Proceedings of the AES 60th International Conference

Dereverberation and Reverberation of Audio, Music, and Speech

3–5 February 2016
Leuven, Belgium

Editors
Stefan Goetze and Ann Spriet

Chair
Toon van Waterschoot

Organizing Committee
Simon Doclo
Timo Gerkmann
Jan Østergaard
Enzo De Sena
Aldona Niemiro-Sznajder

First published: 2016 January
ISBN: 978-1-942220-07-7

Copyright © Audio Engineering Society 2016
Audio Engineering Society, Inc.
551 Fifth Avenue, Suite 1225,
New York, NY 10179, USA
Email: journal_office@aes.org
CHAIR’S INTRODUCTION

The conference will focus on Dereverberation and Reverberation of Audio, Music, and Speech and aims to bring together and provide a forum for researchers working on the modeling, control, removal, and synthesis of acoustic reverberation. The interdisciplinary nature of the topic will cover disciplines such as room acoustics, psychoacoustics, and signal processing, hence the conference is targeted at researchers working in any of these disciplines.

The initiative for organizing this conference originates from the FP7-PEOPLE Marie Curie Initial Training Network DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech), which is a European network of universities, companies, and research organizations jointly carrying out a four-year research and training program (2013–2016) on reverberation and dereverberation. The DREAMS network gratefully acknowledges financial support from the European Commission (Grant Agreement no. 316969).

CONFERENCE COMMITTEE

Chair
Toon van Waterschoot

Papers co-chairs
Stefan Goetze and Ann Spriet

Committee
Simon Doclo
Timo Gerkmann
Jan Østergaard
Enzo De Sena
Aldona Niemiro-Sznajder
Table of Contents

KEYNOTE PAPER 1

More Than 50 Years of Artificial Reverberation—
Vesa Välimäki, Aalto University, Helsinki, Finland

PAPER SESSION 1

1-1 Blind Estimation of Room Acoustic Parameters Using Kernel Regression—Arthur Belhomme,1,2 Yoes Grenier,1 Roland Badeau,1,4 Eric Humbert2
1 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France
2 Inovoxia, Issy-les-Moulineaux, France

1-2 On the Relation between Data-Dependent Beamforming and Multichannel Linear Prediction for Dereverberation—Thomas Dietzen,1,3 Ann Spriet,1 Wouter Tirry,1 Simon Doclo,2 Marc Moonen,1 Toon van Waterschoot3
1 Fraunhofer Institute for Integrated Circuits, Erlangen, Germany
2 KU Leuven, Belgium
3 Imperial College London, UK

1-3 A Study on the Preferred Level of Late Reverberation in Speech and Music—Jørgen Paulus,1,2 Christian Uhlé,1,2 Jürgen Herre,1,2 Marc Höpfel1
1 Fraunhofer Institute for Integrated Circuits, Erlangen, Germany
2 International Audio Laboratories Erlangen, Erlangen, Germany

PAPER SESSION 2

2-1 Finite Volume Time Domain simulations of Frequency-Dependent Boundary Conditions and Absorbing Layer—Pierre Chobeau,1 Sebastian Prepelita,1 Jukka Säärelä,2 Jonathan Botts,2 Lauri Sarioja1
1 Aalto University, Espoo, Finland
2 Rensselaer Polytechnic Institute, Troy, NY, USA

2-2 Multichannel Wiener Filter for Speech Dereverberation in Hearing Aids—Sensitivity to DoA Errors—Adam Kuklasinski,1,3 Simon Doclo,2 Søren H. Jensen,2 Jesper Jensen,1,2
1 Oticon A/S, Smørum, Denmark
2 Aalborg University, Aalborg, Denmark
3 University of Oldenburg, Oldenburg, Germany

2-3 On Object-Based Audio with Reverberation—Philip Coleman,1 Andreas Franck,1 Philip Jackson,1 Richard Hughes,1 Luca Remaggi,1 Frank Melchior4
1 University of Surrey, Guildford, Surrey, UK
2 University of Southampton, Southampton, Hampshire, UK
3 University of Salford, Salford, UK
4 BBC Research and Development, MediaCity, Salford, UK

2-4 Separation of Direct Sounds from Early Reflections Using the Entropy Rate Bound Minimization Algorithm—Mathieu Baqué,1 Alexandre Guérin,1 Manuel Mélon2
1 LAUM, CNRS, Université du Maine, Le Mans, France
2 Université de Lorraine, Nancy, France

2-5 Large-Scale Auralized Sound Localization Experiment—Enzo De Sena,1 Neofytos Kaplanis,1,2 Patrick A. Naylor,3 Toon van Waterschoot1
1 KU Leuven, Leuven, Belgium
2 Bang & Olufsen, Struer, Denmark
3 Aalborg University, Aalborg, Denmark
4 Imperial College London, London, UK

PAPER SESSION 3

3-1 Blind Room Acoustics Characterization Using Recurrent Neural Networks and Modulation Spectrum Dynamics—João Felipe Santos,1,2 Tiago Henrique Falk3
1 Institut National de la Recherche Scientifique, Montreal, QC, Canada
2 Centre for Interdisciplinary Research in Music Media and Technology, Montreal, QC, Canada

3-2 Acoustic Environment Control: Implementation of a Reverberation Enhancement System—Clement S. J. Doire,1 Mike Brookes,2 Patrick A. Naylor,1 Enzo De Sena,2 Toon van Waterschoot3, Søren Holdt Jensen2
1 Imperial College London, UK
2 KU Leuven, Belgium
3 Aalborg University, Aalborg, Denmark

3-3 Loudness-Weighting of Reverberation Using Electronic Room Enhancement—Winfried Lachenmayr, Mueller-BBM, Munich, Germany

3-4 Implementation and Assessment of Joint Source Separation and Dereverberation—David Molfat, Joshua D. Reiss, Queen Mary University of London, London, UK

KEYNOTE PAPER 2

How do humans benefit from binaural listening when recognizing speech in noisy and reverberant conditions?—Thomas Brand, University of Oldenburg, Germany

PAPER SESSION 4

4-1 Spectrally and Spatially Informed Noise Suppression Using Beamforming and Convolutive NMF—Benjamin Cauchi,1,4 Timo Gerkmmann,1,4 Simon Doclo,1,4 Patrick A. Naylor,3 Stefan Gouwets1,4
1 Fraunhofer Institute for Digital Media Technology IDMT, Oldenburg, Germany
2 University of Oldenburg, Oldenburg, Germany
3 Imperial College London, London, UK
4 Cluster of Excellence Hearing4All, Oldenburg, Germany

4-2 The Perception of Hyper-Compression by Untrained Listeners—Malachy Ronan, Nicholas Ward, Robert Sazdov, University of Limerick, Limerick, Ireland

PAPER SESSION 5

5-1 Incorporating the Noise Statistics in Acoustic Multichannel Equalization—Ina Kodrasi, Simon Doclo, University of Oldenburg, Oldenburg, Germany

5-2 Analysis of Prediction Intervals for Non-Intrusive Estimation of Speech Clarity Index—Pablo Peso Parada,1 Dushyanth Sharma1, Patrick A. Naylor,1 Toon van Waterschoot1
1 Nuance Communications Inc., Pound Lane, Marlborough, UK
2 Imperial College London, London, UK
3 KU Leuven, Belgium

5-3 Finite Volume Modeling of Viscothermal Losses and Frequency-dependent Boundaries in Room Acoustics Simulations—Stefan Bilbao, Brian Hamilton, University of Edinburgh, Edinburgh, UK

5-4 Dereverberation Using a Model for the Spatial Coherence of Decaying Reverberant Sound Fields in Rectangular Rooms—Sam Noes, Andreas Schwarz, Walter Kellermann, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
<table>
<thead>
<tr>
<th>Paper Session 6</th>
</tr>
</thead>
</table>
| 6-1 Robust Estimation of Reverberation Time Using Polynomial Roots—Ian J. Kelly, 1 Francis M. Boland, 1,2 Jan Skoglund 1
1 Google, Inc.
2 Trinity College, Dublin, Ireland |
| 6-2 Blind Adaptive SIMO Acoustic System Identification Using a Locally Optimal Step-Size—Mathieu Hu, 1 Dushyant Sharma, 2 Simon Doclo, 3 Mike Brookes, 1 Patrick A. Naylor 1
1 Imperial College London, UK
2 Nuance Communications Inc., Marlow, UK
3 University of Oldenburg, Oldenburg, Germany |
| 6-3 A Method for Perceptual Assessment of Automotive Audio Systems and Cabin Acoustics—Neofytos Kaplanis, 1,4 Søren Bech, 1,4 Sakari Tervo, 2 Jukka Pätyinen, 2 Tapio Lokki, 2 Toon van Waterschoot, 2 Søren Holdt Jensen
1 Bang & Olufsen, Denmark
2 Aalto University, Espoo, Finland
3 KU Leuven, Leuven, Belgium
4 Aalborg University, Aalborg, Denmark |

<table>
<thead>
<tr>
<th>Paper Session 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1 Blind Dereverberation of Speech Using Complex Adaptive Kurtosis Maximization in the Subband Domain—Elias Nemer, DTS, Calabasas, CA, USA</td>
</tr>
<tr>
<td>7-2 Non-Monotonic Impact of Occupancy Level on Reverberation Indicators: Case of a Public Confined Eating Establishment—Yosra Mzah, Seddik Maarfi, Raja Ghozi, Meriem Jaidane, Ecole Nationale d’Ingénieurs de Tunis, Tunis, Tunisia; Telnet Innovation Labs, Ariana, Tunisia</td>
</tr>
</tbody>
</table>
| 7-3 Room Acoustic System Identification Using Orthonormal Basis Function Models—Giacomo Vairetti, 1 Enzo De Sena, 1 Michael Catrysse, 2 Søren Holdt Jensen, 2 Marc Moonen, 1 Toon van Waterschoot 1,4
1 KU Leuven, Leuven, Belgium
2 Televic N.V., Izegem, Belgium
3 Aalborg University, Aalborg, Denmark
4 KU Leuven, Geel, Belgium |

<table>
<thead>
<tr>
<th>Paper Session 8</th>
</tr>
</thead>
</table>
| 8-1 On Determining Optimal Reverberation Parameters for Late Residual Echo Suppression—Naveen Kumar Desiraju, 1 Simon Doclo, 2 Markus Buck, 1 Timo Gerkmann, 2 Tobias Wolf 1
1 Nuance Communications Deutschland GmbH, Ulm, Germany
2 University of Oldenburg, Oldenburg, Germany |
| 8-2 Sound Field Control in a Reverberant Room Using the Finite Difference Time Domain Method—Nicolò Antonello, 1 Enzo De Sena, 1 Marc Moonen, 1 Patrick A. Naylor, 2 Toon van Waterschoot 1,3
1 KU Leuven, Leuven, Belgium
2 Imperial College London, UK
3 KU Leuven, Geel, Belgium |

<table>
<thead>
<tr>
<th>Paper Session 9</th>
</tr>
</thead>
</table>
| 9-1 A General Framework for Multichannel Speech Dereverberation Exploiting Sparsity—Ante Jukic, 1 Toon van Waterschoot, 2 Timo Gerkmann, 1 Simon Doclo 1
1 University of Oldenburg, Oldenburg, Germany
2 KU Leuven, Belgium |
| 9-2 Automatic Control of a Digital Reverberation Effect Using Hybrid Models—Emmanouil Theofanis Chourdakis, Joshua D. Reiss, Queen Mary University of London, London, UK |