
AES STANDARDS: DRAFT FOR COMMENT ONLY

Secretariat 2024/04/17 16:23 DRAFT REVISED AES70-2-xxxx

AES STANDARDS: DRAFT FOR COMMENT ONLY

STANDARDS AND

INFORMATION DOCUMENTS

Call for comment on DRAFT
AES standard for

Audio applications of networks -
Open Control Architecture -

Part 2: Class structure

This document was developed by a writing group of the Audio Engineering Society Standards Committee
(AESSC) and has been prepared for comment according to AES policies and procedures. It has been brought to
the attention of International Electrotechnical Commission Technical Committee 100. Existing international
standards relating to the subject of this document were used and referenced throughout its development.

Address comments by E-mail to standards@aes.org, or by mail to the AESSC Secretariat, Audio Engineering
Society, 697 Third Ave., Suite 405, New York NY 10017. Only comments so addressed will be considered.
E-mail is preferred. Comments that suggest changes must include proposed wording. Comments shall be
restricted to this document only. Send comments to other documents separately. Recipients of this document are
invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

This document will be approved by the AES after any adverse comment received within six weeks of the
publication of this call on http://www.aes.org/standards/comments/, 2024-04-18, has been resolved. Any person
receiving this call first through the JAES distribution may inform the Secretariat immediately of an intention to
comment within a month of this distribution.

Because this document is a draft and is subject to change, no portion of it shall be quoted in any
publication without the written permission of the AES, and all published references to it must include a
prominent warning that the draft will be changed and must not be used as a standard.

AES STANDARDS: DRAFT FOR COMMENT ONLY

Secretariat 2024/04/17 16:23 DRAFT REVISED AES70-2-xxxx

AES STANDARDS: DRAFT FOR COMMENT ONLY

Notes

AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 DRAFT
AES standard for audio applications of networks

- Open Control Architecture -
Part 2: Class structure

Published by
Audio Engineering Society, Inc.
Copyright © 2015, 2018, 2023, 2024 by the Audio Engineering Society

Abstract

AES70 is a suite of standards for control and monitoring of devices in professional media networks. This
standard, AES standard for audio applications of networks - Open Control Architecture - Part 2: Class structure
defines AES70's control and monitoring functional repertoire. Other standards in the AES70 suite specify
concepts and mechanisms, control protocols, and media transport management applications.

AES70 does not specify a media transport scheme. Rather, it is designed to operate with media transport
schemes such as the one specified by AES67.

AES70's intended range of use spans networks of all sizes. This includes mission-critical applications,
high-security applications, IP and non-IP networks, and local and wide-area applications. AES70 can
control real or virtual devices located on premises or hosted by cloud services. AES70 consumes little
computing power and uses network bandwidth lightly.

AES70 is based on the Open Control Architecture (OCA), originally developed by the OCA Alliance.

Audio Engineering Society Inc., 697 Third Avenue, Suite 405, New York, NY 10017, US.

www.aes.org/standards standards@aes.org

 - 2 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Foreword

This foreword is not part of this document, AES standard for audio applications of networks - Open Control
Architecture - Part 2: Class structure.

The role of AES standards. An AES standard implies a consensus of those directly and materially
affected by its scope and provisions and is intended as a guide to aid the manufacturer, the consumer,
and the general public. Prior to the publication of an AES standard, all parties, including the general
public, are given opportunities to comment or object to any provision. Nevertheless, the existence of an
AES standard shall not preclude anyone, whether or not he or she has approved the document, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement
with the standard.

Patent rights. Attention is drawn to the possibility that some of the elements of this AES standard or
information document may be the subject of patent rights. AES shall not be held responsible for
identifying any or all such rights. Approval by the AES does not assume any liability to any patent
owner, nor does it assume any obligation whatever to parties adopting the document.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Review and revision. This document is subject to periodic review and possible revision. Users are
cautioned to obtain the latest edition.

AES70 Structure

The AES70 standard is a suite of standards, classified into two divisions. The Core Standards division,
contains standards essential to all implementations of AES70; the Adaptation Standards division
contains application-specific standards. This standard, AES standard for audio applications of networks -
Open Control Architecture - Part 2: Class structure, is a Core Standard.

AES70-2 Version history

Original standard (AES70-2-2015). The members of the writing group that developed this document in
draft were: J. Berryman, K. Dalbjorn, H. Hamamatsu, T. Head, T. Holton, S. Jones, M. Lave, N. O'Neill,
M. Renz, P. Stevens, S. van Tienen, E. Wetzell, and U. Zanghieri. Additional contributions were made by
M. Smaak, and G. van Beuningen of the OCA Alliance.

2018 revision. The members of the writing group that developed this document in draft were: F.
Bergholtz, J. Berryman, K. Dalbjorn, A. Gödeke, J. Grant, T. Holton, S. Jones, A. Kuzub, M. Lave, G. Linis,
S. Price, M. Renz, A. Rosen, G. Shay, P. Stevens, P. Treleaven, S. van Tieneen, E. Wetzell, and U.
Zanghieri. Additional contributions were made by T. de Brouwer and M. Smaak of the OCA Alliance.

2023 revision. The standards in this revision are collectively known as AES70-2023. For AES70-2023, all
standards in the suite have been updated. New features in the Core Specification include: a new
connection management architecture, large dataset storage and retrieval, documentation improvements,
and numerous small additions and enhancements. More details can be found in Annex G of the
AES70-1-2023 Standard.

 - 3 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The members of the writing group that developed this document in draft were: J. Berryman, B. Escalona
Espinosa, A. Gödeke, E. Hoehn, S. Jones, M. Lave, G. Linis, M. Renz, A. Rosen, S. Scott, P. Stevens, P.
Treleaven, S. van Tienen, M. Versteeg, and E. Wetzell.

2024 revision. The AES70-2024 suite comprises new releases of AES70-1, AES70-2, and AES70-3. It
contains a number of adjustments, corrections, and enhancements to the AES70-2023 version. Notable
new AES70 elements specified in AES70-2024 include a new class OcaGroup that replaces the previous
OcaGrouper, a revised and simplified version of OcaMatrix, and a new class OcaCommandSetAgent.

The members of the writing group that developed this document in draft were: J. Berryman, B. Escalona
Espinosa, A. Gödeke, E. Hoehn, S. Jones, M. Lave, G. Linis, M. Renz, A. Rosen, S. Scott, P. Stevens, P.
Treleaven, S. van Tienen, M. Versteeg, and E. Wetzell.

J. Berryman led the task group for all four revisions.

Morten Lave
Chair, AES SC-02-12, Working Group on Audio Applications of Networks
2024-04-12

Note on normative language

In AES standards documents, sentences containing the word "shall" are requirements for compliance with
the document. Sentences containing the verb "should" are strong suggestions (recommendations).
Sentences giving permission use the verb "may". Sentences expressing a possibility use the verb "can".

 - 4 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Contents

0. Introduction ... 1
0.1. General ... 1
1. Scope .. 1
2. References ... 1
3. Terms, definitions and abbreviations ... 2
4. Document conventions .. 2
4.1. Use of Unified Modeling Language (UML) .. 2
5. Overview... 2
5.1. General ... 2
5.2. Control Classes ... 2
5.3. Datatypes ... 3
5.4. Diagram ... 3
5.5. Worker classes .. 4
5.6. Agent classes ... 4
5.7. Network classes .. 4
5.8. Dataset classes ... 5
5.9. Manager classes .. 5
5.10. Control Datatypes .. 6
6. OCC design patterns and coding rules ... 6
6.1. Class stereotypes .. 6
6.2. Typedefs .. 6
6.3. Constant properties .. 7
6.4. Private properties ... 7
6.5. Setlike Lists .. 7
6.6. Element ID coding .. 7
6.7. Rules for renaming and changing Control Model components ... 8
6.7.1. Changing names .. 8
6.7.2. Changing datatypes of Control Model elements .. 8
6.8. Counters and related elements ... 9
6.8.1. Counter Roles... 9
6.9. JSON encoding .. 9
6.10. Non-decimal numbers ... 10
6.11. Parameter records... 10
6.11.1. OcaParameterRecord .. 10
6.11.2. Coding .. 10
6.12. Bitsets ... 11
6.13. Custom subclass naming ... 11
6.14. ClassIDs for Nonstandard Classes defined by Adaptations published by the AES 12
Annex A. (normative) UML Class Structure definition .. 14
Annex B. (normative) Minimum compliant Device Model ... 15
B.1. Introduction .. 15
B.2. Required objects.. 15
B.2.1. General .. 15
B.3. Required methods and events for required objects ... 15
B.3.0. General .. 15

 - 5 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

B.3.1. Base set .. 15
B.3.2. Device manager ... 16
B.3.3. Subscription manager ... 16
Annex C. (Informative) Using Datasets ... 17
C.1. Concept .. 17
C.2. Typical workflows .. 17
C.2.1. Create a Dataset ... 17
C.2.2. Delete a Dataset ... 17
C.2.3. Get/set Dataset type .. 18
C.2.4. Get Dataset size & maximum size .. 18
C.2.5. Create a duplicate of a Dataset and put the copy in the same Block ... 18
C.2.6. Enumerate the Datasets in a Block or tree of Blocks .. 18
C.2.7. Find Datasets in a Block or tree of Blocks .. 18
C.2.8. Open a Dataset ... 18
C.2.9. Read data .. 18
C.2.10. Write data ... 18
C.3. Locking Datasets ... 19
C.4. User-defined Dataset types ... 19
Annex D. (Informative) Log retrieval explanation and examples ... 20
D.1. Log item format and log filter ... 20
D.2. Examples .. 20
D.2.1. Retrieve all records, one at a time ... 20
D.2.2. Retrieve batches of records, up to 32 at a time .. 21
Annex E. (Informative) Stored parameter values - examples .. 22
E.1. Upload a set of parameters and apply them to a Block .. 22
E.2. Prepare a Parameter Dataset or Patch Dataset to use .. 22
E.3. Upload parameter or patch data to the Dataset ... 22
E.4. Apply a Parameter Dataset to a Block ... 22
E.5. Apply a Patch Dataset to a Device ... 22
E.6. Capture a Block’s parameter values in a Parameter Dataset .. 23
E.7. Upload a Block’s parameter values directly to the Controller ... 23
E.8. Discover what Parameter Dataset has been applied most recently to a Block 23
E.9. Discover what Patch Dataset has been applied most recently to a Device .. 23
Annex F. (Informative) Media volumes and media recorder/player - examples 24
F.1. Concept .. 24
F.2. Using OcaMediaRecorderPlayer .. 24
F.2.1. Operation modes ... 24
F.2.2. Multitrack media volumes and Track Function .. 24
F.2.3. The PlayOption property ... 25
F.3. Typical workflows .. 25
F.3.1. Open a Media Volume access session .. 25
F.3.2. Initiate playing ... 25
F.3.3. Initiate recording ... 25
F.3.4. Stop playing or recording .. 26
F.3.5. Close a Media Volume access session .. 26
F.3.6. Reset a Media Volume access session to its initial state without closing it 26
Annex G. (Informative) The OcaNetworkInterface Class - programming notes 27

 - 6 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

G.1. General ... 27
G.2. OcaNetworkInterface object states ... 27
G.2.1. Property Enabled .. 27
G.2.2. Property State .. 27
G.3. Network settings .. 28
G.4. Example workflows ... 28
G.4.1. At time of device manufacture .. 28
G.4.2. Initial Device startup... 29
G.4.3. Changing network settings for a running interface ... 29
G.4.4. Restarting a failed interface ... 29
G.4.5. Enabling an interface .. 29
G.4.6. Disabling an interface ... 29
Annex H. (Informative) IP Adaptation examples .. 30
Annex I. (Informative) Task feature set - programming notes ... 35
I.1. General ... 35
I.2. The OcaTaskAgent class ... 35
I.2.1. Task Agent states ... 35
I.2.2. The Blocked property ... 36
I.2.3. Execution workflow .. 36
I.2.3.1. Simple view .. 36
I.2.3.2. Detailed view ... 36
I.3. The OcaTaskScheduler class ... 37
I.3.1. Scheduler states ... 37
I.3.2. Workflow .. 38
I.3.3. Scheduling parameters ... 38
I.3.4. Monitoring the scheduling process... 38
I.4. Programs .. 39
I.5. Commandsets ... 39
Annex J. (Informative) OcaMediaTransportApplication clocking.. 40
J.1. Clocking parameters in OcaMediaTransportApplication and its datatypes 40
J.2. How it works... 40

 - 7 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Tables

Table 1. Kinds of Worker classes .. 4
Table 2. Network classes .. 4
Table 3. Dataset classes ... 5
Table 4. Manager classes .. 6
Table 5. Dataset locking options ... 19
Table 6. OcaLogRecord fields .. 20
Table 7. OcaLogFilter fields .. 20

Figures

Figure 1 - OCC overview .. 3
Figure 2. Hypothetical AES70-37 Adaptation Class IDs ... 13
Figure 3. OcaNetworkInterface.State property changes when property Enabled is TRUE 28
Figure 4. Device belongs to one subnet.. 31
Figure 5. Device belongs to two IPv4 subnets .. 32
Figure 6. Device belongs to two IPv6 subnets .. 33
Figure 7. General scheme for redundancy... 34
Figure 8. Task Agent states .. 35
Figure 9. Task Scheduler states ... 37
Figure 10. Clocking use cases .. 40

 - 1 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

DRAFT
AES standard for audio applications of networks

- Open Control Architecture -
Part 2: Class structure

0. Introduction

0.1. General

This document defines the class structure of the Open Control Architecture (OCA), the technology
underlying the AES70 standard for the control and monitoring of media networks. This class structure
defines AES70's control and monitoring repertoire.

In what follows, the class structure is referred to as OCC.

The elements of OCC are class definitions in the object-oriented design sense. Each class defines a
particular control or monitoring interface element that is accessible over the media network via one or
more communications protocols that AES70 defines. An AES70-controllable device may implement a set
of these interface elements; the complete set constitutes the interface the device presents to the network
for remote control and monitoring purposes. This interface is called the AES70 Device Model and is
defined in [AES70-1].

To distinguish OCC classes from programming classes, this standard may where appropriate refer to
OCC classes as Control Classes, and their instances as Control Objects, where it should be understood
that "control" includes both control and monitoring functions.

AES70 does not define a complete device implementation model. For example, if a particular element of a
product has no remotely controllable features, then that element does not appear in that product's AES70
Device Model.

AES70 specifies system control and monitoring only. It may be integrated with any streaming media
transport scheme, as long as the underlying communication network is capable of carrying AES70 control
and monitoring traffic.

1. Scope

AES70 defines a scalable control-protocol architecture for the control and monitoring of professional
media networks. AES70 addresses device control and monitoring only; it does not define standards for
transporting streaming media or for describing media content.

This Part 2 describes OCC, the Class Structure of the AES70 Open Control Architecture. OCC defines the
standard control and monitoring functional repertoire of AES70. This document should be read in
conjunction with AES70-1: Framework, and AES70-3: OCP.1 Binary Protocol.

2. References

 Normative references - see [AES70-1(Normative references)].

 Nonnormative references - see [AES70-1(Bibliography)].

 - 2 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

3. Terms, definitions and abbreviations

For this Standard, the definitions in [AES70-1(Terms, definitions and abbreviations)] apply.

4. Document conventions

See [AES70-1(Document conventions)].

4.1. Use of Unified Modeling Language (UML)

The OCA class structure (OCC for short) is defined normatively by a Unified Modeling Language (UML)
document in XML Metadata Interchange (XMI) 2.1 format as defined in [ISO/IEC 19503]. The UML
specification is contained in separate files - see Annex A for access information.

NOTE 1. The UML specification contains the essence of OCC. Access to it or to an equivalent
rendering of it is essential for AES70 implementors.

NOTE 2. The XMI machine-readable format is intended to enable implementers to have direct
access to the class model with maximum speed and the minimum risk of transcription errors
compared with building individual class models from a traditional paper description.

NOTE 3. Annex A also gives access information for an informative equivalent version of the UML
specification, in the EAP file format used by Enterprise Architect from Sparx Systems.

5. Overview

5.1. General

This clause gives a brief overview of OCC.

5.2. Control Classes

OCC defines five categories of Control Classes, as follows:

Workers Classes that represent signal processing and monitoring functions

Agents Classes that represent control-flow processing functions

Networks Classes that represent Device networking functions

Datasets Classes that represent Device data storage and retrieval functions

Managers Classes that represent Device housekeeping functions

Except for Manager classes, a Control Class may be instantiated as many times as necessary to control the
Device's functions. A Manager class shall be instantiated once per Device, at most.

Where necessary, a Control Class may be refined and extended by a manufacturer-specific subclass. This
is explained further in [AES70-1(Classes)].

 - 3 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

5.3. Datatypes

OCC also provides an extensive set of supporting Control Datatype definitions, in the following UML
package:

Control Datatypes Datatypes used by the Control Classes

5.4. Diagram

A summary diagram of OCC is in Figure 1. Summaries of the class categories follow.

Figure 1 - OCC overview

 - 4 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

5.5. Worker classes

Worker classes control Device application functions. There are five categories of Workers, as shown in
Table 1.

Table 1. Kinds of Worker classes

Worker category Function

Actuators Signal processing and routing functions.

Sensors
Detectors and monitors of various types; for example, signal level,
gain reduction, temperature.

Blocks
Class that aggregates objects into structured sets. Used for modeling
and managing structures of complex Devices.

Matrices
Class that organizes objects into two-dimensional arrays for ease of
controlling matrix-style signal processing features

Networks
Classes that handle network connectivity and stream connection
management

Dataset Workers Classes that operate on stored media files

5.6. Agent classes

Agent classes provide control features that are not directly related to signal processing. In AES70-2023,
there are fourteen Agent classes.

5.7. Network classes

Network classes control Device input/output over networks to which it connects. The three classes are
shown in Table 2.

Table 2. Network classes

Class name Function

OcaNetworkInterface
Base class for the AES70 API that controls network data input and
output.

OcaNetworkApplication Base class for the AES70 API that controls network applications.

OcaMediaTransportApplication
Base class for media stream connection management. Foundation for
the AES70 API that controls media stream connections and sessions.

 - 5 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

5.8. Dataset classes

These are classes that control data stores in the Device. They are shown in Table 3.

Table 3. Dataset classes

Class name Function

OcaDataset
Base class that represents a Dataset, i.e. data store in the Device.
Provides Controller access to Dataset's content.

OcaLog
Subclass of OcaDataset that represents a Dataset containing Device log
records.

OcaProgram
Subclass of OcaDataset that represents a Dataset containing a prestored
executable.

OcaCommandSet
Subclass of OcaDataset that represents a Dataset containing a prestored
AES70 command sequence.

See also the class OcaMediaRecorderPlayer, a Worker class that provides media input/output functions
for Datasets containing media stream data.

5.9. Manager classes

Manager classes control Device housekeeping functions. For each Device, Manager classes are singletons;
that is, each one is instantiated at most once per device.

Some Manager classes are required for AES70 compliance and are instantiated in every Device; others are
optional. Not all interface elements of all required classes are required. Minimum Device requirements
for AES70 compliance are defined in Annex B. The Manager classes are shown in Table 4.

 - 6 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 4. Manager classes

Class name Function

OcaDeviceManager Contains product information, and controls overall Device state.

OcaSecurityManager Controls security features, or reports that there are none.

OcaFirmwareManager Manages Device firmware versions and updating.

OcaSubscriptionManager Manages the reporting of Device data back to Controllers.

OcaPowerManager Allows control and monitoring of Device's power supply or supplies.

OcaNetworkManager Collects all network interface objects in the Device.

OcaMediaClockManager Collects (but does not contain) all media clock objects in the Device.

OcaAudioProcessingManager Gives access to global parameters controlling audio processing.

OcaDeviceTimeManager Gives access to the Device's time-of-day clock, if any.

OcaDiagnosticManager Provides application diagnostic aids.

OcaLockManager Supports mutex-type waits for locking objects safely.

5.10. Control Datatypes

OCC defines a range of Control Datatypes. These Datatypes are used in the definitions of the classes
listed above. Details are in Annex A.

6. OCC design patterns and coding rules

This clause describes design patterns and coding conventions that have been used in the definition of
Control Classes and Control Datatypes. Future changes and additions to OCC shall use these patterns
and conventions where applicable. It is recommended that proprietary classes and datatypes conform to
these patterns.

6.1. Class stereotypes

A UML stereotype is an extensibility mechanism that allows developers to provide additional detail in
UML element definitions. See {Wiki-004}. Stereotypes may be applied to various UML definitions, as
needed.

In this specification, class stereotypes shall be used as follows:

Control Classes
 <<control class>> for Control Classes

Datatypes
 <<struct>> for complex Control Datatypes
 <<typedef>> for simple Control Datatype aliases.
 <<primitive>> for base datatypes

Deprecated classes and datatypes
 <<deprecated>> shall be specified in addition to values given above.

6.2. Typedefs

Typedef Datatypes shall be coded to inherit from the more fundamental Datatypes they represent.

 - 7 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.3. Constant properties

Properties whose values shall not change after object construction shall be given the UML CONST
attribute.

6.4. Private properties

Normal class properties shall be coded as Public properties. However, a class property shall be coded as
a Private property if it does not raise the PropertyChanged event when its value changes.

NOTE Private properties are typically used for rapidly-changing parameters (e.g. Counters) whose
frequent changes might cause excessively frequent notifications. Private properties are normally
accessed by Get(...) methods.

6.5. Setlike Lists

A Setlike List is a collection of items, each of which is unique within the collection. The design rules are:

1. A Setlike List shall be an OcaList.

2. Each Setlike List item shall have an OcaID16 ID.

3. The ID shall be a property of the datatype that defines the Setlike List item.

4. When a Controller adds an item to the Setlike List - normally by using an Add (...) method of
some kind - the Device shall assign the value of the new item's ID.

5. When an Add(...) method takes the actual item as a parameter, the Device shall fill in the ID
value and pass the updated item back to the Controller. Thus, the item will normally be a
bidirectional (i.e. supplied and returned) parameter of the Add(...) method.

6. When an Add(...) method does not take the actual item as a parameter, the Device shall pass the
ID value back to the Controller as a returned parameter.

In allocating ID values, the Device shall ensure uniqueness over time. Therefore, ID values of deleted
Setlike List items shall not be re-used within a power cycle.

NOTE For legacy reasons, a few Setlike Lists are implemented as maps instead of lists. In these
cases, the map key is the ID, and the ID is not a property of the item datatype.

6.6. Element ID coding

Element ID is the collective term for a Property, Method, or Event IDs. [AES70-1(Element IDs)]
normatively specifies the meaning and selection of Element ID field values. This clause describes how
such values are coded in the Control Model.

In the model, an Element ID shall be identified by a string of the form:

LLtSS d:v

A space is required between the LLtSS construct and the D:v construct.

The constructs are as follows:

LL shall be the two-digit level of the class tree at which the class is defined.
t shall be a type code: p for a Property ID, m for a Method ID, or e for an Event ID.

 - 8 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

SS shall be a sequence number starting at 01 for each type (p, m, or e) and for each tree level
of the class.

d shall be a documentation status code - a for added, d for deprecated, c for changed, or n
to designate the new name of a renamed element.

v shall be the version number of the class for which the action was taken.

For example:

03p14 a:3 class tree level 3, 14th property, added in version 3 of the class
03m02 d:2 class tree level 3, 2nd property, deprecated in version 3 of the class
04p03 n:3 class tree level 4, 3rd property, new name as of version 3 of the class

Documentation status specifications, the d:v constructs, are not included in AES70 protocol exchanges.

In the UML specification, an element's ID shall be entered as a UML Alias of the element. An added
element shall be assigned a new element ID value; a renamed element shall retain its original element ID
value.

6.7. Rules for renaming and changing Control Model components

6.7.1. Changing names

The following rules apply to renaming components of the Control Model:

Control Class
 Duplicate the class, deprecate one copy, rename the other.

Control Class element (i.e. property, method, or event)
 Duplicate the element, rename the new copy.
 Do not change the Element ID value of the new copy.
 Update the Element ID documentation status according to the rules in 6.6.

Control Datatype
 Rename it.
 Augment the comma-separated list of previous names in the UML Alias field.

Control Datatype element
 Rename the element.
 Note the previous name in the comment.

UML Package
 Simply rename it.

6.7.2. Changing datatypes of Control Model elements

The datatype of a given Control Model element shall only be changed in a way that does not change the
underlying base datatype. When the underlying base datatype is changed, a new Control Model
component (i.e. new Control Class or Control Datatype) shall be defined with the changed elements.

 - 9 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.8. Counters and related elements

The basic Counter mechanism is described in [AES70-1(Counters and Countersets)].

In order to avoid the raising of property-change events whenever a Counter changes, a Counterset's
owner shall declare the host property as private, and the owner shall provide methods by which
Controllers can query and manage Counter values. A class property that contains a Counterset shall be
defined as follows (c-like pseudocode):

private OcaCounterSet <csname>CounterSet

where csname shall be chosen by the designer. When a class owns only one CounterSet, it is
recommended that csname be null.

To generate Notifications of property changes in a selective manner, a Device may use
OcaCounterNotifier objects, as described in [AES70-1(Counters and Countersets)].

For each Counterset property, the following methods shall be defined (An asterisk prefix denotes a
returned parameter):

Get<csname>CounterSet ([ID], *OcaCounterSet Counterset) // Get all Counters
Get<csname>Counter([ID], OcaID16 Index, *OcaCounter Counter) // Get given Counter
Attach<csname>CounterNotifier ([ID], OcaID16 Index, OcaONo ONo) // Attach a Notifier
Detach<csname>CounterNotifier ([ID], OcaID16 Index, OcaONo ONo) // Detach a Notifier
Reset<csname>Counters([ID]) // Reset all Counters

and optionally

Reset<csname>Counter([ID], OcaID16 Index) // Reset given Counter

where
[ID] denotes an optional argument defined only in the case where the Counterset is a field of
a Control Datatype. In such cases, the [ID] argument shall identify the containing Control
Datatype instance.
Index shall be the index of the Counter within the Counterset.
ONo shall be the Object Number of a Notifier.

The action of the Reset method shall be to set the Counter to its defined initial value. A Counter’s
initial value shall be specified by the .InitialValue property of the OcaCounter datatype.

6.8.1. Counter Roles

Every Counter instance shall have a Role property that Device developers may populate to provide
further information to Controllers. The value of Role may be any string that does not begin with “oca” in
any character case.

6.9. JSON encoding

Where JSON data structures are used, encoding of all data values shall be done according to [RFC 8259],
with the additional constraint that integer parameters longer than 32 bits shall be encoded as JSON
strings whose contents are the decimal parameter value.

Note: The reason for this exception is that many JSON implementations do not support integer
precision larger than 53 bits, due to an implementation restriction of the javascript language.

 - 10 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.10. Non-decimal numbers

Non-decimal number values shall be expressed in the form 0rd...d, where r is a code for the radix and d
is a digit (including A...F for hexadecimal). Values of r shall be as follows:

 b binary numbers, e.g. 0b1101
 x hexadecimal numbers, e.g. 0x12FE, 0x12fe

6.11. Parameter records

Frequently, AES70 needs to deal with parameters whose formats and meanings are defined by standards
other than AES70. This document refers to such parameters as External Parameters.

To handle External Parameters, AES70 defines a design pattern. This pattern specifies class definition
practices that shall be used for dealing with sets of External Parameters. In AES70 class definitions, such
sets are called Parameter Records, and shall be defined by the Control Datatype OcaParameterRecord.

6.11.1. OcaParameterRecord

An OcaParameterRecord shall be a JSON object whose properties specify the values of the parameters in
question.

As a hypothetical example, the field OcaNetworkAdvertisement.Parameters might be coded as follows:

{
 "ServerAddresses": ["202.100.1.200", "202.100.1.201"],
 "ServiceType": "_oca._tcp",
 "ServiceName": "MyDev1"
}

6.11.2. Coding

A Parameter Record may be defined as a property of a Control Class or as a field of a Control Datatype.
In either case, the Parameter Record property or field shall be declared as follows (c-like pseudocode):

 OcaParameterRecord <recname>

 where recname shall be chosen by the designer.

For each parameter record, the following methods shall be defined in the containing class:

Mandatory for all Parameter Records:

Get<recname>([ID,] *OcaParameterRecord rec)
 Retrieves Parameter Record

Mandatory for all writable parameter records:

Set<recname>([ID,] OcaParameterRecord rec)
 Replaces Parameter Record

 - 11 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

where:

[ID] denotes an optional argument defined only in the case where the Parameter record is a field
of a Control Datatype that may be multiply instantiated in the containing object. In such cases,
the [ID] argument shall identify the instance.
Where a parameter record is a field of a nested data structure, [ID] may have multiple
components as required to identify the complete containment hierarchy.

6.12. Bitsets

Bitsets shall be datatypes of type OcaBitSet16 (= OcaUint16) that are used as set-like selectors.
In this UML model, a bitset datatype B shall be coded as follows

1. Declare B as a subclass of OcaBitset16.
2. Set B's stereotype to <<bitset>>.
3. In B, declare a static const attribute for each bit.
4. Set the attribute's datatype to B.
5. Set the attribute's value to be the 16-bit value of the bit. Bit 1 is the least-significant bit.

For example (c-like pseudocode):

<<bitset>> OcaActionObjectSearchResultFlags:: OcaBitSet16 {
 static const OcaActionObjectSearchResultFlags ONo = 1;
 static const OcaActionObjectSearchResultFlags ClassIdentification = 2;
 static const OcaActionObjectSearchResultFlags ContainerPath = 4;
 static const OcaActionObjectSearchResultFlags Role = 8;
 static const OcaActionObjectSearchResultFlags Label = 16;

};

This particular example is taken from the OcaBlock search methods (see [AES70-2A(OcaBlock)]. These
methods have an OcaMemberSearchResultFlags parameter that specifies which information items are
returned by the search. For example, to return Object Number and Role, the parameter value would be
ONo+Role, i.e. 1+8 = 9.

6.13. Custom subclass naming

When a custom subclass is defined, the following naming convention should be followed, unless doing so
would create an unduly long or awkward name:

 Each standard, specification, Adaptation, organization, or project that defines AES70 classes
should choose a name prefix. In what follows, such prefixes are shown in red.

 The name prefix for AES70 Core Standards shall be Oca.
 The name of class should start with the name prefix of the standard defining it.
 For the custom subclass, the name prefix of the definer should be prepended to the name of the

parent class.
 If a custom subclass is further subclassed, the same rule should be applied.

 - 12 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Here are examples for a hypothetical Adaptation whose name prefix is Adap:

Original class defined by AES70 Core: OcaMediaTransportApplication

Subclass defined by Adaptation: AdapOcaMediaTransportApplication

Original class defined by Adaptation: AdapEndpointAdaptationData

These rules are advisory, not normative; their use will not be managed, monitored, or enforced by the
AES. In particular, there will be no general management of name prefix values, but prefix values chosen
for AES standards and other AES projects will be kept unique.

Note: As specified in [AES70-1], each Adaptation shall have a unique identifier. The Adaptation
identifier and the Adaptation's name prefix need not be the same. In particular, Adaptation
identifiers will tend to be too verbose for readable naming.

6.14. ClassIDs for Nonstandard Classes defined by Adaptations published by the AES

From time to time, Adaptations need to define nonstandard subclasses of standard Control Classes.
This clause sets forth ClassID allocation rules for Adaptations that are published by the AES (called
"AES Adaptations") in what follows.

NOTE 1: Not all Adaptations need be published by the AES. This clause refers only to those that
are.

NOTE 2: The general rules for constructing ClassIDs are given in [AES70-1(Class identification)].

Because there will be multiple AES Adaptations (for example, AES70-21 and AES70-22), there is a
need to avoid clashes among the Nonstandard ClassIDs they define. The rules for avoiding such
clashes are as follows:

6. Each AES Adaptation shall be a standard in the AES70 family, with an identifier of the form
AES70-nn, where nn shall be in the range 21...39.

7. Nonstandard ClassIDs defined by an AES Adaptation shall use the AES's Organization ID.

8. For each such Adaptation AES70-nn,values of the first Nonstandard index (i.e. ik+1 from the
above) shall be allocated starting from nn*100.

9. At deeper inheritance levels, index values for Nonstandard Classes (i.e. ik+2•ik+3...ik+n) may
be allocated starting from 1.

10. An Adaptation may define as many Nonstandard Classes as it requires, and not all such
Nonstandard Classes need be based on the same standard class subtree. However, an
Adaptation shall define no more than 100 Nonstandard Classes at the first (i.e. ik+1)
inheritance level of each subtree.

For example, consider a hypothetical AES Adaptation identified as AES70-37, with name prefix (see
Clause 6.12) Vdv. Suppose AES70-37 defines Nonstandard Classes as follows:

 A subclass of OcaMediaTransportApplication named
VdvOcaMediaTransportApplication;

 A subclass of OcaMediaTransportSessionAgent named

 - 13 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 VdvOcaMediaTransportSessionAgent;

 Two sub-subclasses of VdvOcaMediaTransportSessionAgent named
VdvOcaMediaTransportSessionAgentLAN
VdvOcaMediaTransportSessionAgentWAN

From [AES70-2A], the relevant standard ClassIDs are as follows:

OcaMediaTransportApplication........................... 1•7•1

OcaMediaTransportSessionAgent 1•2•20 .

According to the above rules, the Nonstandard ClassIDs would be as follows. A is the Authority ID,
with value as described in [AES70-1(Authority ID format)]:

VdvOcaMediaTransportApplication 1•7•1•A•3700

VdvOcaMediaTransportSessionAgent 1•2•20•A•3701

VdvOcaMediaTransportSessionAgentLAN 1•2•20•A•3701•1

VdvOcaMediaTransportSessionAgentWAN 1•2•20•A•3701•2

These elements are illustrated in Figure 2.

Figure 2. Hypothetical AES70-37 Adaptation Class IDs

The classes of the hypothetical AES70-37 have two nonstandard inheritance levels. Actual
Adaptations might have only one such level, or many of them.

 - 14 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex A. (normative) UML Class Structure definition

The fundamental normative content of this Standard is an external XMI 2.1 document, as described in
Clause 4.1. As an informative equivalent, users may prefer to use a proprietary Enterprise Architect
version. They may be downloaded from:

www.aes.org/standards/models/

 - 15 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex B. (normative) Minimum compliant Device Model

B.1. Introduction

This Annex specifies the minimum Device Model that a product shall implement to be compliant with
AES70-2023.

For specifications of minimum Device Models defined in earlier versions of this standard, please refer to
the respective documents of those versions.

B.2. Required objects

B.2.1. General

This clause identifies objects that are required for compliance.

A minimum implementation necessarily depends on whether the Device is required to support encrypted
command streams (secure); or send and receive Media Streams over a network (streaming); or both.

A Device may include optional objects as needed, to render some or all its functions accessible for control
and/or monitoring from the connected network.

NOTE AES70 compliance does not require a Device to include AES70 objects for all its functions;
manufacturers may freely select which functions to make controllable via the network.

Every Device shall instantiate at least the objects shown in table B.1.

Table B.1 - Required objects

Object Class Category
Object

Number

Device Manager OcaDeviceManager Manager 1

Subscription Manager OcaSubscriptionManager Manager 4

Root Block OcaBlock Worker 100

B.3. Required methods and events for required objects

B.3.0. General

This minimum compliant Device specification does not require all methods and all events of all required
objects to be implemented. The following subclauses detail which methods and events are mandatory.
Non-mandatory methods shall nevertheless be present in the device model, but shall return a
NotImplemented result.

B.3.1. Base set

All objects shall implement at least the following methods, which are elements of the OcaRoot class and
are therefore inherited by all classes:

 - 16 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Method Note
GetLockable(...) Only read-only objects shall be allowed to return

False
SetLockNoReadWrite(...) Implemented only if object is lockable
SetLockNoWrite(...) Implemented only if object is lockable
Unlock(...) Implemented only if object is lockable
event PropertyChanged(...)

B.3.2. Device manager

The Device Manager object shall implement at least the following methods of OcaDeviceManager:

Method Note
GetOcaVersion(...)
GetSerialNumber(...)
GetDeviceName(...)
GetManagers(...)
GetOperationalState(...)
GetProduct(...)
GetManufacturer(...)

B.3.3. Subscription manager

The Subscription Manager object shall implement at least the following methods of
OcaSubscriptionManager:

Method Note
AddSubscription2(...)
RemoveSubscription2(...)
AddPropertyChangeSubscription2(...)
RemovePropertyChangeSubscription2(...)

The Root Block object shall implement at least the following method of OcaBlock

Method Note
GetActionObjects(...)

 - 17 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex C. (Informative) Using Datasets

C.1. Concept

[AES70-1] defines Dataset as a unit of data stored in the Device. A Dataset is represented by a Dataset
Object, instantiated from class OcaDataset or a subclass of OcaDataset.

An informative description of the Dataset mechanism is in [AES70-1(Datasets)]. See the UML file in
Annex A for the normative definitions of all classes mentioned below.

[AES70-1] specifies the following specific Dataset applications. Application notes for these applications
are in subsequent Annexes below, as follows:

Dataset application Clause
Logging Annex D
Stored parameter values Annex E
Media volumes Annex F
Task feature set Annex I

In addition to these standard applications, users may define their own Dataset applications and, if
necessary, their own Dataset classes - see Clause C.4.

C.2. Typical workflows

The following examples illustrate typical operations for managing Datasets, using methods of
OcaDataset and OcaBlock. The OcaDataset methods shall be inherited by all Dataset classes.

C.2.1. Create a Dataset

The AES70 control interface of a Dataset is an OcaDataset object. This object will be a Member of a Block
(i.e. OcaBlock instance) in the Device.

Some Devices may not support the creation of such objects, so this example does not apply to them. Even
so, such Devices may have built-in Datasets that are represented by static OcaDataset objects. The
discovery of existing OcaDataset objects is shown below in C.2.6 and C.2.7.

 To create a Dataset:

1. Choose an OcaBlock object that will contain the Dataset.

7. Choose an appropriate Dataset type (property OcaDataset.Type).
AES70 Dataset types are valid MIME Media Types. See [RFC 2045(5.1)]
and [AES70-1](Dataset type)] for more details.

8. Call OcaBlock.ConstructDataset(...) to create the Dataset and its OcaDataset object.

 To create a Dataset and populate it with data in one step, supply the data in the
ConstructDataset(...) parameter InitialContents.

C.2.2. Delete a Dataset

 Call OcaBlock.DeleteDataset(ONo), where ONo is the Object Number of the Dataset’s
OcaDataset object. Note that this operation will not be supported by Devices with static Dataset
configurations.

 - 18 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

C.2.3. Get/set Dataset type

 Call OcaDataset.GetType(...) or OcaDataset.SetType(...) .

C.2.4. Get Dataset size & maximum size

 Call OcaDataset.GetDatasetSizes(...)

C.2.5. Create a duplicate of a Dataset and put the copy in the same Block

 Call OcaBlock.DuplicateDataset(...) .

C.2.6. Enumerate the Datasets in a Block or tree of Blocks

 Call OcaBlock.GetDatasets(...) to get a list of all Datasets in the Block, but not in contained
Blocks.

or

 Call OcaBlock.GetDatasetsRecursive(...) to get a list of all Datasets in the Block and all
contained Blocks.

C.2.7. Find Datasets in a Block or tree of Blocks

To find Datasets in a Block or nest of Blocks whose attributes match a given set of search criteria:

 Call OcaBlock.FindDatasets(...) to search the Block, but not contained Blocks.

or

 Call OcaBlock.FindDatasetsRecursive(...) to search the Block and all contained Blocks.

C.2.8. Open a Dataset

 To open a Dataset for reading, call OcaDataset.OpenRead(...). This call will create a reading
Session and return a Session handle for subsequent use.

or

 To open a Dataset for writing, call OcaDataset.OpenWrite(...). This call will create a
reading/writing Session and return a Session handle for subsequent use.

C.2.9. Read data

 Call OcaDataset.Read(...), passing a reading or reading/writing session handle.

C.2.10. Write data

 Call OcaDataset.Write(...), passing a reading/writing session handle.

 - 19 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

C.3. Locking Datasets

A Dataset can support the general AES70 locking mechanism defined in [AES70-1(Concurrency Control)].
If it does, its Lockable property (inherited from OcaRoot) is set to TRUE. If not, Lockable is FALSE.

The current lock state of a Dataset is indicated by the value of its LockState property (also inherited from
OcaRoot).

Dataset locks are specified when Dataset Sessions are opened. Both OcaDataset.OpenRead(...) and
OcaDataset.OpenWrite(...) have a LockType parameter, the effect of which is given in Table 5.

Table 5. Dataset locking options

Requested
LockType Effect on Controllers other than the lock holder Resulting

LockState

NoLock Can write and read the file none

LockNoWrite Can read but not write the file. noWrite

LockNoReadWrite Can neither read nor write the file. noReadWrite

C.4. User-defined Dataset types

Users may define custom Datasets and Dataset classes - see [AES70-1(User-defined Dataset types)].

 - 20 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex D. (Informative) Log retrieval explanation and examples

See [AES70-1(Logging)] for a general description of the logging mechanism. See [AES70-2A] for
normative definitions of all logging classes and datatypes.

This informative Annex illustrates Controller use of the OcaLog methods OpenRetrievalSession(...),
RetrieveLogRecords(...), and CloseRetrievalSession(...) to retrieve log records.

D.1. Log item format and log filter

The Datatype OcaLogRecord specifies a standard set of header attributes for all log records. The
specific content of log records is application-defined. The definition of the OcaLogRecord Datatype is
shown informatively in Table 6; the normative definition is in [AES70-2A].

Table 6. OcaLogRecord fields

Field Name Datatype Description

FunctionalCategory OcaUint32
Functional category of record.
Values are application-defined

Severity OcaLogSeverityLevel
Severity. Uses Linux syslog conventions - see
{Wiki-004}.

EmitterONo OcaONo
Object number of object that emitted the log
record.

Timestamp OcaTimePTP Date/time the log record was made.
Payload OcaBlob Application-specific content of log record

The Datatype OcaLogFilter specifies filtering parameters for log retrieval, as shown in Table 7.

Table 7. OcaLogFilter fields

Field Name Datatype Description

FunctionalCategory OcaUint32 Functional category or zero to accept all
SeverityRange OcaInterval<OcaLogSeverityLevel> Range of accepted severity levels

EmitterONo OcaONo
Emitter object number or zero to accept
all

TimestampRange OcaInterval<OcaTimePTP> Range of accepted timestamps

D.2. Examples

The filter used in this example is as follows (c-like pseudocode):

Filter { // Filter values to accept all records
FunctionalCategory = 0, // accept all
SeverityRange = (,), // accept all; see [AES70-2A(OcaInterval)]
EmitterONo = 0, // accept all
TimestampRange = (,) // accept all

};

D.2.1. Retrieve all records, one at a time

 - 21 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Open log retrieval session

result = OpenRetrievalSession(// OPEN
LockNoWrite, // lockstate while retrieving
Filter, // as above
SessionHandle // returned

);

Retrieve log records

Repeated while EndOfData is FALSE, incrementing RecStartNo by 1 each time.
result = RetrieveRecords(// RETRIEVE

SessionHandle, // from Open
EndOfData, // returned TRUE when no records remain to send
RecStartNo = 1, // starting record number
RecCount = 1, // number of records requested
MaxDataLength = 65536, // max data length that Device is allowed to return
Records // OcaList containing the single returned record

);

Close log retrieval session

result = CloseRetrievalSession(// CLOSE
 SessionHandle // from Open
);

D.2.2. Retrieve batches of records, up to 32 at a time

Open log retrieval session - same as D.2.1.

Retrieve log records

Repeated while EndOfData is FALSE, incrementing RecStartNo by the number of records
returned in the Records list each time. The number of records retrieved will be 32 unless (a)
there are fewer than 32 records remaining, or (b) 32 records will exceed MaxDataLength. In case
(b), only whole records will be returned, i.e. there will be no truncated record at the end of the
retrieved set.

result = RetrieveRecords(// RETRIEVE
SessionHandle, // from Open
EndOfData, // returned TRUE when no records remain to send
RecStartNo = 1, // starting record number
RecCount = 32, // number of records requested
MaxDataLength = 65536, // max data length that Device is allowed to return
Records // OcaList containing the returned records

);

If one or more of the records requested have not been sent, EndOfData will be returned FALSE.
EndOfData will be returned TRUE only when all requested records have been sent.

Close log retrieval session - same as D.2.1.

 - 22 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex E. (Informative) Stored parameter values - examples

See [AES70-1(Stored Parameter Values)] for definitions of the relevant terms and a general description of
the stored-parameters mechanism. This Annex shows sample workflows.

E.1. Upload a set of parameters and apply them to a Block

 Call the Block’s ApplyParameterData(...) method, passing it the desired parameter data.
Depending on implementation, this method may or may not create a Parameter Dataset
containing the parameter data just applied.

If the implementation does create a Parameter Dataset, it may be applied to additional Blocks if
desired, using OcaBlock.ApplyParamDataset(ONo), where ONo is the object number of the
ParamDataset object.

E.2. Prepare a Parameter Dataset or Patch Dataset to use

1. Choose an OcaBlock object that will contain the Parameter Dataset or Patch Dataset.

9. For Static Blocks, the required Dataset must have been created at the time of manufacture.

10. For Dynamic Blocks, the Controller can construct a new Dataset using
OcaBlock.ConstructDataset(...). To create a Dataset and populate it with data in one step, supply
the data in the ConstructDataset(...) parameter InitialContents.

11. Set the Dataset's type (property OcaDataset.Type) as follows:
“application/x-oca-param” for Parameter Datasets, or
“application/x-oca-patch” for Patch Datasets.

This value can be set at Dataset construction time or changed afterwards by calling
OcaDataset.SetType(...). See [AES70-1(Dataset type)] for more information.

E.3. Upload parameter or patch data to the Dataset

1. Open a Dataset writing session using OcaDataset.OpenWrite(...).
12. Write data into it using OcaDataset.Write(...).
13. Close the session using OcaDataset.Close(...).

E.4. Apply a Parameter Dataset to a Block

 Call OcaBlock.ApplyParamDataset(ONo), where ONo is the object number of the Parameter
Dataset object.

E.5. Apply a Patch Dataset to a Device

 Call OcaDeviceManager.ApplyPatch(ONo), where ONo is the object number of the Patch
Dataset object.

 - 23 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

E.6. Capture a Block’s parameter values in a Parameter Dataset

1. Follow the steps in Clause E.2 to prepare an OcaDataset object to use.
2. Call OcaBlock.StoreCurrentParameterData(ONo), where ONo is the object number of the

Dataset.

E.7. Upload a Block’s parameter values directly to the Controller

 Call OcaBlock.FetchCurrentParameterData(...) .

E.8. Discover what Parameter Dataset has been applied most recently to a Block

Call OcaBlock.GetMostRecentParamDatasetONo(...). The returned value will be the ONo of the
OcaDataset object of the most recently applied Parameter Dataset.

This value will be zero if:

 No Parameter Dataset has been applied to the Block; or
 OcaBlock.ApplyParameterSet(...) has been called AND the implementation has not saved

the parameter values in a Parameter Dataset.

AES70 does not require a Parameter Dataset to specify all the parameter values in a Block. If
multiple disjoint Parameter Datasets have previously been applied to a Block, the data stored in
the Dataset indicated by GetMostRecentParamDatasetONo(...) will not reflect the cumulative
effect of all of them.

Controllers wishing to track the detailed effects of successive Parameter Dataset applications
should subscribe to changes in the OcaBlock property MostRecentParamDatasetONo.

E.9. Discover what Patch Dataset has been applied most recently to a Device

Call OcaDeviceManager.GetMostRecentPatchDatasetONo(...). The returned value will be the
ONo of the OcaDataset object of the most recently applied patch Dataset.

This value will be zero if no patch Dataset has been applied to the Device.
AES70 does not require a Patch Dataset to specify all the parameter values in a Device. Therefore,
if multiple disjoint Patch Datasets have previously been applied to a Device, the data stored in
the Dataset indicated by GetMostRecentPatchDatasetONo(...) will not reflect the cumulative
effect of all of them.

Controllers wishing to track the detailed effects of successive Patch Dataset applications should
subscribe to changes in the OcaDeviceManager property MostRecentPatchDatasetONo.

 - 24 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex F. (Informative) Media volumes and media recorder/player - examples

See [AES70-1(Media Volumes)] for definitions of the relevant terms and a general description of the
media volume mechanism. This Annex shows sample workflows.

F.1. Concept

Media Volume means a Dataset that contains media stream data.

AES70 handles Media Volumes using three Control Classes:

1. OcaBlock, for creating, containing, and deleting media volumes.
2. OcaDataset, for managing bulk upload and download of data to/from media volumes.
3. OcaMediaRecorderPlayer, for multitrack-capable recording and playback functions.

Items (1) and (2) are the general Dataset functions defined in [AES70-1(Datasets)] and illustrated in
Annex D, above. Item (3), OcaMediaRecorderPlayer, is specific to media volumes.

F.2. Using OcaMediaRecorderPlayer

OcaMediaRecorderPlayer is a Worker object; as such, it has OcaPorts and can therefore connect to
media data flows inside the Device.

F.2.1. Operation modes

In operation, an OcaMediaRecorderPlayer object can run in Play mode or, if recording is implemented,
Record mode.

 Play mode reads the Media Volume and sends its samples to other processing elements in the
Device, via the object's Output Ports.

 Record mode accepts samples from other processing elements in the Device via the object's
Input Ports, and writes them into the Media Volume.

In the case of a multitrack Media Volume, the Record mode can play certain tracks while recording
others - see the description of Track Function in Clause F.2.2.

F.2.2. Multitrack media volumes and Track Function

OcaMediaRecorderPlayer allows selective recording and playback of multitrack media volumes using
the concept of Track Function. The function of each track is a three-bit OcaBitset, defined as follows:

Function option
Bit Position,
LSB to MSB

Bit name

play this track in Play mode 1 PlayInPlayMode

play this track in Record mode 2 PlayInRecordMode

record this track in Record mode 3 RecordInRecordMode

 - 25 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The Track Function feature facilitates multitrack recording. The use cases it covers are as follows. In the
Track function column, “X” means any value:

Use case
Track function
value (binary)

Notes

Ordinary playback XX1

Ordinary recording 1XX

Recording with monitoring 11X
Record and listen to what is being
recorded

Overdubbing

Sync track, part of the final mix 011
Track that is part of the final mix and
should be played back during
recording, for overdub sync

Track being recorded 1XX

Sync track, not part of the final mix 010 Click track or other cue track

Track Function values apply to record and play sessions, and apply to record and playback operations in
a session. They can be changed during a session, but are not saved when a session is closed.

F.2.3. The PlayOption property

The PlayOption property shall allow selection of a behavior for playing the media volume. The following
options shall be available:

 Play to end of record/play window and leave Dataset open.
 Play to end of record/play window, then close Dataset.
 Repeat record/play window until Stop() or Close() is called.

F.3. Typical workflows

F.3.1. Open a Media Volume access session

 Call OcaMediaRecorderPlayer.Open(...), specifying the desired type of access - play or
record/play. This call will create a Media Volume access session.

F.3.2. Initiate playing

1. Call OcaMediaRecorderPlayer.SetTrackFunctions(...) to set Track Functions as needed.

2. Call OcaMediaRecorderPlayer.SetWindowRange(...) to identify the time segment of the Media
Volume that will be played. By default, the entire volume will be played.

3. Call OcaMediaRecorderPlayer.Play(...).

4. Every track will play whose PlayInPlayMode track function bit is TRUE.

F.3.3. Initiate recording

1. Call OcaMediaRecorderPlayer.SetTrackFunctions to set Track Functions as needed.

 - 26 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

2. Call OcaMediaRecorderPlayer.SetWindowRange to identify the time window of the Media
Volume that will be recorded.

3. Call OcaMediaRecorderPlayer.Record(...).

4. Every track will record whose RecordInRecordMode mode bit is TRUE.

5. Every track will play whose PlayInRecordMode mode bit is TRUE.

F.3.4. Stop playing or recording

 Call OcaMediaRecorderPlayer.Stop(...) .

F.3.5. Close a Media Volume access session

 Call OcaMediaRecorderPlayer.Close(...).

F.3.6. Reset a Media Volume access session to its initial state without closing it

 Call OcaMediaRecorderPlayer.Reset(...).

This operation resets the window range to the entire volume, sets record/play position to the start of the
volume, and sets the play option to Normal. It does not reset track functions.

 - 27 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex G. (Informative) The OcaNetworkInterface Class - programming notes

G.1. General

An overview of the Network Application Control (NAC) model is in [AES70-1(Networking model)]. This
informative Annex offers supplementary information for implementers. Normative descriptions of the
classes and properties mentioned here are in the UML specification in Annex A.

G.2. OcaNetworkInterface object states

OcaNetworkInterface is the base class for Network Interface Objects - see [AES70-1(Architectural
layers)]. A Network Interface Object has two state properties, as described next.

G.2.1. Property Enabled

This property determines whether the network interface is available for use.

If Enabled is TRUE, all network interface commands (executed by method ApplyCommand(...)) are
usable. Otherwise, all ApplyCommand(...) commands will fail with status code InvalidRequest.

The value of Enabled is set by the SetEnabled(...) method. This method will succeed except when an
attempt is made to set Enabled to FALSE and State is Ready. One may not disable a network interface
that is in the Ready state.

G.2.2. Property State

State is a field of the structure property Status. State represents the operational state of the network
interface. Values are as follows:

Ready The network interface is available to transfer data.

NotReady The network interface is not available to transfer data.

Fault Due to an error, the network interface has halted data transfer and is not available for
further data transfer until the error is cleared.

The value of State is changed by ApplyCommand(...) commands and sometimes by Device-initiated
actions. The following ApplyCommand(...) commands are defined. As noted above, these commands
are available only when Enabled is TRUE.

Start If State is NotReady or Fault, then
 applies TargetNetworkSettings (network settings, see Clause G.3),
 sets NetworkSettingsPending to FALSE,
 sets State to Ready, and
 commences network input/output.
 else does nothing.

Stop Ceases network input/output and sets State to NotReady.

Restart Performs a Stop, then a Start.

Following a power-on reset, the value of State will be implementation-dependent.

 - 28 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

These actions and the resulting State changes are illustrated in Figure 3.

Figure 3. OcaNetworkInterface.State property changes when property Enabled is TRUE

G.3. Network settings

A Network Interface Object's network-type-specific settings are parameter values pertinent to the
particular data network connection the Object controls. For example, the network settings parameters for
an IP network interface contain the Interface's IP address and related connection parameters. Annex H
provides examples of network settings for IP networks.

 In OcaNetworkInterface, the active set of network settings is held in the read-only property
ActiveNetworkSettings. The property TargetNetworkSettings holds a second set of parameters that are
applied when the interface state changes to Ready. The resulting network settings are reflected in
ActiveNetworkSettings.

Having this dual set of parameters allows a Controller to preconfigure a network interface, then activate
that connection in a single atomic action.

TargetNetworkSettings values are retrieved and set by the methods GetTargetNetworkSettings(...) and
SetTargetNetworkSettings(...), respectively. ActiveNetworkSettings values are retrieved by the method
GetActiveNetworkSettings(...).

The additional boolean property NetworkSettingsPending indicates whether TargetNetworkSettings has
been set but not applied, i.e. whether there are target network settings pending.
NetworkSettingsPending is set to TRUE by the SetTargetNetworkSettings(...) method, and set to FALSE
when the target settings are applied.

Target settings are applied either by the execution of a Start command or, in some implementations, by
Device-initiated actions.

G.4. Example workflows

G.4.1. At time of device manufacture

 An OcaNetworkInterface object is constructed to control the Device's IP connection.
When the object is constructed:
 Property TargetNetworkSettings is set to the initial default settings for the product.
 Property NetworkSettingsPending is set to TRUE.

 - 29 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 Property Enabled is set to TRUE.

G.4.2. Initial Device startup

 Device power-on reset procedure executes the equivalent of ApplyCommand(Start).
 The network interface is now operational.

G.4.3. Changing network settings for a running interface

Some implementations might require a device reset to change network settings. If not, the
following sequence applies:

 The Controller performs SetTargetNetworkSettings(new settings).
 The Controller performs ApplyCommand(Restart),

or a sequence of ApplyCommand(Stop) and ApplyCommand(Start).

G.4.4. Restarting a failed interface

Assuming the interface's states are Enabled=TRUE and State=Fault:

 The Controller will probably have discovered the failure via a PropertyChanged notification for
the interface's State property.

 The Controller can use SetTargetNetworkSettings(new settings) to provide some new network
settings that might work better.

 The Controller performs either ApplyCommand(Restart),
or the sequence ApplyCommand(Stop), ApplyCommand(Start).

G.4.5. Enabling an interface

Assuming the interface's states are Enabled=FALSE and State={NotReady or Fault}; a disabled
interface cannot have State=Ready.

 The Controller performs SetEnabled(TRUE).
 After this call, the value of State will be unchanged.

G.4.6. Disabling an interface

Note that stopping and/or disabling the network interface that the Controller is using will result
in an unresponsive device, and the workflow will be aborted.

 If State is Ready, Controller performs ApplyCommand(Stop).
 The Controller performs SetEnabled(FALSE).

 - 30 - AES70-2-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex H. (Informative) IP Adaptation examples

[AES70-2A(IP Adaptation)] normatively specifies the contents of the OcaNetworkInterface network
settings properties ActiveNetworkSettings and TargetNetworkSettings, for both IP version 4 and IP
version 6 network interfaces.

The following pages provide illustrated examples of network settings contents for four use cases, each of
which involves one remote host with a specific gateway. The cases are as follows:

Figure 4 Device belongs to one subnet; IPv4 and IPv6 examples shown

Figure 5 Device belongs to two subnets, IPv4 example shown.

Figure 6 Device belongs to two subnets, IPv6 example shown.

Figure 7 illustrates a generic IP configuration for applications that use redundant networking. Details for
specific applications are not shown.

 - 31 -
 AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 4. Device belongs to one subnet

- IPv4 (top), IPv6 (bottom) -

 - 32 -
 AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 5. Device belongs to two IPv4 subnets

 - 33 -
 AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 6. Device belongs to two IPv6 subnets

 - 34 -
 AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 7. General scheme for redundancy
 - IPv4 or IPv6 -

 - 35 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex I. (Informative) Task feature set - programming notes

I.1. General

An overview of the Task feature set is in [AES70-1(Task feature set)]. This informative Annex offers
supplementary information for implementers. Normative descriptions of the classes and properties
mentioned here are in [AES70-2A].

I.2. The OcaTaskAgent class

A Task Agent is an instance of OcaTaskAgent, and is the control and monitoring interface for the
execution of a single Executable, i.e., Program or Commandset. The methods and properties of Task
Agents allow Controllers to assign Executables to Task Agents, to start and stop execution, to monitor
Task state, and to retrieve execution result data, if any.

I.2.1. Task Agent states

OcaTaskAgent represents its state in the property OcaTaskAgent.State. A Controller can change a Task
Agent’s state by calling an OcaTaskAgent action method. The available states and actions are shown in
Figure 8. Each state shown corresponds to a value of OcaTaskAgent.State, and each action shown
corresponds to a call to an OcaTaskAgent method named Action<Action>(...) - e.g. ActionPrepare(...),
ActionStart(...), ...

Figure 8. Task Agent states

The meanings of the states in Figure 8 are as follows:

 Idle The task agent has no assigned Executable and is doing nothing.
 Ready The Task Agent has an assigned Executable but is not (yet) executing it.
 Running The Task Agent is executing an Executable.
 Ended Execution has ended for some reason. Reasons include (a) the Executable has finished

normally; (b) method ActionStop(...) has been called to force an early stop; (c) execution has
encountered an error and cannot continue.

 - 36 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

In a normal execution sequence with no errors, the Running state will automatically transition to the
Ended state when execution has ended. Furthermore, once the Ended state has raised the
ExecutionTerminated event, it will automatically transition to the Ready state.

A Controller detects execution completion by subscribing to the OcaTaskAgent.ExecutionTerminated
event. ExecutionTerminated’s event data contains success or failure details and task return data, if any.

If more state-change detail is necessary, the Controller can also subscribe to property changes of
OcaTaskAgent.State.

I.2.2. The Blocked property

OcaTaskAgent.Blocked controls whether a Task Agent is available for new work. Its behavior is as
follows:

 If Blocked is FALSE, all actions behave as shown in Figure 8.
 If Blocked is TRUE, the actions Prepare, Run, and Start are unavailable, and the corresponding

method calls will return an OcaStatus value of ProcessingFailed.

Changing the value of Blocked does not change the value of OcaTaskAgent.State. For example, a
process that is in the Running state when Blocked turns TRUE remains in the Running state.

I.2.3. Execution workflow

The following is a typical workflow for immediate execution of an Executable. For executions scheduled
in the future, see Clause I.3.

I.2.3.1. Simple view

Suppose a Device contains an Executable X with Object Number nX, and a Task Agent T.

To make T run X , the Controller must:

1. Have or create a subscription to event T.ExecutionTerminated.
2. Call method T.ActionRun(nX, pars, runMode) .

where pars is an OcaBlob containing run-time parameters, if any, for the Executable, and runMode is
a Run Mode selector - see [AES70-1(Run Mode)]. A typical Run Mode selector value is zero.

I.2.3.2. Detailed view

In detail, the above sequence is as follows:

1. If it hasn’t already done so, Controller subscribes to T.ExecutionTerminated.
2. Controller calls T.ActionRun(nP, pars, runMode).
3. If the Blocked property is TRUE or the Task Agent’s state is not Idle, T.ActionRun(...) fails and the

workflow ends. Otherwise ...
4. Execution proceeds. Task Agent’s state becomes Running.
5. Execution ends. Task Agent’s state becomes Ended. T raises the ExecutionTerminated event.
6. Controller receives the ExecutionTerminated notification from T and processes it appropriately.
7. If execution has terminated normally, T’s state automatically transitions to Ready.

 - 37 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

I.3. The OcaTaskScheduler class

OcaTaskScheduler is a class that Devices can instantiate to control execution of Executables to be
performed in the future. An enqueued execution is called a Job. A Scheduler (i.e., an instance of
OcaTaskScheduler) maintains a Job Queue and launches Jobs from the Job Queue at the designated
times.

Task scheduling is an optional part of the Task feature set. Devices that offer only immediate execution
need not implement OcaTaskScheduler.

I.3.1. Scheduler states

Scheduler states are shown in Figure 9. Each state shown corresponds to a value of
OcaTaskScheduler.State, and each action shown corresponds to a call to an OcaTaskScheduler method
named Action<Action>(...) - e.g., ActionStart(...), ActionPause(...), ...

Figure 9. Task Scheduler states

The meanings of the states in Figure 9 are as follows:

 Running The Scheduler is operating normally, accepting new Jobs, executing enqueued Jobs.
 Paused The Scheduler is accepting new Jobs but is not initiating any enqueued ones.
 Draining The Scheduler is not accepting any new Jobs, but is processing enqueued ones.
 Stopped The Scheduler is neither accepting new jobs nor initiating any executions.

 - 38 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

I.3.2. Workflow

 A typical workflow for scheduling and subsequent execution of an Executable is as follows:

1. A Controller locates Scheduler it intends to use. Presumably, this Scheduler will already have
been initialized with the list of OcaTaskAgent Object Numbers it can use.

2. A Controller creates a Job Queue item and adds it to the Scheduler. The Job Queue item specifies
the Object Number of the Executable to be executed, the Task Agent to execute it, any parameters
needed for execution, the desired Run Mode (see [AES70-1(Run mode)], and the desired launch
time.

3. At the designated launch time, the Scheduler attempts to initiate execution of the given
Executable by a designated Task Agent.

4. Following the successful or unsuccessful launch attempt, the Scheduler (a) raises a
JobDisposed(...) event, and (b) deletes the queue item from its Job Queue. The
JobDisposed(...) Notification indicates whether the launch was successful or not.

5. When the launch attempt is successful:
a. The task agent executes the Executable.
b. After execution completes, the OcaTaskAgent involved raises an ExecutionTerminated(...)

event to report success or failure of the execution, and to communicate termination data, if
any.

I.3.3. Scheduling parameters

 When Each Job Queue item contains an OcaWhen property ([AES70-1(OcaWhen)]) that
allows launch time to be specified as an absolute physical time or a relative physical
time.

 Where A Job Queue item may specify the Object Number of a particular OcaTaskAgent
object that must be used for execution, or it may allow the Scheduler to use any Task
Agent in its group that supports the specified RunMode (see [AES70-1(Run mode)]).

 RunMode Each Job Queue item specifies the RunMode to be used for execution.

I.3.4. Monitoring the scheduling process

A Controller can monitor the scheduling and execution processes by any of the following means:

1. Subscribing to the JobDisposed(...) event of OcaTaskScheduler; and/or
2. Subscribing to the ExecutionTerminated(...) event of the designated OcaTaskAgent; and/or
3. Subscribing to the PropertyChanged(...) event of the designated OcaTaskAgent.
4. Subscribing to changes in the property State of the designated OcaTaskAgent.
5. Subscribing to the PropertyChanged(...) event of the designated OcaTaskScheduler.
6. Subscribing to changes in the property State of the designated OcaTaskScheduler.

 - 39 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

I.4. Programs

A Program is an object of class OcaProgram. OcaProgram is a subclass of OcaDataset. Controllers
access Programs mainly via methods inherited from OcaDataset. For example, a Controller can use
OcaDataset.Write(...) to download Program content into OcaProgram Datasets in the Device.

OcaProgram’s only native property is SupportedRunModes, which is described in [AES70-1(Run
mode)].

I.5. Commandsets

A Commandset is a sequence of AES70 method calls that is stored in the Device and executed as a
particular kind of Program. Each Commandset is an object of class OcaCommandSet, and
OcaCommandSet is a subclass of OcaProgram.

OcaCommandSet defines InsertCommand, SetCommand, and DeleteCommand methods for adding,
changing, and deleting commands from the Commandset. Controllers can use these methods to
construct and manage the content of Commandsets in the Device.

 - 40 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex J. (Informative) OcaMediaTransportApplication clocking

This Annex explains the media clocking semantics of class OcaMediaTransportApplication.

J.1. Clocking parameters in OcaMediaTransportApplication and its datatypes

OcaMediaTransportApplication has the following clocking-related parameters:

 The OcaMediaStreamEndpoint datatype has a property ClockONo, which, if nonzero,
designates an OcaMediaClock3 object that controls the Endpoint’s sample clock.

 OcaMediaStreamEndpoint instances are contained in the property
OcaMediaTransportApplication.Endpoints.

 Each entry of the PortClockMap property of each OcaMediaTransportApplication object has the
following properties:

 ClockONo which, if nonzero, designates an OcaMediaClock3 object that controls the Port’s
sample clock.

 SRCType which, when not set to None, describes the type of sample-rate converter used by
the port.

J.2. How it works

There are two use cases:

 An Input Port is mapped to one or more output stream channels.
 An Output Port is mapped from a single input stream channel.

These use cases are exemplified in Figure 10.

Figure 10. Clocking use cases
“SRC” means “Sample-Rate Converter”

 - 41 - AES70-2-2023-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Here’s how the scheme works:

 Case 1

Clock A defines the rate of signal S1.
Clock C defines the rates of stream channel C1.
SRC(1) converts from Clock A's rate to Clock C's rate.
Internal path i1 has Clock C's rate.

 Case 2

Clock B defines the rate of signal S2.
Clock D defines the rate of stream channel C2.
SRC(2) converts from Clock D's rate to Clock B's rate.
Internal path i2 has Clock D's rate.

On inputs (either Input Ports or input stream channels), clocks will sometimes not be explicitly specified,
and the sample-rate converters will simply adapt to the clock rates of the streams they are receiving. In
these cases, the clock links are omitted by setting the respective object-number properties to zero. For
example:

 In Case 1, the signal arriving from elsewhere in the Device might have an unspecified clock rate,
so that Clock A would be omitted.

 In Case 2, the stream arriving at the Stream Input Endpoint might not have an explicit clock. For
example, its clock could be implicitly defined by timestamps on sample packets. In this case,
clock D would be omitted.

Many Devices will use only one clock for everything, in which case Clocks A, B, C, and D would all be the
same and would all be represented by a single OcaMediaClock3 object.

