discovery (see [RFC 6763]).

NOTE: Another common use of the term "discovery" relates to a process that reveals a Device's
specific capabilities. In AES70, this process is referred to as "enumeration", and it is implemented
by methods of the Device's root block and, if present, inner blocks. See the OcaBlock class in
[AES70-1] and [AES70-2].

8.5.2. Service types and names

A Device shall register one or more services according to the Control Session Transport Type it uses. The
names of these services shall be as shown in Table 4.

Each service name registered shall be recorded in the Parameters field of the relevant
OcaNetworkAdvertisement instance - see Clause 8.6.1.3.

8.5.3. Registration domain

Registration may be done in any desired domain. In most applications, the local domain would be
expected. Registration in the local domain shall use the multicast DNS (mDNS) protocol (see [RFC 6762]).

8.5.4. Registered ports

The ports registered for the services shall agree with those chosen for the Device in accordance with
Clause 8.4.3.

 - 31 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.5.5. TXT records

The TXT records of all registrations shall begin with the key/value pairs shown in Table 5. The pairs shall
appear in the order shown.

Table 5. Required key/value pairs in registered TXT records
<..> indicates a replaceable element.

Key/Value text Description

txtvers=1 Version number of the AES70 registration specification used

protovers=<x> <x> = decimal version of AES70 used - as specified in the Device's
OcaDeviceManager object (see [AES70-2]).

path=<y>

Optional. Required only when a WebSocket connection must use a specific
path in the HTTP Request initiating the WebSocket connection. <y> is the
path required. If the path key is not specified, the path shall be assumed to
be ‘/’.

A non-standard path should only be used for serving different HTTP
and/or WebSocket endpoints from the same Device.

The physical format of these items in the TXT record shall be as specified in [RFC 6716(6)].

The TXT record may contain additional data, as long as it follows the rules [RFC 6763(6)].

8.5.6. Controller activity

A Controller may discover the Devices in a network by performing a DNS-SD service browse in the
required domain, seeking any of the services listed in Table 4.

Browsing in the local domain shall use multicast DNS - see [RFC 6762].

8.5.6.1. Network data updating for service name changes

When:

 a service name is changed, and
 the OCP.1 implementation uses the OCP.1 Networking model as specified in Clause 9, and
 that implementation specifically uses the OcaNetworkAdvertisement datatype as specified in

Clause 8.6.1.3,

then the Device shall automatically set the new service name into the ServiceName property of the
OcaNetworkAdvertisement.Parameters parameter record.

8.5.6.2. Service name collisions (Informative)

Service-name collisions (i.e. attempts to register the same name more than once) are not automatically
resolved when registration is done in a non-local domain. If registration in non-local domains is foreseen,
network administrators will need to assign unique default service names for all Devices.

 - 32 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.6. Programming considerations

8.6.1. Class and datatype details

The remainder of this clause (8.6.1) does not apply to option A (no network stack, see Clause 7.4), because
option A has no AES70 Control Structure.

The classes and datatypes specified below are explained in Clause 7.3.

8.6.1.1. OcaNetworkApplication object

OCP.1-related values of OcaNetworkApplication object properties shall be as shown in Table 6.

Table 6. OcaNetworkApplication property values for IP networks

Content Element Value

Adaptation identifier OcaString AdaptationIdentifier “OcaOCP1"

Adaptation parameters OcaBlob AdaptationData (null)

Network Interface
Assignment(s)

OcaList<OcaNetworkInterfaceAssignment>
 NetworkInterfaceAssignments

See Clause 8.6.1.2.

8.6.1.2. OcaNetworkInterfaceAssignment datatype

OCP.1-related values of OcaNetworkInterfaceAssignment fields shall be as shown in Table 7.

Table 7. OcaNetworkInterfaceAssignment field values for IP networks

Content Element Value

Network Interface ONo OcaONo NetworkInterfaceONo
Object number of assigned
OcaNetworkInterface object

Advertisements OcaList<OcaNetworkAdvertisement>
 Advertisements

See Clause 8.6.1.3.

Security key identities OcaList<OcaString> SecurityKeyIdentities

Zero or more Private Shared Key
(PSK) identities that apply to the
IP port(s) designated in
.NetworkBindingParameters.
See also [AES70-1(Security)].

Parameters for this network
binding

OcaBlob NetworkBindingParameters
IP port number used. OcaUint16
value, see Clause 8.4.2.

8.6.1.3. OcaNetworkAdvertisement datatype

OCP.1-related values of OcaNetworkAdvertisement fields shall be as shown in Table 8.

 - 33 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 8. OcaNetworkAdvertisement field values for IP networks

Content Element Value

Advertisement mechanism OcaNetworkAdvertisementMechanism
 Mechanism

enum values:
DNSSD_MDNS if mDNS is
supported; else DNSSD

Advertisement parameters OcaParameterRecord Parameters See Clause 8.6.1.3.1.

8.6.1.3.1. OcaNetworkAdvertisement.Parameters field structure

OcaNetworkAdvertisement.Parameters shall be an OcaParameterRecord (i.e. a JSON string) as follows.
Replaceable values are enclosed in "< >". Text prefixed by "//" is explanatory, not part of the JSON string.

{
"ServerAddresses": [<a1>,<a2>,...], // IP address(es) of DNS server(s)
"RegistrationDomain": "<domain>", // domain in which the services shall be registered
"ServiceType": "<svcType>", // service type, see below
"ServiceName": "<svcName>" // service name
}

where:

 <a1>, <a2>, etc. shall be instances of the OcaIPNetworkAddress datatype (a string), as specified
in [AES70-2A].

 <domain> shall be any valid Internet domain name. If the value is the null string, or if the
RegistrationDomain property is omitted altogether, the local domain shall be used.

 <svcType> shall be one of the OCP.1 service-type strings defined in Table 4, e.g. "_ocasec._tcp"
for a secure TCP OCP.1 service.

 <svcName> shall be the service name to be registered. The Device shall change this value if the
registration process encounters a name conflict. See also Clause 8.5.6.2.

8.6.1.4. OcaNetworkInterface object

OCP.1-related values of OcaNetworkInterface object properties shall be as shown in Table 9.

Table 9. OcaNetworkInterface property values for IP networks

Content Element Value

Adaptation identifier OcaAdaptationIdentifier
 AdaptationIdentifier

“OcaIP4” or "OcaIP6" for IPv4 and IPv6
implementations, respectively

IP Adaptation parameters
OcaBlob ActiveNetworkSettings
OcaBlob TargetNetworkSettings

instance of the datatype
OcaIP4NetworkSettings
or
OcaIP6NetworkSettings
defined normatively in
[AES70-2A(IP Adaptation)]

System input/output
interface identifier OcaString SystemIoInterfaceName Depends on system environment

 - 34 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.6.2. Detailed NAC Stack example for IP

A detailed OCP.1 NAC Stack example (i.e. use case D) is illustrated in Figure 11. The diagram includes
not only Control Objects, but also Control Datatype instances and typical values for the relevant
properties. An IPv4 implementation is shown.

Figure 11. Detailed NAC Stack example
 - for secure TCP OCP.1 -

 - 35 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.6.3. Connection sharing with IP media transport (Informative)

Devices that implement both OCP.1 and IP media transport (e.g. AES67) over the same network can use a
shared OcaNetworkInterface object; an example is illustrated in Figure 12.

Figure 12. IP network shared between OCP.1 and AES67 media transport

 - 36 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

9. OCP.1 over Point-to-Point Links

9.0. General

This clause specifies the use of OCP.1 over Point-to-Point Links.

A Point-to-Point Link is a logical connection with the following capabilities:

 Reliable transmission of arbitrary sequences of octets. In this context, "reliable" means no data
loss, no data reordering, and low enough latency to satisfy application requirements without
extraordinary measures.

 Simultaneous transmission in both directions (i.e., full-duplex).

 Point-to-point topology.

9.1. Network addresses

Point-to-Point Links do not use network addresses. Therefore, for OCP.1 over Point-to-Point connections,
the OcaNetworkAddress datatype, defined by [AES70-2A] as an alias of OcaBlob, shall be null.

9.2. Device Availability Monitoring

The Device Availability Monitoring mechanism is defined in Clause 6.4. For Point-to-Point Devices,
implementation of this mechanism is optional.

9.3. Device Reset

The Device Availability Monitoring mechanism is defined in Clause 6.5. For Point-to-Point Devices,
implementation of this mechanism is optional.

For Point-to-Point Devices, the the ResetAddress parameter of the SetResetKey(...) method (see Clause
6.5.3) shall be null.

9.4. Notification Delivery Modes

For Point-to-Point Links, Reliable and Lightweight Notification Delivery Modes shall be the same.

9.5. Programming considerations

Of the Control Structure implementation options defined in Clause 7.4, Point-to-Point OCP.1 may be
implemented via option A (no NAC Stack) or option B (full NAC Stack). The remainder of this clause
describes the NAC stack elements for option B.

9.5.1. Class and datatype details for Point-to-Point OCP.1

The classes and datatypes specified below are explained in Clause 7.3.

9.5.1.1. OcaNetworkApplication object

OCP.1-related values of OcaNetworkApplication object properties shall be as shown in Table 10.

 - 37 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 10. OcaNetworkApplication property values for Point-to-Point Links

Content Element Value

Adaptation identifier OcaString AdaptationIdentifier “OcaOCP1"

Adaptation parameters OcaBlob AdaptationData (null)

Network Interface
Assignment(s)

OcaList<OcaNetworkInterfaceAssignment>
 NetworkInterfaceAssignments

See Clause 9.5.1.2.

9.5.1.2. OcaNetworkInterfaceAssignment datatype

OCP.1-related values of OcaNetworkInterfaceAssignment fields shall be as shown in Table 11.

Table 11. OcaNetworkInterfaceAssignment field values for Point-to-Point Links

Content Element Value

Network Interface ONo OcaONo NetworkInterfaceONo
Object number of assigned
OcaNetworkInterface object

Advertisements OcaList<OcaNetworkAdvertisement>
 Advertisements

Empty list

Security key identities OcaList<OcaString> SecurityKeyIdentities Empty list

Parameters for this network
binding

OcaBlob NetworkBindingParameters Empty blob

9.5.1.3. OcaNetworkAdvertisement datatype

This datatype is not used for Point-to-Point Links.

9.5.1.4. OcaNetworkInterface object

OCP.1-related values of OcaNetworkInterface object properties shall be as shown in Table 12.

Table 12. OcaNetworkInterface property values for Point-to-Point Links

Content Element Value

Adaptation identifier OcaAdaptationIdentifier
 AdaptationIdentifier “OcaP2P”

Adaptation parameters
OcaBlob ActiveNetworkSettings
OcaBlob TargetNetworkSettings

Empty blobs

System input/output
interface identifier OcaString SystemIoInterfaceName

Depends on system environment;
out of scope of this Standard

 - 38 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex A. (Informative) – UML Description of Protocol Data Unit (PDU)

The content of this Annex is an external XMI 2.1 document. For ease of access, users may prefer to refer
to the equivalent proprietary Enterprise Architect version.: They may be downloaded from:

www.aes.org/standards/models/

 - 39 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex B. (Informative) - WebSocket security

A WebSocket connection to any IP address and port can be established by any javascript program
running inside of a web-browser. This javascript program could originate from any website and the
WebSocket connection could be established without user interaction. This has serious security
implications, which need to be taken into account for development and deployment of Devices with
WebSocket support.

There is no canonical solution to mitigate these security risks. Here are two approaches:

1. WebSocket requests initiated by conforming web-browsers contain an Origin HTTP header in the
initial HTTP request. This header field contains the URL of the website which initiated the
WebSocket connection. This header field can be used to restrict WebSocket access to certain web
applications, e.g. those served from the Device itself or the manufacturer website. If a WebSocket
connection request is not accepted due to an untrusted Origin HTTP header, the Device should
respond with a HTTP error code 403 Forbidden (see [RFC 7231(6.5.3: 403 Forbidden)]) and a
response payload text describing the origin policy, as outlined in [RFC 6455(10.2: Origin
Considerations)].

2. WebSocket requests initiated by conforming web-browsers support HTTP Basic Authentication
which can be used to authenticate WebSocket connections with username and password. A
Device using HTTP Authentication for WebSocket connections should conform to [RFC 7235] and
in particular to the use of HTTP error codes described there.

If the web application initiating the WebSocket connection is served from the Device itself and only
WebSocket connections from that same application should be permitted, other possibilities exist. For
instance, if authentication inside of the web application is using HTTP cookies, this authentication will
naturally extend to the WebSocket connection to the same HTTP port. Verifying a WebSocket connection
can then be done by verifying that the initial HTTP request contains a valid cookie header.

 - 40 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex C. (Normative) Deprecated EV1 notification

This Annex specifies the notification message format for the EV1 version of the AES70 event and
subscription mechanism. The EV1 version was standardized in AES70-2015 and AES70-2018. Starting
with AES70-2023, the EV1 version is deprecated and is replaced by the EV2 version specified in Clause
6.2.4.

C.1. Format

An EV1 notification message shall have the format shown in Figure 13.

Figure 13. EV1 notification message

 The notification message protocol data unit shall be defined as follows:

struct {
 OcaUint8 SyncVal; // Synchronization value
 Ocp1Header Header; // OCP Header
 OcaArray1D<Ocp1Notification1> Notifications; // Array of notifications
} Ocp1Notification1Pdu;

Header

Event
Handler

MethodID
Parameters

Event
Parameters

[m]

Event
Parameters

[1]

DefLevel Method
Index

Event

Target ONo

Emitter
ONo EventID

Context EventData

Notifications
[1]

Notifications
[2]

Notifications
[n]

Notification
Size

Ocp1NtfParams
Parameter

Count
= 2

Ocp1Notification1PDU

Ocp1Notification1

DefLevel Event
Index OcaEventID

OcaEvent

Ocp1EventData

Event-dependent

OcaMethodID

SyncVal
=0x3B

 - 41 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where the elements shall be defined as follows:

SyncVal Message synchronization value - see Clause 6.2.1.1.

Header General message fields - see Clause 6.2.1.2.

Notifications
Array of (MessageCount) notifications. The notification format is defined
by the Ocp1Notification1 datatype - see Clause C.2.

C.2. Ocp1Notification1 datatype

The Ocp1Notification1 datatype shall be defined as follows:

struct {
 OcaUint32 NotificationSize; // Size of the individual notification
 OcaONo TargetONo // Target ONo
 OcaMethodID MethodID; // MethodID of method to invoke
 Ocp1NtfParams1 Parameters; // Parameters of the event
} Ocp1Notification1;

where the elements shall be defined as follows:

NotificationSize
Size of the individual notification (in bytes). This shall be the size of the
complete Ocp1Notification1 structure including this NotificationSize field.

TargetONo Target object number, that is the object number of the event handler object
that defines the callback method.

MethodID
Method ID of the callback method that is invoked in the controller when
the event is raised. Controller callback methods are defined in the
deprecated class OcaEventHandler in [AES70-2A].

Parameters
Parameters of the event. Every notification message shall have at least one
parameter. The parameter format is defined by the Ocp1NtfParams
datatype.

C.3. OcaMethodID datatype

OcaMethodID is defined normatively in [AES70-2A] as follows:

struct {
 OcaUint16 DefLevel; // Class tree level
 OcaUint16 MethodIndex; // Index of the method
} OcaMethodID;

C.4. Ocp1NtfParams1 datatype

The Ocp1NtfParams1 datatype shall be defined as follows:

struct {
 OcaUint8 ParameterCount; // Number of parameters (always = 2)
 OcaBlob Context; // Arbitrary context
 Ocp1EventData1 EventData; // The event data
} Ocp1NtfParams1;

 - 42 - AES70-3-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where the elements shall be defined as follows:

ParameterCount

Parameter count of the Ocp1NtfParams structure. This count will always be
two, because each Ocp1NtfParams structure contains the Context parameter
and the EventData parameter. However, the EventData parameter may
contain multiple elements, depending on the event.

Context
Arbitrary value that was passed by the subscriber when subscribing to the
event. This value shall be passed back unchanged.

Event Identification (object number and event ID) of the event

EventData Event-specific data. See Clause C.5.

C.5. Ocp1EventData1 datatype

The Ocp1EventData1 datatype shall be defined as follows:

struct {
 OcaEvent Event; // The OcaEvent that was triggered
 OcaArray1D<OcaUint8> EventParameters; // Event-specific parameters
} Ocp1EventData1;

where the elements shall be defined as follows:

Event OcaEvent structure that specifies the emitting event and the emitting object.

EventParameters

Byte array holding event-specific parameters, if any. The specific parameters of
each event are defined in [AES70-2A].
If an event does not have any parameters this array is not present. Note: A
Controller can discover the parameter count by analyzing the Event
parameter.

C.6. OcaEvent and OcaEventID datatypes

See Clause 6.2.4.5.

