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The Shepard-tone sequence and Shepard–Risset glissando are classic auditory illusions in
which pitch seems to inexhaustibly ascend or descend. Such stimuli have been used in scientific
research, as well as for artistic purposes. This paper demonstrates several variations of those
illusions, some of which do not appear to have been previously discussed in the literature.
Most notably, hybrids of the two illusions are demonstrated, in which discrete Shepard-tone
steps are connected by continuous glissandi. It is shown, using a sample of 91 listeners, that
such hybrids can disambiguate the perceived direction of motion between two Shepard tones
that are a tritone apart, thus overriding what has been called the tritone paradox. In other
demonstrations, multiple layers of monaural and binaural beats are embedded into a Shepard–
Risset glissando to produce Risset rhythms. Audio files for these and other examples are
provided and discussed. Two original MATLAB functions (and equivalent functions in R) are
also provided, which can be used to replicate the examples and explore additional variations.

0 INTRODUCTION

The term illusion is often used to refer to a distorted
perception of a misleading visual stimulus. However, illu-
sions have also been identified in other sensory modali-
ties, including audition [1]. Like visual illusions, auditory
illusions generally work by exploiting vulnerabilities of
people’s perceptual strategies—strategies that under more
typical circumstances would, at least heuristically, provide
accurate interpretations.

For instance, the human auditory system relies largely
on inter-aural differences of intensity to judge the hori-
zontal position of a sound source. Stereophonic imaging
exploits that to create the illusion that a given sound source
is located at a single intermediate position between the two
speakers. Another commonly encountered auditory illusion
that involves distorted localization of a sound source is the
ventriloquist effect, whereby a sound source is mistakenly
perceived as being located at the same position as a corre-
sponding visual stimulus. That occurs when, for example,
the dialogue in a movie seems to emanate from the face
of the actor whose lips are moving, even though the view-
ers are well aware that the sound is actually coming from
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peripheral loudspeakers or from earphones that they are
wearing.

Some auditory illusions that have been defined involve
pitch perception. One could argue that pitch cannot be con-
sidered as illusory per se, because—unlike the physical
location of a sound source—pitch is a subjective experi-
ence, so there is no corresponding “true” value that can be
compared to a given perceived pitch to determine whether
the perception is real or illusory. In that regard, the pitch of a
sound is simply whatever it is perceived to be. Nonetheless,
because pitch may be considered as, loosely speaking, the
mind’s interpretation of frequency, it is common to refer
to certain pitch-perception anomalies as “illusions” if the
typical correspondence between pitch and frequency is dis-
rupted in some way. For instance, the missing fundamental
effect, whereby the pitch of a complex tone is perceived
as unchanged when the fundamental frequency is removed,
is sometimes called an illusion [1]. The present paper fo-
cuses on two other types of stimuli that are commonly
regarded as pitch illusions: the Shepard-tone sequence [2]
and Shepard–Risset glissando [3].

0.1 Shepard-Tone Sequences
While working at Bell Labs, the psychologist Roger

Shepard used sound synthesis software (developed by his
colleague Max Mathews) to demonstrate a fascinating pitch
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Fig. 1. Circular octave.

illusion that was subsequently reported in a now-classic
1964 paper [2]. In this illusion, the pitches of a series
of tones are perceived as inexhaustibly ascending or in-
exhaustibly descending, whereas in reality the tones are
merely cycling over and over, containing exactly the same
frequency components each time. Shepard analogized this
phenomenon to the impossible Penrose staircase, which
appears to perpetually ascend or descend despite being a
closed loop (a visual illusion utilized in M. C. Escher’s
famous Ascending and Descending lithograph [4]). Shep-
ard’s illusion has also been called an “auditory barber-pole,”
which is an analogy to the classic barber-pole with helical
stripes that appear to perpetually ascend or descend as the
pole rotates horizontally [5].

Shepard’s illusion works because each tone in the se-
quence is a Shepard tone, i.e., an ensemble of superim-
posed sine waves whose frequencies are spaced in octave
increments and collectively span a broad range. Thus, for
example, a Shepard-tone G� is not a G�3, or a G�4, or a G�

localized to any other particular octave-register. Rather, it is
an octave-ambiguous, “universal” G� that is sounded in all
octaves of the spectrum simultaneously. In other words, it
has an unambiguous pitch class (namely, G�) but no inher-
ent pitch height (i.e., it is not localized to a particular register
of the frequency spectrum). And although a Shepard-tone
G� is positioned between G and A as one would expect,
that positioning is in a circular octave, as shown in Fig. 1.
Consequently, the direction of motion from a Shepard-tone
G� to, for example, a Shepard-tone A is ambiguous. In the
circular octave, that motion could be considered as moving
one semitone in the “ascending” (clockwise) direction, but
it could also be considered as moving 11 semitones in the
“descending” (counterclockwise) direction.

Yet the motion from a Shepard-tone G� to a Shepard-tone
A is in fact typically perceived as ascending one semitone,
rather than as descending 11 semitones. That appears to be
mainly due to a perceptual bias that favors smaller pitch
intervals in the circular octave [2]. Exploiting that bias,
a Shepard-tone sequence that repeatedly loops clockwise
around the circle, one semitone at a time, can seem to per-

petually ascend—even though the same series of 12 Shep-
ard tones is actually repeating over and over. Conversely, a
Shepard-tone sequence that repeatedly loops counterclock-
wise around the circle can seem to perpetually descend.

In each Shepard tone, the high and low frequencies are
gradually rolled off, using an amplitude envelope that is
mapped to the log-transformed frequency spectrum. That
filtering makes the cycling less conspicuous, i.e., it prevents
harmonics from seeming to suddenly appear or disappear at
the edges of the spectrum. The filtering also makes the tones
considerably more pleasant by attenuating the “screechier”
high frequencies. Typically, a bell-shaped envelope is used
[2, 6], but other unimodal curves have also been used [7].

Shepard’s illusion works with other small increments
besides semitones. In fact, when presented with any two
Shepard tones, listeners tend to perceive the direction of
motion as whichever direction implies a shorter distance
around the circle [2]. For example, moving from C to E
tends to be perceived as ascending 4 semitones (rather than
as descending 8 semitones), whereas moving from C to A
tends to be perceived as descending 3 semitones (rather
than as ascending 9 semitones).

However, that perceptual bias is less consistent when the
difference between the ascending and descending distances
is small, e.g., moving 5 semitones in one direction versus
seven in the other [2, 8, 9]. And when the interval is a tri-
tone (6 semitones), such as when moving from C to F�,
the distance is the same in either direction, in which case
judgment of direction cannot be based on circular distances
alone. Indeed, the direction of a Shepard-tritone may be
perceived as either ascending or descending, depending on
the specific pitch classes and depending on the listener—a
phenomenon called the tritone paradox [10]. Various spec-
tral, temporal, contextual, and even cultural factors have
been proposed to explain why a Shepard-tritone interval
may be perceived as ascending or descending by a given
listener in a given case [11–13].

0.2 Shepard–Risset Glissandi
Jean-Claude Risset [3] demonstrated a modified version

of Shepard’s illusion. In Risset’s version, which is often
called a Shepard–Risset glissando, a tone seems to perpet-
ually ascend or descend as a continuous glide, rather than
in the discrete stepped manner that was demonstrated by
Shepard. But the same basic mechanisms of Shepard’s illu-
sion underly Risset’s version. That is, the tone is comprised
of layered sine waves that are octaves apart across the spec-
trum, and the high and low frequencies are rolled off to help
mask the cycling. Thus, loosely speaking, a Shepard–Risset
glissando is like a Shepard-tone sequence in which the step
increments are arbitrarily small.

Shepard–Risset glissandi have been found to have some
interesting effects beyond the pitch illusion itself. For ex-
ample, in some listeners, Shepard–Risset glissandi have
been reported to elicit emotions, disequilibrium, and/or
vection (illusory self-motion) [6, 14, 15]. Capitalizing on
those emotive and visceral effects, several films have used
Shepard–Risset glissandi to represent—and perhaps even
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induce—feelings of tension, disorientation, unreality, or un-
stoppable acceleration [16–18]. Shepard–Risset glissandi
have also been used by composers of experimental mu-
sic [16] and have shown potential in sonification processes
(e.g., in auditory feedback for drivers of electric vehicles
[19, 20]).

0.3 Risset Rhythms
The Shepard–Risset glissando can be converted from a

pitch illusion to a tempo illusion by applying the same
principle of circularity on a slower timescale, i.e., on the
timescale of beats-per-minute in a rhythm, rather than on the
timescale of cycles-per-second in a tone. For instance, in-
stead of superimposing several sweeping sine-waves whose
instantaneous frequencies are always powers of two (i.e.,
octaves) apart, one could superimpose several accelerat-
ing or decelerating pulses whose instantaneous rates are
always powers of two apart. That is, one could super-
impose a whole-note pulse, half-note pulse, quarter-note
pulse, eighth-note pulse, etc., all synchronized at the same
constantly accelerating or decelerating tempo. By increas-
ingly attenuating the pulse streams toward the slow and fast
ends of the “tempo spectrum,” the progression can then be
presented cyclically to create the illusion of perpetual ac-
celeration or perpetual deceleration. This illusion is often
called a Risset rhythm, though Risset credited unpublished
work by Kenneth Knowlton as the first demonstration of it
[21].

0.4 Beat Frequencies
When the frequencies of two tones are sufficiently simi-

lar, they are not heard as distinct pitches. Instead, the oscilla-
tions between near-perfect reinforcement and near-perfect
cancellation manifest as a single tone that “beats” (i.e., pul-
sates/throbs in loudness) at a rate called the beat frequency
[22]. The beat frequency is equal to the absolute difference
between the two tone frequencies. For example, a 100-Hz
tone and 95-Hz tone combine to form a tone that pulsates
at a beat frequency of 100 − 95 = 5 beats per second.

That phenomenon is illustrated in Fig. 2, in which Fig.
2(a) shows a 100-Hz sine wave, Fig. 2(b) shows a 95-Hz sine
wave, and Fig. 2(c) shows the sum of those two component
sine waves. On the left side of the figure (at time 0), the
two component sine waves are 180◦ out of phase, so they
perfectly cancel each other, thus minimizing the summed
amplitude envelope. Then the phases of the two component
sine waves gradually become more aligned over time—
causing the summed amplitude envelope to swell—until
there is near-perfect reinforcement at approximately 0.1 s, at
which point the summed amplitude is maximized. Then the
two sine waves gradually slip back out of phase—shrinking
the summed amplitude envelope—until the two sine waves
are back to near-perfect cancellation at approximately 0.2
s, at which point the summed amplitude envelope is again
minimized. Thus, in the summed amplitude envelope, one
complete cycle of swelling and shrinking (i.e., one complete
beat) lasts 0.2 s, confirming that the beat frequency is equal
to 1 beat / 0.2 s = 5 beats per second.

(a)

(b)

(c)

Fig. 2. Two sine waves summing to produce a beat frequency. (a)
100-Hz sine wave (starting at 0◦), (b) 95-Hz sine wave (starting at
180◦), and (c) sum of those 95-Hz and 100-Hz sine waves.

Beat frequencies are often heard when musicians are
tuning their instruments. For example, when a guitarist is
tuning a string by playing it in unison with a reference
frequency (such as a harmonic on another string) and has
not quite gotten the two frequencies to match, beats are
produced. The beat frequency gets slower and slower as
the string that is being tuned gets closer and closer to the
reference frequency, until finally the beating essentially
comes to a halt when the target is reached.

If several tones with very similar frequencies are played
concurrently, then some beats will overlap and “smear”
together into larger undulations. Fig. 3 shows three ex-
amples. Fig. 3(a) shows the sum of four sine waves with
equally spaced frequencies, all initiated at a phase angle
of 0◦. Fig. 3(b) shows the sum of four sine waves with un-
equally spaced frequencies—spreading the smears through-
out more of the wave—all initiated at 0◦. Fig. 3(c) also
shows the sum of four sine waves with unequally spaced
frequencies, but in this case with different starting-phases,
spreading the smears more asymmetrically throughout the
wave.

If two tones with similar frequencies are presented di-
chotically (e.g., a 100-Hz tone in one ear and 95-Hz tone in
the other), they can produce binaural beats, which not only
pulsate in loudness but also seem to oscillate positionally in
the stereo field, i.e., in the listener’s head [22]. Interesting
psychotropic effects of binaural beats have been reported by
some listeners, including alterations of mood and cognitive
state, but individual experiences are highly varied [23]. A
fascinating aspect of binaural beats is that, unlike monaural
beats, they are not produced by actual interactions between
tones in the signal path or the air, since the tones are pre-
sented directly to different ears through different channels.
Rather, the beats are constructed by the listener’s brain.
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(a)

(b)

(c)

Fig. 3. “Smeared” beats produced by summing several sine waves
of given frequencies and given starting-phases. (a) Sum of 94-Hz,
96-Hz, 98-Hz, 100-Hz (all starting at 0◦); (b) sum of 94-Hz, 97-
Hz, 99-Hz, 100-Hz (all starting at 0◦); and (c) sum of 94-Hz (0◦),
97-Hz (36◦), 99-Hz (120◦), 100-Hz (225◦).

0.5 Beat Frequencies in Shepard–Risset
Glissandi

There has been little to no discussion in the literature re-
garding beat frequencies in Shepard–Risset glissandi. But
such beat frequencies have certainly been heard. For ex-
ample, if two identical Shepard–Risset glissandi are time-
shifted slightly apart and mixed together, then the instan-
taneous frequencies in the two glissandi will be slightly
different, thus producing beats.

An interesting property of beat frequencies that are pro-
duced that way is that they inherently create Risset rhythms,
as will be demonstrated. Indeed, because the ratios be-
tween concurrent sine-wave frequencies in the glissando
are constant, the absolute differences between concurrent
sine-wave frequencies are greater when the frequencies are
higher. Consequently, the beat frequencies will cyclically
accelerate if the glissando is cyclically ascending or cycli-
cally decelerate if the glissando is cyclically descending.
The ratios between concurrent beat frequencies will be
powers of two, since the ratios between the concurrent sine
waves are powers of two. Thus, the beat frequencies will
form a Risset rhythm, in which concurrent streams of beats
function like whole notes, half notes, quarter notes, eighth
notes, etc.

0.6 Barber-Pole Phasing and Barber-Pole
Flanging

“Inverted” versions of the Shepard–Risset glissando have
been described, in which a continuously sweeping array of
frequencies is filtered out of the signal, rather than included
in the signal [24]. For example, a broadband signal (such
as noise or distorted drums) can be inputted to an array
of logarithmically sweeping notch filters that are octaves
apart, with the amount of gain reduction for the notch filters

determined by a Gaussian-like function of the filters’ center
frequency. The result is a phasing effect that can seem
to perpetually sweep in one direction. That barber-pole
phasing effect can be converted to a barber-pole flanging
effect by systematically varying the number of notch filters
and mixing in delayed versions of the signal, with both
the number of notch filters and the lengths of the delay
lines cyclically varying in synchrony with the notch filters’
sweep cycle.

0.7 The Present Work
The present study demonstrates and discusses various

modifications of the classic Shepard [2] and Risset [3] illu-
sions, some of which do not appear to have been discussed
previously in the literature. The modifications include: in-
corporation of non-octave harmonics, use of beat frequen-
cies to create Risset rhythms, manipulation of dynamics and
stereo imaging, use of nonmonotonic and anisochronous se-
quences, use of rough (rapidly amplitude-modulated) tone
textures, interleaving staccato and legato articulation, and
using continuous glides between steps to disambiguate the
perceived direction of a Shepard-tritone interval.

The demonstrations are created using a programmatic
method that, in its generalized form, can generate a
Shepard-tone sequence, Shepard–Risset glissando, or hy-
brid of the two (i.e., discrete Shepard-tone steps connected
by continuous portamento glides). Two original MATLAB
functions, and equivalent R functions [25], are provided
that are based on that method. These functions can be used
to efficiently generate a wide variety of precisely calibrated
stimuli for scientific, educational, or artistic purposes.

1 METHOD

1.1 Programmatic Generation of a
Shepard–Risset Glissando

• Step 1: Define a logarithmic sine-wave sweep that
spans exactly ten octaves and generously covers the
full range of human hearing. Using a minimum fre-
quency of 19.6 Hz and a maximum frequency of
19.6 × 210 = 20,070.4 Hz satisfies those criteria.

• Step 2: Define a truncated Gaussian vector of
amplitude-multipliers representing the envelope
that will be used to gradually roll off the high and
low frequencies. The goal is to map the curve to
the log-transformed frequency spectrum, but that
is equivalent to mapping the curve directly to the
sweep in the time domain, since the sweep is loga-
rithmic and spans the full spectrum. Thus, the “fil-
tering” can be achieved by simply multiplying the
envelope elementwise by the sweep. The location of
the curve’s peak, which determines which region of
the spectrum is most emphasized, can be shifted to
achieve the desired spectral balance. For instance,
Fig. 4 shows a truncated Gaussian envelope, span-
ning 7 standard deviations, that has been left-shifted
so its peak is 1.5 octaves below the log-scale cen-
ter of the spectrum. The highest octave and lowest
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Fig. 4. Example of a truncated Gaussian amplitude envelope
mapped to instantaneous log-frequency, with a span of 7 stan-
dard deviations and a location-shift of −1.5 octaves. The highest
octave and lowest octave of the curve are multiplied by linear
ramps to coerce the curve to zero. Vertical gridlines are at octaves.
The dashed line marks the log-scale center of the spectrum (627.2
Hz).

octave of the truncated Gaussian are multiplied by
linear ramps that coerce the tails to zero to prevent
transient “pops” at the truncation points (though the
ramp’s effect is too subtle to see on the right side of
the figure).

• Step 3: Reshape the sweep into a ten-column ma-
trix (one column for each octave) that has a height
equal to the number of samples per octave, with time
going from top to bottom. That is, the first column
contains the first octave of the sweep, and then the
sweep “wraps around” to continue down the second
column for the next octave, and so on.

• Step 4: Sum that matrix across octaves to collapse
it into a “snippet” (a seamlessly loop-able vector).

• Step 5: Normalize the snippet amplitudes (after
DC-offsetting, if desired, to improve gain).

• Step 6: Loop the snippet using vector replication.

1.2 Incorporating Additional Harmonics
Consider the concurrently sweeping frequencies in the

snippet, which are separated by octaves, as comprising an
ensemble of sweeping “fundamental” frequencies. Before
normalizing and looping the snippet, one might want to
add ensembles of additional harmonics, at a designated
interval “above” those fundamentals. Because the octaves-
per-second in the snippet is constant, such harmonics can
be incorporated by mixing (summing) the snippet with cir-
cularly shifted versions of itself.

For example, to add harmonics at 7 semitones (i.e., 7/12
of an octave) “above” the fundamentals, make a copy of the
snippet that has the first 7/12 of the vector moved to the end
(if the glissando is ascending) or has the last 7/12 of the vec-
tor moved to the beginning (if the glissando is descending),

and then sum that shifted vector with the original snippet.
Note that because the shift is circular, adding harmonics at 7
semitones “above” the fundamentals is equivalent to adding
harmonics at 5 semitones “below” the fundamentals.

1.3 Incorporating Beat Frequencies
Beat frequencies will be created if harmonics are added

that are very close to the fundamentals or very close to other
added harmonics. For instance, if the snippet is circularly
shifted by 0.1 or 0.2 semitone, that creates beating when
the shifted snippet is summed with the original snippet. Or
if two similarly shifted snippets (e.g., one shifted “up” by
7 semitones and another shifted “up” by 7.2 semitones) are
summed with the original snippet, that will create beating
as well.

Recall that when a Shepard–Risset glissando is combined
with a slightly time-shifted version of itself, the resulting
beats inherently create a Risset rhythm. That Risset rhythm
can be made polyrhythmic by adding multiple sets of beat-
ing harmonics. Or, as will be demonstrated, the beats in the
Risset rhythm can be smeared into gradual, rolling swells
by adding a tight cluster of several harmonics that are close
together (e.g., 0.01, 0.02, 0.03, 0.04, and 0.05 semitones
“above” the fundamentals). Conveniently, the high and low
beat frequencies in the Risset rhythm will be automatically
rolled off because the high and low sine-wave frequencies
that produce them were already rolled off when filtering the
sweep. Of course, the cost of that convenience is that the
roll-offs for the beat frequencies cannot be adjusted inde-
pendently of the roll-offs for the sine-wave frequencies.

If a constant beat frequency is desired, rather than Risset-
rhythm beat frequencies, that can be achieved by generating
a second snippet, using a sweep for which the entire vector
of instantaneous frequencies is shifted slightly up or down
by a scalar number of hertz. Mixing the two snippets to-
gether will then produce a constant beat frequency equal to
that scalar number of hertz.

1.4 Generalization of the Method
The same six-step method can be generalized to accom-

modate sequences that are stepped and/or nonmonotonic.
In the generalized method, in lieu of computing a sweep
per se, a “pseudo-sweep” vector is constructed. That is, a
pure-tone sequence (stepped, continuous, or a mixture of
both) is repeated ten times, an octave higher or an octave
lower each time, such that the entire replicated sequence
spans the full ten-octave spectrum (just as the sweep did
in the originally described method). Any frequencies in the
replicated sequence that are outside of the spectrum should
be “wrapped around” to the opposite end of the spectrum,
e.g., by using a modulus-after-division function. As with
the sweep in the original method, the pseudo-sweep is then
reshaped into a samples-by-octaves matrix (so that the dif-
ferent octaves run concurrently), and then the matrix is
summed across octaves to create a loop-able snippet, and
then the snippet is normalized and looped.

The octaves-per-second is not constant in a stepped
and/or nonmonotonic sequence. Consequently, in the gen-
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eralized method, the truncated Gaussian envelope must be
directly applied as a function of instantaneous frequency,
rather than using time as a proxy for frequency. But that is
straightforward if a vector of instantaneous frequencies was
already computed in the process of generating the pure-tone
sequence.

Another consequence of the octaves-per-second not be-
ing constant is that any desired additional harmonics must
be generated as new pseudo-sweeps, rather than by circu-
larly shifting the snippet. But here again, if a vector of
instantaneous frequencies was already computed for the
original pseudo-sweep, that is straightforward: If f is the
vector of instantaneous frequencies for the fundamentals
(i.e., for the original pseudo-sweep), then the vector of
instantaneous frequencies for h semitones above the fun-
damentals is f × 2h/12. As with the frequencies for the
original pseudo-sweep, any frequencies that end up outside
the spectrum should be wrapped around to the opposite end
of the spectrum.

2 SOFTWARE

Two original MATLAB functions are provided:
rissetgliss andshepardglide, each of which may
be downloaded from https://osf.io/rxyd5. The coding in
each function is thoroughly commented to explain the pro-
cess step-by-step, and the opening comments (which are
displayed when the help function is used) serve as docu-
mentation. Both functions were written in MATLAB 9.14
(2023a) but are compatible with any version that is 9.0
(2015a) or later. No add-ons or toolboxes are required, as
verified by MATLAB’s dependency analyzer. Equivalent
functions in R are also provided, which were written in R
Version 4.3.0. To play sound, the R functions require the
audio package [26], but they have no dependencies for
generating the audio data.

In addition to playing the generated signal, each func-
tion outputs two objects, each of which is a stereophonic
(two-column) matrix representing amplitudes (in the time
domain) that are offset and normalized to range exactly
from −1 to 1. The first outputted matrix is the entire sig-
nal (the repeating snippet), which has 20-ms fades at the
very start and very end to avoid transient pops. The second
outputted matrix is just the loop-able snippet, which may
be convenient for efficient storage of the audio data or for
indefinite real-time looping “on the fly.”

It should be acknowledged that previously designed soft-
ware, called “Endless Series,” could generate variations of
the Shepard and Risset illusions. But as of this writing,
that software appears to be unavailable for contemporary
operating systems [27].

2.1 rissetgliss

The rissetgliss function generates a Shepard–
Risset glissando. It uses the method described in this paper,
adapted for stereo so that different sets of harmonics may
be placed at different positions in the stereo field. The func-

tion takes inputs (all of which have defaults) to specify the
following parameters:

• Rate and direction of the glissando.
• Harmonic ensembles, and amplitudes of those en-

sembles, specified for each stereo channel indepen-
dently.

• Span and location-shift for the truncated Gaussian
amplitude envelope that rolls off the high and low
ends of the log-transformed frequency spectrum.

• Starting pitch for the glissando.
• Number of snippet iterations in the signal.
• Sample rate.
• Logical flag indicating whether to play the signal.

2.2 shepardglide

Based on the generalized method described in this paper,
the shepardglide function generates a series of dis-
crete Shepard-tone steps with seamless portamento glides
between those steps. That allows for the creation of stim-
uli that essentially hybridize Shepard’s original stepped
version of the illusion with Risset’s continuous version.
All steps and glides in the sequence are independently ad-
justable in various ways. The function allows all the same
parameter customizations as rissetgliss (except glis-
sando rate, glissando direction, and glissando starting pitch,
none of which are applicable) and also allows customiza-
tion of the following:

• Pitch sequence for the steps.
• Duration of each step and each glide.
• Amplitude for each step in each channel.
• Curvatures of the amplitude-ramps across glides that

connect steps of different amplitude.

Purely discrete steps can be generated by setting glide
durations to 0. But even in that case, the tones that the
shepardglide function produces are not identical to
the tones in Shepard’s original study [2]. Most notably, in
each tone that Shepard used, all component sine waves were
initialized to a phase angle of 0◦. By contrast, the shep-
ardglide function is designed to accommodate seamless
transitions between contiguous steps and thus generates
the step sequence as a single continuous wave in which
phase relationships between component sine waves vary
continuously. Another distinction is that Shepard used a
raised cosine pulse, rather than a truncated Gaussian, for
the frequency spectrum’s amplitude envelope. A raised co-
sine pulse and a truncated Gaussian have very similar bell
shapes, but a truncated Gaussian allows more flexibility
because its span may be expanded indefinitely without ex-
hausting the tails of the curve.

3 DEMONSTRATIONS

Twelve example audio files are provided, each of
which was produced using the rissetgliss or
shepardglide function. In each example, the snippet
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is looped four times, which is the default for both func-
tions. The audio files, as well as the MATLAB and R
syntax that can be used to replicate them, are available
at https://osf.io/rxyd5. Brief discussions of the examples
are below.

3.1 Basic Shepard–Risset Glissando
RissetUp.mp4 demonstrates a simple, “ascending”

Shepard–Risset glissando.

3.2 Shepard-Tones Connected by Glides
ShepardStepGlideUp.mp4 demonstrates what is

essentially a hybrid of a stepped Shepard-tone sequence
and a continuous Shepard–Risset glissando. The sequence
“ascends” the circular octave in stepped semitone incre-
ments, with seamless portamento glides between steps.

3.3 Risset-Rhythm Beat Frequencies Embedded
in a Shepard–Risset Glissando
RissetMonauralBeatsDown.mp4 demonstrates a

“descending” Shepard–Risset glissando that contains a Ris-
set rhythm comprised of decelerating beat frequencies. The
beat frequencies are produced by adding harmonics at 0.2
semitone “above” the fundamentals.
RissetBinauralSmearsUp.mp4 demonstrates an

“ascending” Shepard–Risset glissando that contains a Ris-
set rhythm comprising accelerating beat frequencies. The
beats are smeared into gradual, rolling swells by using tight
clusters of several harmonics that are close to the fundamen-
tals. Specifically, in the left channel, there are harmonics at
0.06, 0.07, 0.08, 0.09, and 0.1 semitone “above” the fun-
damentals, and in the right channel, there are harmonics
at 0.01, 0.02, 0.03, 0.04, and 0.05 semitone “above” the
fundamentals, and both channels contain the fundamentals.
Thus, there are both monaural and binaural components to
the beating.

3.4 Disambiguation of Shepard-Tritone Direction
Using Glides

Recall that the direction of Shepard-tritone intervals can
be perceived differently by different listeners in differ-
ent cases [11–13]. However, one might expect that the
direction could be reliably disambiguated by inserting a
continuous glide connecting the two notes. And indeed,
that can be demonstrated using stimuli generated by the
shepardglide function.
shepardTritoneGlideUp.mp4 produces a

Shepard-tone C, held for 2 s, followed by Shepard-tone
F�, held for 2 s. An upward glide, with a duration
of 3 s, connects the two notes to give the impres-
sion that the second note is higher than the first.
shepardTritoneGlideDown.mp4 produces exactly
the same interval—with exactly the same frequency
components in each step—as the previous example. But
the glide is downward, to give the impression that the
second note is lower than the first.

To confirm that the glides reliably disambiguate the per-
ceived direction of the interval, the two versions of the C-

Table 1. Number of students who responded
that the tone sounded higher at the

“beginning,” “end,” or “neither,” after hearing
a C-to-F� Shepard-tone interval with an

upward or downward glide between notes.

Downward Glide

Beginning End Neither

Beginning 5 0 0

U
pw

ar
d

G
lid

e

End 75 5 3
Neither 3 0 0

to-F� Shepard-tritone were presented once in randomized
order to 91 undergraduate students, in an online survey that
was completed for extra credit in a cognitive psychology
course. The students were not informed of the purpose of
the survey in advance and had not previously learned about
auditory perception in the course. For each version of the in-
terval, the students were asked, “Did the tone sound higher
at the beginning, at the end, or neither?” For the version with
the upward glide, 83 students (91.2%) said the tone sounded
higher at the end. For the version with the downward glide,
83 students (91.2%) said the tone sounded higher at the
beginning. See Table 1 for details.

It is perhaps not surprising that the glides so effectively
implied the direction of the interval. After all, it has been
shown that when there actually is an objective difference in
pitch height between notes (i.e., when tones are not octave-
ambiguous), perceived direction is more accurate if porta-
mento glides are inserted [28]. That effect has been analo-
gized to the Gestalt principle of good continuation, which
dictates that when the connections between segments in
a visual stimulus are occluded or ambiguous, perception
heuristically favors the simplest, most continuous interpre-
tation [29].

3.5 Stereo Shepard-Tone Illusion in a
Nonmonotonic, Anisochronous Sequence

The Shepard-tone illusion has conventionally been
demonstrated using an isochronous sequence that implies
motion in a consistent direction around the circular octave.
But as will be demonstrated here, an overall trend in the as-
cending or descending direction can be implied even if the
implied step-to-step motion is not strictly monotonic. The
sequence inShepardStereoNonmonotonicUp.mp4
“ascends” a whole-tone scale, but takes one whole-step
“down” after every two whole-steps “up.” Additionally, the
sequence is made anisochronous by systematically varying
the step durations. And different notes are panned to differ-
ent positions in the stereo field while maintaining approxi-
mately equal subjective loudness by using constant-power
panning [30]. That is, for each step, the squared step am-
plitudes in the two channels sum to 1. For example, each
channel’s step amplitude is set to

√
0.5 when the note is

centered, and whenever the step amplitude is set to 0 in one
channel, it is set to 1 in the other channel (and vice versa).
The glide durations (2 ms each) are short enough not to
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produce perceptible portamento but long enough to prevent
transient pops that otherwise might occur when abruptly
changing pan position from one step to the next.

3.6 Quasi-Continuous, Stereo Shepard-Tone
Sequence With Beat Frequencies and a Rough
Texture
ShepardRoughBinauralSmearsUp.mp4

demonstrates a stepped, “ascending” Shepard-tone
sequence, but because there are glides between the steps
and the step increments are tiny (0.01 semitone), the rise in
pitch sounds essentially continuous. The rough, granular
texture is achieved by using very short step and glide
durations (10 ms each) and making the glides pass through
0 amplitude between steps (as the step amplitudes glide
between −1 and 1 on the left and between 1 and −1,
respectively, on the right). A Risset rhythm comprised of
smeared, accelerating beats (with monaural and binaural
components) is created by using a different tight cluster of
harmonics in each channel.

3.7 Stereo Shepard–Risset Glissando in a
Harmonically Rich Chord
RissetBinauralChordUp.mp4 demonstrates an

“ascending” Shepard–Risset glissando with harmonics at
a major second, perfect fourth, perfect fifth, and minor
seventh “above” the fundamentals. Binaural beats are cre-
ated by making each right-channel harmonic 0.1 semitone
“above” or “below” a respective left-channel harmonic. But
because the harmonics overall are diverse, the combined
beating from all the different pairs is quite polyrhythmic,
and thus the beating essentially becomes a wash that mani-
fests more as active stereo spread than as discernable Risset
rhythms. To create a more interesting timbre, different am-
plitudes are used for different pairs of beating harmonics.
The span of the truncated Gaussian (i.e., the amount of
attenuation in the tails) is relatively reduced, creating a
“lusher,” harmonically richer sound that brings out more of
the high-frequency “shimmer.”

An interesting perceptual phenomenon can be heard in
Shepard–Risset glissandi, such as the one above, that in-
clude diverse harmonics. Namely, at least to the present
author, frequency components that are not the primary tar-
get of attention can take on an illusory drone-like quality,
such that they seem to have a sustained pitch even though
they are sweeping at the same rate as the other components.
One explanation for this subtle illusion is that the pitch of
the lower-frequency components is perceived not only in
an absolute way but also relative to the other frequencies.
Another explanation is that the human auditory system has
difficulty tracking constant frequency changes in multiple
streams simultaneously and thus simplifies perception of
streams that are not the primary target of attention.

3.8 Shepard Tones Connected by Glides, With
Hard-Panning
ShepardDichoticStepGlideDown.mp4

demonstrates a Shepard-tone sequence in which the

notes “descend” chromatically, with portamento glide
between notes. The tones in the left channel are at tritone
intervals from the tones in the right channel. The peak
location of the truncated Gaussian envelope is especially
downshifted in this example, thus strengthening the illusion
(by making the reentrance of the highest frequencies in
each repetition less conspicuous) and creating a deeper,
“darker” sound.
ShepardActivePanStepGlideDown.mp4 is

similar to the preceding example. But instead of panning
each harmonic ensemble to a different channel, the steps
alternate between channels, and the glides actively traverse
the panoramic spectrum between steps.

3.9 Stereo Shepard-Tone Sequence With Varied
Articulation and Dynamics
ShepardStereoStaccatoLegatoUp.mp4

demonstrates a more musical example of a Shepard-tone
sequence. It not only enriches the timbre with harmonics
but also varies the articulation and dynamics. It consists
of the following monotonically “ascending” pattern: two
staccato notes at the same pitch (the second quieter than
the first), followed by a sustained note at the same pitch,
which then smoothly glides up to repeat that pattern
a half-step “higher,” and so on. The harmonics are
essentially a perfect fifth “above” the fundamentals. But
to create stereo spread, the left-channel harmonics are
given slightly different frequencies and amplitudes from
the right-channel harmonics.

4 CONCLUSION

This study demonstrates several modifications of the
Shepard-tone sequence [2] and the Shepard–Risset glis-
sando [3]. Some of those modifications do not appear to
have been previously discussed in the literature.

For example, discrete Shepard-tone steps were combined
with continuous Shepard–Risset glides in various ways.
And in particular, inserting glides between Shepard-tones
that were a tritone apart appeared to reliably disambiguate
the perceived direction of motion between notes, thus over-
riding the tritone paradox. Future studies may investigate
that phenomenon in more detail by systematically varying
the parameters (such as frequency and duration) of the steps
and glides.

Another modification that was demonstrated is the use
of beat frequencies to embed Risset rhythms into Shepard–
Risset glissandi. There are a variety of “smeared” beat pat-
terns that may be produced by combining different frequen-
cies in different ways, so there remains much to explore in
that regard.

More generally, it is hoped that the techniques and func-
tions that are presented here will be useful to scientists, ed-
ucators, sound engineers, and sound artists who wish to use
these types of stimuli in their work. It is likely that there are
many more modifications, of both scientific and creative in-
terest, that can be produced using octave-ambiguous tones.
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