Europe Conventions
Kerktstraat 122/1, BE 1653 Dvorw, Belgium, Tel: +32 2 345 7971, Fax: +32 2 345 3419, Email for convention information: euroconventions@aes.org

Europe Services
B.P. 200049, FR-94364 Bry Sur Marne Cedex, France, Tel: +33 1 4881 4632, Email for membership and publication sales: euroservices@aes.org

United Kingdom
British Section, Audio Engineering Society Ltd., P. O. Box 645, Slough, SL1 2BJ UK, Tel: +44 1628 685725, Fax: +44 870 762 6137, Email: UK@aes.org

Japan
AES Japan Section, 1-38-2 Yoyogi, Room 703, Shibuyaku-ku, Tokyo 151-0053, Japan, Tel: +81 3 5358 7320, Fax: +81 3 5358 7328, Email: aes_japan_section@aes.org

AES REGIONS AND SECTIONS

Eastern Region, USA/Canada
Sections: Atlanta, Boston, District of Columbia, New York, Philadelphia, Toronto
Student Sections: American University, Appalachian State University, Atlanta, Bay State College, Berklee College of Music, Boston University CDA, Carnegie Mellon University, Duquesne University, Emerson College, Fredonia, Full Sail Real World Education, Hampton University, IADT Tampa, Institute of Audio Research, Ithaca College, Kwantlen College, University of Arkansas-Pine Bluff, Lawrence Technological University, Long Island University, Northern Illinois University, Northeastern Illinois University, New York Institute of Technology, New York University, North Carolina Central University, North Carolina State University, Northampton Community College, Pace University, Portland State University, Seton Hall University, Southern Baptist Theological Seminary, Temple University, The Cooper Union, The Pennsylvania State University, University of Arkansas, University of Connecticut, University of Delaware, University of Maryland, University of Massachusetts Lowell, University of North Carolina at Asheville, William Paterson University, Worcester Polytechnic Institute

Central Region, USA/Canada
Sections: Central Indiana, Central Texas, Chicago, Cincinnati, Detroit, Kansas City, Nashville, Heartland, New Orleans, St. Louis, Upper Midwest, West Michigan
Student Sections: Art Institute of Tennessee-Nashville, Ball State University, Belmont University, Capital University, Columbia College, Florida Institute of Technology, Indiana University, Institute of Production & Recording, Kansas City Kansas Community College, Michigan Technological University, McNally Smith College of Music, Middle Tennessee State University, Purdue University, SAE Nashville, Ridgewood College, Hutchinson Campus, University of Arkansas-Pine Bluff, University of Central Missouri, University of Illinois, Urbana-Champaign, University of Memphis, University of Michigan, University of Wisconsin

Western Region, USA/Canada
Sections: Alberta, Colorado, Los Angeles, Pacific Northwest, Portland, Sacramento Valley, San Francisco, Southern Nevada, Vancouver
Student Sections: American River Regional, Brigham Young University, Califor- nia State University–Chico, Cal Poly San Luis Obispo, Citrus College, Cogswell Polytecthical College, Conservatory of Recording Arts and Sciences, Expression College for Digital Arts, Long Beach City College, Loyola Marymount University, San Francisco State University, Stanford University, The Art Institute of Las Vegas, The Art Institute of Seattle, University of California at Denver, University of Southern California

Northern Region, Europe
Sections: Belgian, British, Danish, Finnish, Moscow, Netherlands, Norwegian, St. Petersburg, Sweden
Student Sections: Danish, London UK, Netherlands, Russian Academy of Music, St. Petersburg, University of Luleå-Pitea, University of York

Central Region, Europe
Sections: Austrian, Belarus, Czech, Central German, North German, South German, Hungarian, Lithuanian, Polish, Slovak, Swiss, Ukrainian
Student Sections: Aachen, Berlin, Czech Republic, Darmstadt, Detmold, Düsseldorf, Graz, Hamburg, Krakow, Ljubljana, Technical University of Gdansk (Poland), Vienna, Warsaw University of Technology

Southern Region, Europe
Sections: Bulgarian, Croatian, French, Greek, Israel, Italian, Portugal, Romanian, Spanish, Serbia, Slovenian, Turkish
Student Sections: Croatian, Conservatoire de Paris, Galatasaray ITM, Istanbul Bilgi University, Louis-Lumière, MicroFusa Barcelona, Serbian

Latin American Region
Sections: Argentina, Brazil, Chile, Colombia, Guatemala, Mexico, Peru, Puebla, Uruguay
Student Sections: Academia de Musica Fermatta, Cochabamba, Del Bosque University, ECOS Escuela de Sonido, Escuela de Musica y Audio Fernando Sor, G Martel, I.A.V., Javeriana University, Instituto Mendocino de Audio y Sonido, Los Andes University, Oregon Wells Institute, ORT Institute, Sala de Audio, Sonar Escuela de Sonido

International Region
Sections: Adelaide, Brisbane, Hong Kong, Japan, Korea, Malaysia, Melbourne, Philippines, Singapore, Sydney
Student Section: Greater Sydney, Japan

PURPOSE: The Audio Engineering Society is organized for the purpose of: uniting persons performing professional services in the audio engineering field and its allied arts; collecting, collating, and disseminating scientific knowledge in the field of audio engineering and its allied arts; advancing such science in both theoretical and practical applications; and preparing, publishing, and distributing literature and periodicals relative to the foregoing purposes and police.

MEMBERSHIP: Individuals interested in audio engineering may become members of the AES (www.aes.org/join). 2012 annual dues are: full members and associate members, $149 for both the printed and online Journal; $99 for online Journal only. Student members: $89 for printed and online Journal; $39 for online Journal only. Subscribe to the AES E-Library (www.aes.org/e-lib/subscribe), $145 per year (members), $245 nonmembers. Sustaining memberships are available to persons, corporations, or organizations who wish to support the Society.

AES REGIONS AND SECTIONS

Bozena Kostek Editor

Associate Technical Editors
Soren Bech
spatial perception and processing
Eddy Begh Brixen
audio forensics
Elizabeth Cohen
audio archiving, storage, and restoration
Jeremy Cooperstock
audio networking
Diemer de Vries
room acoustics and architectural acoustics
Christof Faller
low bit-rate audio coding
Laurence R. Fincham
instrumentation and measurement
Tolminson Holman
multichannel sound

Jean-Marc Jot
signal processing
Stanley P. Lipshitz
loudspeakers and sound reinforcement systems
Robert C. Maher
analysis and synthesis of sound
Aki Mäkivirta
soundspeaker processing
Jan A. Pedersen
signal processing
Robert B. Schulein
microphones
Thomas Sporer
psychoacoustics, perception, and listening tests

William T. McQuaide
Managing Editor
Mary Ellen Ilich
Senior Editor
Francis Rumsey
Staff Technical Writer
Barry A. Blesser
Consulting Technical Editor
Mary Ellen Ilich
Copy Editors
Contents

COMMITTEE’S GREETING

<table>
<thead>
<tr>
<th>PROCESSING OF AUDIO—PART 1</th>
<th>... 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Toward Live Drum Separation Using Probabilistic Spectral Clustering Based on the Itakura-Saito Divergence.. 11 Eric Battenberg, University of California, Berkeley, CA, USA and Center for New Music and Audio Technologies, Berkeley, CA, USA; Victor Huang, University of California, Berkeley, CA, USA; David Wessel, Center for New Music and Audio Technologies, Berkeley, CA, USA</td>
</tr>
<tr>
<td>1-3</td>
<td>Automatic Scoring of Guitar Chords 21 Fawad Mazhar, Toni Heittola, Tuomas Virtanen, Jukka Holm, Tampere University of Technology, Tampere, Finland</td>
</tr>
<tr>
<td>1-4</td>
<td>Sonic Handprints: Person Identification with Hand Clapping Sounds by a Model-Based Method .. 27 Antti Jylhä, Cumhur Erkut, Aalto University School of Electrical Engineering, Aalto, Finland; Umut Simsekli, Taylan Cemgil, Bogazici University, Istanbul, Turkey</td>
</tr>
<tr>
<td>1-5</td>
<td>Detection of Audio Events by Boosted Learning of Local Time-Frequency Patterns 33 Aki Härmä, Philips Research, Eindhoven, The Netherlands</td>
</tr>
<tr>
<td>1-6</td>
<td>Spectral Zero-Crossings Alone Enable Reliable Estimation of Interaural Time Difference .. 39 Ravi R. Shenoy, Nokia Research Centre, Bangalore, India and Indian Institute of Science, Bangalore, India; Chandra Sekhar Seelamantula, Indian Institute of Science, Bangalore, India</td>
</tr>
</tbody>
</table>

REPRESENTATION OF AUDIO

2-1	Automated Evaluation for Button Sounds from Wavelet-Based Features 49 Kensuke Fujinoki, Oshima National College of Maritime Technology, Suo-Oshima, Japan and Hiroshima City University, Hiroshima, Asa-Minami, Japan; Kodai Murakoshi, Shunsuke Ishimitsu, Hiroshima City University, Hiroshima, Asa-Minami, Japan
2-2	Fast Implementation of Audio Crosstalk Cancellation on DSP Processors 56 Ch. SreenivasRao, Udayalakshmi R., Jeyasingh Pathrose, Jasmin Infotech Pvt. Ltd., Chennai, India
2-3	Signal Reconstruction from Multiresolution STFT Magnitudes with Mutual Initialization ... 64 Volker Gnann, Julian Becker, RWTH Aachen University, Aachen, Germany
2-4	Generalized MMSE STSA Estimator with ICA-Based Noise Estimation and Speech Prior Identification for Binaural Hearing Aids .. 70 Kyo Wakisaka, Hiroshi Saruwatari, Kiyohiro Shikano, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Tomeya Takatani, Toyota Motor Corporation, Toyota, Aichi, Japan
Contents continued

2-5
Music Signal Separation by Orthogonality and Maximum-Distance Constrained Nonnegative Matrix Factorization with Target Signal Information .. 79
Kosuke Yagi, Nara Institute of Science and Technology, Nara, Japan; Yu Takahashi, Yamaha Corporate Research & Development Center, Shizuoka, Japan; Hiroshi Saruwatari, Kiyohiro Shikano, Nara Institute of Science and Technology, Nara, Japan; Kazunobu Kondo, Yamaha Corporate Research & Development Center, Shizuoka, Japan

2-6
Optimal Mixing Matrices and Usage of Decorrelators in Spatial Audio Processing 85
Juha Vilkamo, Tom Bäckström, Achim Kuntz, Fraunhofer IIS, Erlangen, Germany

2-7
Sound Morphing Strategies Based on Alterations of Time-Frequency Representations by Gabor Multipliers .. 93
Anaïk Olivero, CNRS / Aix-Marseille Université, Marseille Cedex France; Philippe Depalle, McGill University, Montreal, Quebec, Canada; Bruno Torrésani, Richard Kronland-Martinet, CNRS / Aix-Marseille Université, Marseille Cedex France

3
POSTERS ..101

3-1
Perceptual Optimization of Audio Representations Based on Time-Frequency Masking Data for Maximally-Compact Stimuli ... 103
Thibaud Necciari, Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria and Laboratoire de Mécanique et d’Acoustique, Marseille cedex, France; Peter Balazs, Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria; Richard Kronland-Martinet, Solvi Ystad, Laboratoire de Mécanique et d’Acoustique, Marseille cedex, France; Bernhard Laback, Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria; Sophie Savel, Sabine Meunier, Laboratoire de Mécanique et d’Acoustique, Marseille cedex, France

3-2
A Homomorphic Interpretation of the Complex FM Expansion ... 113
Joseph Timoney, Victor Lazzarini, NUI Maynooth, Maynooth, Co. Kildare, Ireland

3-3
Audibility of Coloration Artifacts in HRTF Filter Designs ... 120
Marko Takanen, Marko Hiipakka, Ville Pulkki, Aalto University School of Electrical Engineering, Espoo, Finland

3-4
Ibrida: A New DWT-Domain Sound Hybridization Tool ... 129
Leonardo Gabrielli, Stefano Squartini, Università Politecnica delle Marche, Ancona, Italy

3-5
Sociability Evaluation of a Prototype Audio Spatialization System for Teleconferencing and Group Communication Tasks ... 135
Christof van Nimwegen, Utrecht University, Utrecht, The Netherlands; Henk Bruinx, Werner Verhelst, Interdisciplinary Institute for Broadband Technology, Ghent, Belgium and Vrije Universiteit Brussel, Brussels, Belgium; David Geerts, Katholieke Universiteit Leuven, Leuven, Belgium

3-6
Mixed Time-Frequency Approach for Multipoint Room Response Equalization 145
Andrea Primavera, Stefania Cecchi, Francesco Piazza, Universita Politecnica delle Marche, Ancona, Italy; Alberto Carini, Universita di Urbino “Carlo Bo,” Urbino, Italy

3-7
Modeling System for the Cocktail Party Effect ... 155
Mitsuhiko Nakamishi, Takashi Nishi, Graduate School of Kitakyushu-University, Fukuoka, Japan

3-8
Three-Dimensional Microphone Array for Speech Enhancement in Hands-Free Systems for Cars ... 163
David Ayllón, Vanesa Benito-Olivares, Cosme Llerena-Aguilar, Roberto Gil Pita, Manuel Rosa-Zurera, University of Alcala, Alcalá de Henares, Madrid, Spain
Comparing Two Methods Based on Time-Frequency Analysis to Estimate the Instantaneous Mixing Matrix in Blind Audio Source Separation170
Cosme Llerena, Roberto Gil, Lorena Álvarez, Lucas Cuadra, David Ayllón, University of Alcalá, Alcalá de Henares, Madrid, Spain

Parametric Spatial Sound Processing Applied to Bilateral Hearing Aids177
Jukka Ahonen, Aalto University, Espoo, Finland and Akukon Ltd. Helsinki, Finland; Ville Sivonen, Aalto University, Espoo, Finland and Cochlear Nordic AB, Helsinki Finland; Ville Pulkki, Aalto University, Espoo, Finland

Karlheinz Brandenburg

On the Adaptation to Non-Individualized HRTF Auralizations: A Longitudinal Study ...185
Catarina Mendonça, Jorge A. Santos, University of Minho, Portugal; Guilherme Campos, Paulo Dias, José Vieira, University of Aveiro, Portugal

On the Use of Small Microphone Arrays for Wave Field Synthesis Auralization190
Maximo Cobos, University of Valencia, Valencia, Spain; Sascha Spors, Jens Ahrens, Deutsche Telekom Laboratories, TU Berlin, Berlin, Germany; Jose J. Lopez, Universitat Politècnica de Valencia, Valencia, Spain

Feasibility of Virtual Auditory Display Customization through Principal Component Modeling ..198
Kimberly J. Fink, Laura Ray, Dartmouth College, Hanover, NH, USA

Projecting Simulated or Recorded Spatial Sound onto 3D-Surfaces ..208
Tapani Pihlajamäki, Ville Pulkki, Aalto University School of Electrical Engineering, Espoo, Finland

Efficient Rendering of Directional Sound Sources in Wave Field Synthesis218
Andreas Franck, Michael Rath, Christoph Sladeczek, Sandra Brix, Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany

Parametric Spatial Audio Coding Based on Spatial Auditory Blurring231
Adrien Daniel, Orange Labs – Lannion, Technopole Anticipa, Lannion, France and McGill University, Montreal, Quebec, Canada; Rozenn Nicol, Orange Labs – Lannion, Technopole Anticipa, Lannion, France; Stephen McAdams, McGill University, Montreal, Quebec, Canada

Audio Denoising by Generalized Time-Frequency Thresholding241
Kai Siedenburg, Monika Dörfler, University of Vienna, Vienna, Austria

Audio Morphing for Percussive Hybrid Sound Generation251
Andrea Primavera, Francesco Piazza, Universita Politecnica delle Marche, Ancona, Italy; Joshua D. Reiss, Queen Mary University of London, London, UK
Contents continued

5-4 Reduced-Complexity Modeling of High-Order Nonlinear Audio Systems Using Swept-Sine and Principal Component Analysis ... Rafael Cauduro Dias de Paiva, Aalto University School of Electrical Engineering, Espoo, Finland and Nokia Technology Institute INdT, Brasilia, Brazil; Jyri Pakarinen, Vesa Välimäki, Aalto University School of Electrical Engineering, Espoo, Finland

5-6 Perceptual Frequency Response Simulator for Music in Noisy Environments Jussi Rämö, Vesa Välimäki, Mikko Alanko, Aalto University, Espoo, Finland; Miikka Tikander, Nokia Corporation, Espoo, Finland

5-7 Listening Efficiency Testing .. 279 Nicola Prodi, Chiara Visentin, Carlo Bellettini, Università di Ferrara, Ferrara, Italy

5-8 Dissimilarity Test Modeling by Time-Frequency Representation Applied to Engine Sound .. 285 Jean-François Sciabica, PSA Peugeot Citroën, Paris, France; Anaïk Olivero, CNRS – Laboratoire de Mécanique et d’Acoustique, Marseille, France; Vincent Roussarie, PSA Peugeot Citroën, Paris, France; Sølvi Ystad, Richard Kronland-Martinet, CNRS – Laboratoire de Mécanique et d’Acoustique, Marseille, France

6

PROCESSING OF AUDIO—PART 2

A SPECIAL SESSION IN HONOR OF PROFESSOR MATTI KARJALAINEN 293

6-1 A Robust Audio Watermarking System for Acoustic Channels .. 295 Tobias Bliem, Giovanni Del Galdo, Juliane Borsum, Alexandra Craciun, Reinhard Zitzmann, Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

6-2 ESPRIT in Gabor Frames .. 305 Adrien Sirdey, Olivier Derrien, Richard Kronland-Martinet, Mitsuko Aramaki, Laboratoire de Mécanique et d’Acoustique, CNRS, Marseille, France

6-3 Comparisons of Parameter Estimation Methods for an Exponential Polynomial Sound Signal Model .. 314 Brian Hamilton, Philippe Depalle, CIRM MT, McGill University, Montreal, Quebec, Canada

6-4 Optimal Filter Partitions for Non-Uniformly Partitioned Convolution 324 Frank Wefers, Michael Vorländer, RWTH Aachen University, Aachen, Germany

6-5 Generation Mechanisms of Two-Tone Suppression Using a Cochlear Model 333 Yasuki Murakami, Shunsuke Ishimitsu, Hiroshima City University, Hiroshima, Japan

6-6 A Binaural Auditory Model for the Evaluation of Reproduced Stereophonic Sound... 342 Marko Takanen, Aalto University, Aalto, Finland; Gaëtan Lorho, Nokia Corporation, Espoo, Finland

Author Index .. 352
Committee’s Greeting

Audio is now commonly processed in the frequency domain, i.e., input audio signals are divided into a number of frequency channels or bins that are processed separately, and also depending on time. The aim in such processing can be data compression or the enhancement of audio quality. Such benefits are possible because the structure of the human hearing mechanism is based on similar time–frequency analysis by the brain of signals coming from the ear canals. When the audio processing is performed in a way similar to human hearing, the signal processing structures can be designed to make the benefits easily reachable. There are already many applications that take advantage of the human hearing resolution, like the perceptual coding of audio in mp3 and AAC. Time–frequency processing is also actively applied in sound analysis and synthesis and in speech processing. An emerging field is multichannel and spatial applications utilizing time–frequency processing.

The idea for this conference came from recognizing the common background in many different audio technologies that implement time–frequency processing in ways that may appear to be different at first glance. We hope that all conference goers take away an expanded view of the technologies, mathematics, and psychoacoustics related to time–frequency processing of audio. We believe that by participating in the conference, you are helping to move this audio field forward!

Welcome to the AES 45th International Conference, Applications of Time–Frequency Processing in Audio. Thank you for submitting very good articles and coming to Finland. A warm thanks goes also to the AES Conference Policy Committee for accepting the idea and AES Headquarters for helping in the arrangements.

Ville Pulkki
Conference chair