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Spatial Matrix synthesis is presented in this paper. This modulation synthesis technique
creates acoustic velocity fields from acoustic pressure signals by using spatial transformation
matrices, thus generating complete sound fields for spatial audio. The analysis presented here
focuses on orthogonal rotation matrices in both two and three dimensions and compares the
results in each scenario with other sound modulation synthesis methods, including amplitude
and frequency modulation. As an alternative method for spatial sound synthesis that exclusively
modifies the acoustic velocity vector through effects comparable to those created by both
amplitude and frequency modulations, Spatial Matrix synthesis is argued to generate inherently
spatial sounds, giving this method the potential to become a new musical instrument for spatial
music.

0 INTRODUCTION

The general motivation to improve the acoustic spatial
image in audio reproduction has mostly been the desire to
feel as if “being there” when listening to a recording [1].
Panning, in particular, a technique in which prerecorded
sounds are artificially placed in between two or more loud-
speakers in post, often also referred to as spatialization,
is a problem to which many different solutions have since
been proposed. These include the ubiquitous two-channel
stereophony, or more elaborate techniques often employed
for full spherical audio reproduction, such as VBAP [2] or
Ambisonics [3, 4]. Engineers and artists have since used
these panning techniques to go beyond naturalism and cre-
ate hyperreal productions [5]. Composers of electroacous-
tic music embraced virtual source panning techniques in a
multitude of ways and incorporated them into their compo-
sitional practice [6–10].

Despite this, comparatively little investigation has gone
into the effects caused by the velocity of panned sounds.
Studies analyzing spatial audio reproduction methods with
regard to moving sources mostly focus on the Doppler shift
[11–13]. It has also been remarked that slow moving sources
produce negligible Doppler shift effects [14]. Naturally, few
objects in the real world move fast enough to cause notice-
able spectral distortions, and it has also been shown that
people’s ability to follow a sound rotating around them
breaks down at about three rotations per second [15]. Thus,
why should anyone be concerned with angular velocities
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higher than the above? Recently, the authors have shown
that a sound source rotating with a constant angular fre-
quency causes a frequency split to appear in the velocity
field at the center of rotation [16]. Due to the spectral dis-
tortions that occur in this case, these techniques can lead to
approaches that tightly fuse spatialization and sound syn-
thesis into one process, arguably creating inherently spatial
sounds.

Most common synthesis methods, such as AM [17, 18]
or FM [19–21], usually act on the audio pressure signal.
Existing approaches that intend to combine spatialization
with sound synthesis usually treat spatialization as an added
effect on top of the synthesis method, and not as an inte-
gral part of it. For example, time-based approaches, such as
granular synthesis, spatialize each grain of audio individu-
ally [22–25], while spectral approaches give each extracted
frequency band an individual position in space [23, 26–28].
It has also been proposed to reuse the trajectories generated
by wave terrain synthesis as a way to more tightly combine
the sound synthesis technique with its spatialization [26,
29, 30]. Methods that use spatial parameters to modulate
the signal include varying the source distance, which pro-
duces timbral changes that are similar to the effects of FM
synthesis, due to rapid changes in the amount of Doppler
shift applied to the source [31–33], as well as the expansion
of the pairwise panning technique to 3D, to be able to pan
a sound source at audio rate using wavetables [34–36].

One important factor of a sound’s spatial appearance is
its spatial extent. The perception of the spatial extent, or
Apparent Source Width, is often linked to the Interaural
Cross Correlation coefficient [37–39]. Spatially extended
sources are produced by vibrating finite-sized plates or
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spheres [40] but also occur naturally in psychoacoustic ap-
pearances, such as the architectural control of reflections
in a concert hall [41] or waves crashing down on beach
fronts [38]. The Interaural Cross Correlation can be con-
trolled by the amount of correlation present in a coherent
source. Taking the ubiquitous stereo panning as an exam-
ple, two correlated loudspeakers fuse together to appear
as one source perceptually. This correlation can be gradu-
ally broken up by utilizing frequency-dependent delays and
distributing spectral bands in space [38, 39, 41].

As is the case with spatial granular or spectral synthesis
approaches mentioned above, while a sound is either dis-
tributed temporally or spectrally in space, it is still coherent
and perceived as a single sound event, but its spatial extent
is altered proportionally to the amount of decorrelation [26,
39, 41, 42]. Thus, after the ability to follow a rotating sound
breaks down beyond about three rotations per second [15],
a sound rotating at higher angular velocities is effectively
redistributed in space around the listener. While it remains
coherent, it is decorrelated, and thus its Apparent Source
Width is effectively increased.

This paper presents Spatial Matrix (SM) synthesis, a
method for generating sounds by synthesizing velocity
fields from acoustic pressure signals. Inspired by the phys-
ical model of a rotating source [16], SM synthesis includes
applying rotation matrices to a source in both 2D and 3D.
Unlike most other methods that combine spatialization with
sound synthesis, which also affects the pressure field, SM
synthesis neither alters the source nor pressure field at the
center; all effects achieved by SM synthesis are exclu-
sively located in the velocity field. Also, unlike methods
that make use of the “Doppler FM” effect [31–33], the
approach presented here maintains the source distance con-
stant and therefore achieves all effects described below by
changing the source’s angle of incidence to the listener. The
authors therefore argue that spatialization is at the core of
this method and not simply an afterthought.

This paper is divided into two main parts, each looking
at the 2D and 3D cases for SM synthesis separately. SEC.
1 will first define 2D SM synthesis in general, followed
by an investigation into different types of rotation matrices.
The section will also go into some more complex scenarios,
such as using multiple sources and rotations. In turn SEC.
2 defines 3D SM synthesis and expands the analysis on the
most interesting cases of SEC. 1, with particular focus on
those phenomena that were previously not possible in the
2D case. It shall be seen that in the 3D case, using only rota-
tions, the resulting spectrum can be shaped parametrically.
After that, an implementation example for SM synthesis
shall be discussed in SEC. 3 using Ambisonics. The paper
will then conclude in SEC. 4, discussing the findings and
bring forth proposals for future work.

1 SM SYNTHESIS IN 2D

For the 2D case, a harmonic sound source prad(t) =
Acos (ωst + φ) in a free field is considered, with ampli-
tude A, angular frequency ωs, and phase φ, located on the
perimeter of a disc of radius R > 0 at a position defined by

Fig. 1. Sound source in a ring of radius R, θ being the angular
coordinate.

the angle θ (see Fig. 1). 2D SM synthesis will first be briefly
defined in general in SEC. 1.1. However, for the remainder
of this section, these investigations shall be focused on rota-
tion matrices, as motivated by the findings from analyzing
the physical model of a rotation source shown in [16]. In
[16] it was shown that the acoustic pressure radiated from
a rotating source modulates the amplitude of the velocity
components, which causes a spectrum split in the velocity
field at the center of rotation. Due to the source’s con-
stant distance from the center, however, the periodicity of
the pressure is maintained, meaning that the pressure field
remains unaltered when compared to a stationary source.

1.1 General Definition in 2D
In two dimensions, the acoustic field is completely deter-

mined by the acoustic pressure p and the acoustic velocity
vector v = (vx, vy). In the most general terms, the 2D SM
synthesis is defined as a transformation of the velocity field
produced by an input sound pressure signal pin(t). In accor-
dance with the findings in [16], the output pressure field
measured at the center of the rotation shall be considered
the same as the input, pout(t) = pin(t), and define the input
vector vin(t) = (Cxpin(t), Cypin(t)), where Cx = Ccos (θ0)
and Cy = Csin (θ0) are constants, with C = 1

ρc , in which ρ

is the density of the fluid and c the speed of sound inside this
fluid, and θ0 being the initial source position. SM synthesis
thus reads

vout(t) = M(t) · vin(t). (1)

In general, M(t) is a time-dependent transformation matrix.
Given an acoustic pressure input pin(t), Eq. (1) synthesizes
an output velocity field, vout(t) = (vxout (t), vyout (t)).

1.2 Rotational SM Synthesis in 2D
More specifically, orthogonal transformations, in partic-

ular on rotation matrices, will be focused on. Therefore, in
the case of a 2D rotation in the velocity field, the transfor-
mation matrix M(t) = R(θ(t)) reads

R(θ(t)) =
[

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
. (2)

For the analysis of the rest of this section, consider the case
of a harmonic sound source of angular frequency ωs:

pin(t) = pout(t) = A cos(ωs t). (3)
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With this in mind, Eq. (1) now reads

vout(t) =
(

C A cos(θ(t) + θ0) cos(ωs t)
C A sin(θ(t) + θ0) cos(ωs t)

)
. (4)

From now on, θ0 = 0, meaning the starting position of the
source is in the front, shall be considered. In the following
subsections, different scenarios for θ(t) shall be analyzed.

1.2.1 θ(t) = α

Keeping the angle θ(t) = α constant in Eq. (4) results in
the following complete sound field:

pout(t) = A cos(ωs t), (5)

vxout (t) = C A cos(α) cos(ωs t), (6)

vyout (t) = C A sin(α) cos(ωs t), (7)

which is equivalent to the source at a different angle shifted
by α.

1.2.2 θ(t) = ωr t
Likewise, if θ(t) is replaced for ωrt in Eq. (4), where ωr is

the constant rotational frequency, the following is obtained:

pout(t) = A cos(ωs t), (8)

vxout (t) = C A

2

[
cos((ωs + ωr )t) + cos((ωs − ωr )t)

]
,

(9)

vyout (t) = C A

2

[
sin((ωs + ωr )t) − sin((ωs − ωr )t)

]
.

(10)

Note that one may define A = A′ to comply with the physical
model analyzed in [16]. However, if CA = 1, vxout (t) and
vyout (t) in Eqs. (9) and (10) are similar to those for ring
modulation (RM) synthesis [17, 18]:

RM = cos(ωct) · cos(ωmt), (11)

where ωc is the frequency of the carrier, which can be
compared to ωs, while ωm is the modulation frequency,
which can be compared to the rotational frequency ωr. The
result for vyout (t) in Eq. (10) deviates from RM synthesis by
demonstrating a phase shift of −π

2 for the sum and π
2 for

the difference.
RM synthesis causes the carrier to disappear while only

the two side-bands remain. However, Eq. (8) also needs to
be taken into account, which adds ωs to the overall sound
field. AM synthesis, in turn, uses a unipolar modulator and,
thus, maintains the carrier in its result [17, 18]:

AM = cos(ωct) · 1

2

[
cos(ωmt) + 1

]
. (12)

Therefore, if the entire sound field is considered, including
the pressure component pout(t) and velocity components
vxout (t) and vyout (t), the spectral makeup looks more akin to
AM synthesis.

The perpendicular phase relationship between vxout (t) and
vyout (t) hints at the novel spatial property that this synthesis

approach features. Not only are vxout (t) and vyout (t) decor-
related, but if one neglects the velocity field and remove
the spatial aspect of this synthesis approach, one would be
left with only the input frequency ωs in pout(t). All side-
bands exist exclusively in the spatial velocity components
of the signal. As such, the authors tend to call new sounds
synthesized with SM synthesis (or similar approaches) as
inherently spatial.

1.2.3 θ(t) = α
2 t2

Consider now an accelerated trajectory, θ(t) = α
2 t2,

where α is the angular acceleration. Substituting in Eq.
(4), the complete sound field now becomes

pout(t) = A cos(ωs t), (13)

vxout (t) = C A

2

[
cos

(
(ωs + α

2
t)t

)

+ cos
(

(ωs − α

2
t)t

) ]
, (14)

vyout (t) = C A

2

[
sin

(
(ωs + α

2
t)t

)

− sin
(

(ωs − α

2
t)t

) ]
. (15)

In this case the two side-bands generated in the velocity
field depart from ωs linearly with time.

1.2.4 θ(t) = Dsin (ωot)
In this scenario for θ(t) the focus is turned from a con-

stant acceleration to a periodic change in rotation velocity.
Returning to Eq. (4), setting θ(t) = Dsin (ωot), the following
would instead be received:

pout(t) = A cos(ωs t), (16)

vxout (t) = C A cos(D sin(ωot)) cos(ωs t), (17)

vyout (t) = C A sin(D sin(ωot)) cos(ωs t), (18)

with D being a constant that controls the depth, or extent,
of the rotation variation and ωo its angular frequency. To
exemplify the spectral composition, vxout (t) and vyout (t) in
Eqs. (16)–(18) can be written as a harmonic series using
the Bessel functions of the first kind. Using Eqs. (6) and (7)
from APPENDIX A.1, they can be written as infinite sums:

vxout (t) = C A
∞∑

n=−∞
J2n(D) cos

(
(ωs + 2nωo)t

)
, (19)

vyout (t) = C A
∞∑

n=−∞
J2n+1(D) sin

(
(ωs + (2n + 1)ωo)t

)
.

(20)

Eqs. (19) and (20) demonstrate that harmonically oscillat-
ing around the rotation velocity creates a series of multiples
of the modulation frequency ωo around ωs, each determined
in amplitude by the corresponding Bessel function Jn(D) in
dependence of the depth parameter D. In the case of vxout (t)
these are strictly even multiples, while vyout (t) contains all
odd multiples.
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Viewed together, the velocity vector vxout (t) and vyout (t)
form a spectrum that is similar to FM synthesis [19, 20]:

F M = A sin
(
ωct + I sin(ωmt)

)
, (21)

where the carrier frequency ωc is modulated by the modu-
lating frequency ωm by ±I, a constant usually referred to as
modulation index, expressed as the ratio I = D/ωm between
the modulation depth D and ωm. Eq. (21) can similarly be
written as a harmonic series using Bessel functions of the
first kind [20]:

F M = A
∞∑

n=−∞
Jn(I ) sin

(
(ωc + nωm)t

)
. (22)

While the frequency values are identical in both cases,
the main difference lies in the ±π

2 phase shift between
even and odd multiples of the modulation frequency ωm

in SM synthesis. Furthermore, the even and odd multiples
are distributed in vxout (t) and vyout (t) respectively, creating
an additional spatial decorrelation effect not present in FM
synthesis.

Just as in the case of FM synthesis, the amplitudes of
the source in SM synthesis (which is equivalent to the car-
rier in FM) and side-band components are determined by
the Bessel functions Jn. As such, SM synthesis can make
use of the same techniques FM synthesis uses to make
these undulations simulate the behavior of known acous-
tic instruments [18, 20]. The constant C can be seen as a
weighing control between the pressure component pout(t)
and the velocity components vout(t). Thus, SM synthesis
enables control between the fundamental frequency ωs and
the overtones.

Conceptually it should be noted that rotational SM syn-
thesis does not modulate the source frequency directly, as
FM synthesis does with the carrier. The source being ro-
tated still emits the same constant frequency ωs, and pout(t)
= pin(t) still holds true. Instead, the speed of rotation is
being modulated at a frequency ωo around a center rotation
frequency of ωr = 0 and all side-bands solely exist in the
spatial components vxout (t) and vyout (t).

Inspired by Eq. (21), vxout (t) and vyout (t) in Eqs. (16)–(18)
can be altered to see what would happen if a base rotation ωr

> 0 was introduced. This means that θ(t) = ωrt + Dsin (ωot)
and the velocity components read

vxout (t) = C A cos
(
ωr t + D sin(ωot)

)
cos(ωs t), (23)

vyout (t) = C A sin
(
ωr t + D sin(ωot)

)
cos(ωs t). (24)

Similarly to how Eq. (22) was obtained, a Bessel function
expansion can be applied to get the harmonic description
of vxout (t) and vyout (t):

vxout (t) = C A

2

∞∑
n=−∞

Jn(D)
[

cos((ωs + ωr + nωo)t)

+ cos((ωs − ωr − nωo)t)
]
, (25)

vyout (t) = C A

2

∞∑
n=−∞

Jn(D)
[

sin((ωs + ωr + nωo)t)

− sin((ωs − ωr − nωo)t)
]
, (26)

meaning that, for ωr > 0, when compared to Eqs. (19)
and (20), an additional spectrum split akin to RM synthesis
is introduced. More interestingly though, is that ωr > 0
introduces the additional odd and even multiples in both
vxout (t) and vyout (t) respectively, increasing the similarities
between the velocity components.

1.3 Multiple-Source Rotational SM Synthesis in
2D

SM synthesis can be enriched by adding more sources,
which are all rotated by the same rotation matrix R. Con-
sider the following for N sources:

pin(t) = pout(t) =
N∑

n=1

An cos(ωsn t), (27)

vout(t) = R(θ(t)) ·
N∑

n=1

(
C An cos(θ0n ) cos(ωsn t)
C An sin(θ0n ) cos(ωsn t)

)
, (28)

If θ0n = 0, such that Cxn = C cos(θ0n ) = C and Cyn =
C sin(θ0n ) = 0 for all n, as discussed in SEC. 1.1, then this is
equivalent to a complex source made up of all frequencies
ωsn being modified by R(θ(t)).

However, with SM synthesis, the spatial distribution can
additionally be modified by controlling the relative angular
distances between each source, with θ0n �= θ0m for n �= m
and n, m ≤ N, to further decorrelate the signal. Thus, un-
like what was assumed in SEC. 1.2, Cyn = 0 cannot strictly
be assumed for all n, and the solutions for rotational SM
synthesis become slightly more complicated:

vxout (t) =
N∑

n=0

[
Cxn An cos θ(t) cos(ωsn t)

− Cyn An sin θ(t) sin(ωsn t)
]
, (29)

vyout (t) =
N∑

n=0

[
Cxn An sin θ(t) cos(ωsn t)

+ Cyn An cos θ(t) sin(ωsn t)
]
. (30)

Eqs. (29) and (30) can be compared with multiple-carrier
FM (MCFM) synthesis for N > 1 carriers with angular
frequency ωcn :

MC F M =
N∑

n=0

An sin
(
ωcn t + In sin(ωmt)

)
, (31)

with individual modulation indices In, where ωc0 is the
fundamental carrier frequency and all subsequent carrier
frequencies ωcn = knωc0 for n > 0 with kn > 1, kn ∈ N.
All comparisons to MCFM synthesis can equally apply
if θ0n = 0 for all n, as described above. However, simi-
lar to how FM synthesis parameterizes the amplitudes An

and modulation indices In [20], all angles θ0k can also be
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regarded as parameters to transition between spatial config-
urations (e.g., from a point source, θ0n = 0, to a distributed
one).

1.4 Multiple-Rotation SM Synthesis in 2D
Another comparison to traditional synthesis techniques

would be to use several modulators. RM and AM are often
applied in several iterations to enrich the spectrum of the
target sound. However, 2D rotational SM synthesis using
constant angular velocities cannot enrich the target spec-
trum any further by applying successive rotations. This is
due to the fact that this operation is equivalent to an addition
of the angular parameters, i.e., R(θ1(t)) · R(θ2(t)) = R(θ1(t)
+ θ2(t)). By extension, rotating any complex acoustic field
that already contains rotating sources only alters their angle
of rotation and shifts the resulting side-bands by the sum of
both the existing and the added rotation.

Conversely, applying successive harmonically oscillat-
ing rotations do produce more side bands. For a single,
front-facing source rotated by two successive frequency-
modulated rotation matrices, defining vin(t) = (CAcos (ωst),
0) and τi (t) = ωri + Di sin(ωoi t) for each rotation i,

vout(t) = R(τ2(t))R(τ1(t))vin(t), (32)

the formulae found in APPENDIX A.1 can be applied to get

vxout (t) = C A

2

∞∑
n1=−∞

∞∑
n2=−∞

Jn1 (D1)Jn2 (D2)

[
cos((ωs + ωr1 + ωr2 + n1ωo1 + n2ωo2 )t)

+ cos((ωs − ωr1 − ωr2 − n1ωo1 − n2ωo2 )t)
]
,

(33)

vyout (t) = C A

2

∞∑
n1=−∞

∞∑
n2=−∞

Jn1 (D1)Jn2 (D2)

[
sin((ωs + ωr1 + ωr2 + n1ωo1 + n2ωo2 )t)

− sin((ωs − ωr1 − ωr2 − n1ωo1 − n2ωo2 )t)
]
,

(34)

where it can be seen that the base rotation values ωr1 and
ωr2 merely add together, forming a two-sided offset to the
series of overtones, comparable to Eqs. (25) and (26) in
SEC. 1.2.4. However, a second series of side-bands ±n2ωo2

appears around each side-band of the series ±n1ωo1 .1

This technique is comparable to a similar approach in FM
synthesis called parallel multi-modulator FM (PMMFM)
[18]:

P M M F M = A sin
(
ωc + I1 sin(ωm1 t) + I2 sin(ωm2 t)

)
,

(35)

the spectral composition of which is given by [21]:

P M M F M =
∞∑

n1=−∞

∞∑
n2=−∞

Jn1 (I1)Jn2 (I2) sin
(
(ωc + n1ωm1 + n2ωm2 )t

)
. (36)

For a generalization of Eqs. (32)–(34), see APPENDIX A.2.

For a better comparison, ωr1 = 0 and ωr2 = 0. In this case,
similar to Eqs. (19) and (20) in SEC. 1.2.4, certain terms
cancel each other out, and the frequencies “distribute them-
selves” across vxout (t) and vyout (t):

vxout (t) = C A
∞∑

n1=−∞

∞∑
n2=−∞

[
J2n1 (D1)J2n2 (D2)

cos
(
(ωs + 2n1ωo1 + 2n2ωo2 )t

)
+ J2n1+1(D1)J2n2+1(D2)

cos
(
(ωs + (2n1 + 1)ωo1 + (2n2 + 1)ωo2 )t

)]
,

(37)

vyout (t) = C A
∞∑

n1=−∞

∞∑
n2=−∞

[
J2n1 (D1)J2n1+1(D2)

sin
(
(ωs + 2n1ωo1 + (2n2 + 1)ωo2 )t

)
+ J2n1+1(D1)J2n2 (D2)

sin
(
(ωs + (2n1 + 1)ωo1 + 2n2ωo2 )t

)]
. (38)

When viewed together, Eqs. (37) and (38) are very similar
to Eq. (36), apart from the phase differences; all possible
combinations of even and odd multiples of ωo1 and ωo2 are
present across vxout (t) and vyout (t).

Another approach, different to PMMFM synthesis is that
of series multi-modulator FM (SMMFM), where a primary
modulator ωm1 is modulated by a secondary modulator ωm2

[18]:

SM M F M = A sin
(
ωc + I1 sin(ωm1 t + I2 sin(ωm2 t))

)
.

(39)

This approach can be directly applied to SM synthesis, by
defining θ(t) = Dsin (ωot + Isin (ωmt)).

2 SM SYNTHESIS IN 3D

In the 3D case, the same harmonic sound source as in
SEC. 1 shall be considered, but this time located on the
surface of a sphere of radius R > 0 (see Fig. 2). Using
spherical coordinates, its position can be defined using the
azimuth angle φ and inclination angle θ. Similarly to SEC.
1.1, 3D SM synthesis in general will first be defined, and
then the focus of these investigations turns toward rotation
matrices.

As will be shown, the case of a rotation in a great circle
of the sphere is a rotated version of the 2D case already an-
alyzed in SEC. 1.1 and, thus, results in two side-bands in the
velocity field. However, the authors shall show how these
results are related to arbitrary rotations anywhere on the
sphere by including intermediary static rotations as analy-
sis tools. Exploiting the fact that successive rotations can
be oriented perpendicularly in 3D, it shall be shown that 3D
SM synthesis is capable of producing rather unique spectra
when compared to more traditional synthesis methods. Fi-
nally, Sec. 2.3.3 will look at how combining multi-rotation
3D SM synthesis with intermediary parametric rotations
yields the capability to shape the resulting spectra using
only spatial rotation transformations on a single harmonic
sound source.
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Fig. 2. Sound source on the surface of a sphere of radius R. θ is
the inclination angle, and φ is the azimuth angle.

2.1 General Definition in 3D
As was done in 2D, the acoustic pressure p and the acous-

tic velocity vector v = (vx, vy, vz) shall be considered. Again,
it shall also be considered that the output pressure field is
the same as the input, pout(t) = pin(t). For the remainder of
this section, Eq. (1) shall be considered in three dimensions,
redefining vin(t) = (Cxpin(t), Cypin(t), Czpin(t)), where Cx,
Cy, and Cz again are constants. The constants are usually
defined as

Cx = C sin θ0 cos φ0, (40)

Cy = C sin θ0 sin φ0, (41)

Cz = C cos θ0, (42)

where, again, C = 1
ρc , as defined in Eq. (1), and θ0 and φ0

are the initial spherical angles of the sound source (see Fig.
2).

2.2 Rotational SM Synthesis in 3D
As in SEC. 1.2, these investigations will be oriented along

the physical results from [16], meaning focus will be on or-
thogonal rotation matrices. Based on Euler’s rotation theo-
rem, it is known that any rotation in 3D space can be seen
as a rotation around a unitary vector ê = (ex , ey, ez). Due
to spherical symmetry of the problem, any orientation for
ê is equivalent. Choosing thus the xy-plane as the rotation
plane, the rotation matrix around the z-axis is received:

Rz(γ) =
⎡
⎣cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦. (43)

Just like in SEC. 1.2, a harmonic sound source of angular
frequency ωs shall be considered:

pin(t) = pout(t) = A cos(ωs t). (44)

Expanding Eq. (1) and using Eq. (43) with γ = φ(t), the
following is obtained:

vout(t) =
⎛
⎝C A sin θ0 cos(φ(t) + φ0) cos(ωs t)

C A sin θ0 sin(φ(t) + φ0) cos(ωs t)
C A cos θ0 cos(ωs t)

⎞
⎠. (45)

The choices for φ(t) have equivalent results to what was
studied in SEC. 1.2 if the initial source position is horizon-
tally in the front, i.e., φ0 = 0 and θ0 = π

2 . Eq. (45) shows
that the choice for 0 ≤ θ0 ≤ π

2 acts as a non-linear volume
control for the overtones produced, with θ0 = π

2 yielding
the maximum effect, as it represents the rotation around
the great circle. If Rz was to be replaced with any axis of
rotation ê, then a general requirement to achieve the same
maximum effect could be formulated as

v0 · ê = 0, (46)

where v0 = (sin θ0cos φ0, sin θ0sin φ0, cos θ0).

2.3 Multiple-Rotation SM Synthesis in 3D
Using the example and results of SEC. 2.2, the harmonic

sound source from Eq. (44) shall be considered at a starting
position θ0 = π

2 and φ0 = 0, which results in Cx = C and
Cy = Cz = 0. If a constant angular velocity rotation φ(t)
= ωrt in Eq. (45) is considered, then it is known from
SEC. 1.4 that adding an additional, on-axis constant angular
velocity rotation will not result in any additional side-bands.
However, in 3D space, an added rotation can be oriented
with respect to a different axis. The result of two successive,
off-axis rotations shall be analyzed as a function of angular
distance by adding an intermediate constant angle rotation.
To achieve the greatest angular distance, this intermediate
rotation should ideally be oriented perpendicularly. Let this
be a rotation around the x-axis:

Rx (α) =
⎡
⎣1 0 0

0 cos α − sin α

0 sin α cos α

⎤
⎦. (47)

To generalize, this intermediate rotation full be further
rotated using an additional rotation Rz(γ). Redefining vin(t)
= (CAcos (ωst), 0, 0), the following series of rotations is
received:

vout(t) = Rz(ωr2 t)Rz(γ)Rx (α)Rz(ωr1 t)vin(t), (48)

which leads to the following set of equations for the velocity
field:

vxout (t) = C A[
1 + cos α

4
(cos((ωs + ωr1 + ωr2 )t + γ)

+ cos((ωs − ωr1 − ωr2 )t − γ))

+1 − cos α

4
(cos((ωs + ωr1 − ωr2 )t − γ)

+ cos((ωs − ωr1 + ωr2 )t + γ))], (49)
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vyout (t) = C A[
1 + cos α

4
(sin((ωs + ωr1 + ωr2 )t + γ)

− sin((ωs − ωr1 − ωr2 )t − γ))

−1 − cos α

4
(sin((ωs + ωr1 − ωr2 )t − γ)

− sin((ωs − ωr1 + ωr2 )t + γ))], (50)

vzout (t) = C A sin α

2
[sin((ωs + ωr1 )t)

− sin((ωs − ωr1 )t)]. (51)

As expected, the rotation Rz(γ) acts as an offset for
Rz(ωr2 t), which would affect the phase in vxout (t) and
vyout (t), and γ = 0 can therefore be considered. For α =
0, vzout (t) = 0 and the amplitude coefficient for the terms
containing the difference ωr1 − ωr2 is zero; as in the case
of 2D, i.e., if both rotations are done on the same rotation
axis, the number of side-bands remains the same, and the
resulting rotation frequency is the sum ωr1 + ωr2 . Similarly,
α = π flips the rotation by 180◦ and inverts the rotation di-
rection. Thus, the combined rotation frequency is ωr1 − ωr2

instead.
If α tends toward α = π

2 , however, the amplitude co-
efficients of the terms containing the sum and difference
each reach 1

4 . At this point, the input signal is effectively
modulated by two compound frequencies ωr1 + ωr2 and
ωr1 − ωr2 , as well as ωr1 , resulting in two additional modu-
lations around ωs. Considering θ0 = π

2 and φ0 = 0, it can be
easily shown that for α = π

2 and γ = 0 in Eq. (48), the series
of rotations Rz(ωr2 t)Rz(0)Rx (π

2 )Rz(ωr1 t) can be replaced
with an equivalent, simpler sequence of two perpendicular
rotations Rz(ωr2 t)Ry(−ωr1 t) with

Ry(β) =
⎡
⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤
⎦. (52)

Thus, again due to spherical symmetry as evidenced by
Rz(γ), it can be generalized that any two perpendicular
rotation matrices can be used in order to achieve an addi-
tional spectral split akin to multiple-modulator RM synthe-
sis. However, pin(t) = pout(t) remains unaltered, meaning
that the entire acoustic field will always contain the input
signal cos (ωst). Thus, after two perpendicular rotations in
3D, the spectral output of SM synthesis is directly com-
parable to neither RM nor AM synthesis. Without loss of
generality, the investigations in the following sections can
henceforth be limited to using only the elemental rotations
Rx, Ry and Rz, as they correspond to the perpendicular
components of the velocity vector.

2.3.1 Chaining Pairwise Perpendicular Constant
Angular Velocity Rotations

To further enrich the acoustic field using constant an-
gular velocity rotations, any number of rotations can be
applied to the same source, as long as they do not share the
same rotation axis with their predecessor. Considering the

Fig. 3. Order of rotations visualized as a cycle and their corre-
sponding relative on and off-axis components.

conclusions above, a chain of N elemental rotations shall
be considered:

vout(t) = RaN (ωrN t) . . . Ra1 (ωr1 t)vin(t), (53)

where each Ran , an ∈ {x, y, z}, n > 1, defines the axis
of rotation ên , with a1 ∈ {y, z} and ên+1 · ên = 0 for each
neighboring pair of rotations.

The spectral composition of Eq. (53) can become quite
complex, as it depends on the exact sequence of rotations
Rx, Ry, or Rz. However, there are two generalizing obser-
vations that help make the analysis somewhat easier:

• Because it is required that rotation Ran+1 must be dif-
ferent than Ran , an+1 can only be one of two choices:
arranged in a cycle, either the cyclic element, i.e., in
the order shown in Fig. 3, or the anticyclic one can
be chosen.

• Each elemental rotation has one component of the
velocity vector v that coincides with their axis of
rotation. As such, the components of the veloc-
ity vector relative to Ran can be referred to using
the same cyclic convention: one on-axis component
v◦n (t), one cyclic off-axis component v�n (t), and one
anticyclic off-axis component v�n (t).

For example, for Rz as the nth rotation, the relative on-axis
component v◦n (t) is equivalent to the absolute vz(t), v�n (t)
to vx(t) and v�n (t) to vy(t).

Furthermore, the sequence of N rotations can be viewed
as a sequence of pairwise relations, where (an−1� an) if an

is the cyclic element to an−1 and (an−1�an) conversely. The
result after n rotations can then be given as

v◦
n (t) =

{
v�n−1 (t)if (an−1 � an),
v�n−1 (t)if (an−1 � an),

(54)

v�n (t) =

⎧⎪⎪⎨
⎪⎪⎩

v �n−1 (t) cos(ωrn t) − v◦
n−1 (t) sin(ωrn t)

if (an−1 � an),
v◦

n−1 (t) cos(ωrn t) − v�n−1 (t) sin(ωrn t)
if (an−1 � an),

(55)

v�n (t) =

⎧⎪⎪⎨
⎪⎪⎩

v�n−1 (t) sin(ωrn t) + v◦
n−1 (t) cos(ωrn t)

if (an−1 � an),
v◦

n−1 (t) sin(ωrn t) + v�n−1 (t) cos(ωrn t)
if (an−1 � an),

(56)

for n ≥ 0, with the initial source given by v◦0 (t) =
C A cos(ωs t) and v�0 (t) = v�0 (t) = 0. Considering that the
source in Eq. (53) is equivalent to a0 = x, this can inform
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Table 1. Comparison of the potential maximum number of frequencies possible with several iterations of multi-rotation 3D SM
versus multiple-modulator RM and AM synthesis on a single source/carrier, respectively.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

mSMn 1 3 7 17 45 121 329 897 2,449 6,689 18,273 49,921 136,385 ...
m RMn 1 2 4 8 16 32 64 128 256 512 1,024 1,048 4,096 ...
m AMn 1 3 9 27 81 243 729 2,187 6,561 19,683 59,049 17,7147 531,441 ...

the initial choice in Eqs. (54)–(56), as either (a0�a1) or
(a0�a1). The final spectral makeup after N rotations there-
fore only depends on the sequence of cyclic or anticyclic
relations between neighboring elements an.

Using Eqs. (54)–(56), and choosing each ωn accord-
ingly, the maximum number of overtones that could pos-
sibly be received can be determined: the ring modulated
results of v�n+1 (t) and v�n+1 (t) are similar, apart from the
phase, meaning that v�n+1 (t) does not add any new fre-
quency values when compared to v�n+1 (t) and vice versa.
However, v◦n+1 (t) is not ring-modulated by ωrn+1 and ide-
ally does not have any frequencies in common with v�n+1 (t)
(or v�n+1 (t)). Therefore, the result in v�n+1 (t) (or v�n+1 (t))
ring modulates all possible frequency values from rotation
n, meaning that the number of frequency values is dou-
bled, if it is considered that ideally no two overtones should
overlap. Similarly, v◦n+1 (t) includes the result of a doubling
of frequency values from the prior rotation n − 1. Thus,
the maximum possible number of side-bands m ′

SM after n
rotations is given by

m ′
SMn

= 2(m ′
SMn−1

+ m ′
SMn−2

), (57)

for n ≥ 1, and with m ′
SM−1

= 0 and m ′
SM0

= 1, which is a
binomial transform of the generalized k-Fibonacci sequence
for k = 2 and distance r = 2 [43, 44]. The maximum number
of frequencies in the acoustic field includes the pressure
component pin(t) = pout(t) = Acos (ωst) and is given by

mSMn = m ′
SMn

+ 1, (58)

for n ≥ 1, and with mSM0 = 1, since ωs is ideally not found
in the velocity vector.

In comparison, the frequency combination of multiple-
modulator RM synthesis can be determined iteratively using
Eq. (11):

RMn = RMn−1 cos(ωmn ), (59)

with RM0 = cos (ωct), and the maximum number of fre-
quencies mRM after n modulators therefore grows by

m RMn = 2m RMn−1 , (60)

for n ≥ 1, and with m RM0 = 1. Similarly, multiple-
modulator AM synthesis based on Eq. (12) is given by

AMn = AMn−1 · 1

2
(cos(ωmn t) + 1), (61)

with AM0 = cos (ωct), and the maximum number of fre-
quencies mAM after n modulators grows by

m AMn = 3m AMn−1, (62)

for n ≥ 1, and with m AM0 = 1. The three approaches are
compared in Table 1 for the first values of n, demonstrating
that the potential spectral complexity of SM synthesis lies
somewhere in between that of multiple-modulator RM and
AM synthesis. Therefore, while 2D SM synthesis seems
comparable to simple RM and AM synthesis in terms of
spectral buildup, SM synthesis sets itself apart in 3D.

2.3.2 Harmonically Oscillating Rotations in 3D
The authors also want to expand their investigations into

harmonically oscillating rotations in 3D. In line with the
previous methodology, the relationship between a harmon-
ically oscillating rotation and the initial source position will
be investigated first. Using Rz(ωr + Dsin (ωot)) in the 3D
version of Eq. (1) results in

vout(t)

=
⎛
⎝C A sin θ0 cos(ωr + φ0 + D sin(ωot)) cos(ωs t)

C A sin θ0 sin(ωr + φ0 + D sin(ωot)) cos(ωs t)
C A cos θ0 cos(ωs t)

⎞
⎠,

(63)

where, again, φ0 is a simple phase offset to ωr and θ0 acts
as a nonlinear volume control for the overtones produced,
similar to Eq. (45). Thus, henceforth, φ0 = 0 and θ0 = π

2 .
Next, the relationship between two harmonically oscillat-

ing rotations shall be examined. Following the same strat-
egy and assumptions that were used in Eq. (48), defining
τi (t) = ωri t + Di sin(ωoi t), and rotating two harmonically
oscillating rotations away from each other:

vout(t) = Rz(τ2(t))Rz(γ)Rx (α)Rz(τ1(t))vin(t), (64)

which resolves into the following harmonic description:

vxout (t) = C A

4

∞∑
n1=−∞

∞∑
n2=−∞

Jn1 (D1)Jn2 (D2)
(
(1 + cos α)

[
cos((ωs + ωr1 + ωr2 + n1ωo1 + n2ωo2 )t + γ)

+ cos((ωs − ωr1 − ωr2 − n1ωo1 − n2ωo2 )t − γ)
]

+ (1 − cos α)
[

cos((ωs − ωr1 + ωr2

− n1ωo1 + n2ωo2 )t + γ) + cos((ωs + ωr1 − ωr2

+ n1ωo1 − n2ωo2 )t − γ)
])

, (65)
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vyout (t) = C A

4

∞∑
n1=−∞

∞∑
n2=−∞

Jn1 (D1)Jn2 (D2)
(
(1 + cos α)

[
sin((ωs + ωr1 + ωr2 + n1ωo1 + n2ωo2 )t + γ)

− sin((ωs − ωr1 − ωr2 − n1ωo1 − n2ωo2 )t − γ)
]

+ (1 − cos α)
[

sin((ωs − ωr1 + ωr2

− n1ωo1 + n2ωo2 )t + γ) − sin((ωs + ωr1 − ωr2

+ n1ωo1 − n2ωo2 )t − γ)
])

, (66)

vzout (t) = C A

2
sin α

∞∑
n=−∞

Jn(D1)

(
sin((ωs + ωr1 + nωo1 )t) − sin((ωs − ωr1 − nωo1 )t)

)
.

(67)

The result for α = 0 is consistent with the 2D case [cf. Eqs.
(33) and (34)]. However, once the harmonically oscillating
rotations are turned away from each other, i.e., α tends
toward π

2 , ωr1 and ωr2 do not simply add together but form
an additional RM, resulting in a new set of harmonics.
Also, while Rz(γ) acts as a simple offset for Rz(ωr2 t +
D2 sin(ωo2 t)), its influence on the harmonic distribution
is much more pronounced, as evidenced by the result for
ωr1 = 0 and ωr2 = 0:

vxout (t) = C A
∞∑

n1=−∞

∞∑
n2=−∞

(
cos(α)J2n1+1(D1)

[
cos(γ)J2n2+1(D2) cos((ωs + (2n1 + 1)ωo1

+ (2n2 + 1)ωo2 )t) − sin(γ)J2n2 (D2) sin((ωs

+ (2n1 + 1)ωo1 + 2n2ωo2 )t)
] + J2n1 (D1)[

cos(γ)J2n2 (D2) cos((ωs + 2n1ωo1 + 2n2ωo2 )t)

− sin(γ)J2n2+1(D2) sin((ωs + 2n1ωo1

+ (2n2 + 1)ωo2 )t)
])

, (68)

vyout (t) = C A
∞∑

n1=−∞

∞∑
n2=−∞

(
cos(α)J2n1+1(D1)

[

cos(γ)J2n2 (D2)

sin((ωs + (2n1 + 1)ωo1 + 2n2ωo2 )t)

+ sin(γ)J2n2+1(D2)

cos((ωs + (2n1 + 1)ωo1 + (2n2 + 1)ωo2 )t)
]

+J2n1 (D1)
[

cos(γ)J2n2+1(D2)

sin((ωs + 2n1ωo1 + (2n2 + 1)ωo2 )t))

+ sin(γ)J2n2 (D2)

cos((ωs + 2n1ωo1 + 2n2ωo2 )t)
])

, (69)

vzout (t) = C A

2

∑∞
n=−∞ sin(α)Jn(D1)[

sin((ωs + nωo1 )t) − sin((ωs − nωo1 )t)
]
. (70)

Once again, for α = 0 and γ = 0, the results are equal to
the 2D case [cf. Eqs. (37) and (38)]. However, the choice
for γ now controls how the different combinations between
even and uneven multiples of ωo2 are distributed across
vxout (t) and vyout (t). With 0 < α ≤ π

2 the harmonics com-
prised of odd multiples of ωo1 from vxout (t) and vyout (t) are

gradually removed and replaced with harmonics in vzout (t)
instead. Because Rz(D1 sin(ωo1 t)) is effectively being ro-
tated away from the common rotation axis, the emerging
harmonics in vzout (t) are composed of multiples of ωo1 only.

2.3.3 Spectral Shaping Using Parametric
Time-Independent Rotations

In the previous subsections, intermediate constant ro-
tations were used to investigate the effect of the relative
orientation between successive rotation matrices, as well as
the source itself. It was shown that certain overtones fade
out, while others emerge or even flip their phase. For com-
plex multi-rotation SM synthesis scenarios, this effect can
be utilized as a parameter for spectral shaping; the fading
of overtones affects subsequent modulating rotations. This
can already be applied to the initial source position.

To illustrate this, consider the following example using
vin(t) = (CAcos (ωst), 0, 0):

vout(t) = Ry(ωr2 t)Rx (ωr1 t)Rz(γ)vin(t), (71)

with fs = 2 kHz, f1 = 12 kHz, and f2 = 6 kHz, where
ωrn = 2π fn , which results in overtones at 4, 8, 10, 14, 16,
and 20 kHz in the velocity field:

vxout (t) =
(cos γ

2
+ sin γ

4

)
(

cos(4000 · 2πt) + cos(8000 · 2πt)
)

− sin γ

4

(
cos(16000 · 2πt) + cos(20000 · 2πt)

)
, (72)

vyout (t) = sin γ

2

(
cos(10000 · 2πt) + cos(14000 · 2πt)

)
,

(73)

vzout (t) =
( sin γ

4
− cos γ

2

)
(

sin(4000 · 2πt) + sin(8000 · 2πt)
)

+ sin γ

4

(
sin(16000 · 2πt) + sin(20000 · 2πt)

)
. (74)

As can be seen in Eqs. (72)–(74), which overtone is au-
dible at which magnitude depends on the parameter γ. In
Fig. 4 the spectra of the components of the velocity field,
V xout ( f ), V yout ( f ) and V zout ( f ) are shown as a function of
γ in order to better visualize the variations of magnitude.
The modulations of the overtones at 4 and 8 kHz have their
roots at γ = 2.034 and γ = 5.176 in V xout ( f ), as well as
γ = 1.107 and γ = 4.249 in V zout ( f ) respectively, while
the modulations of all other overtones have their roots at
γ = 0 and γ = π instead. Rz(γ) in Eq. (71) is equiva-
lent to a source being rotated horizontally in the xy-plane.
Therefore, the example shows that the initial source posi-
tion alters the spectral balance between the overtones and
affects the spectral composition of the output velocity field
vout(t).

To present a more complex example, a harmonic series
shall be constructed for 1 kHz that spans the entire human
audible hearing range (see Fig. 5) using only constant an-
gular velocity rotation matrices. This can be achieved using
four perpendicular rotation matrices, with fs = 1 kHz, f1 =
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Fig. 4. The spectrum in each component of the velocity vector v as a function of γ, as given in Eq. (71), with fs = 2 kHz, f1 = 12 kHz,
and f2 = 6 kHz.

12 kHz, f2 = 6 kHz, f3 = 2 kHz, and f4 = 1 kHz. Addition-
ally a parametric constant rotation shall be inserted, and
the initial source position on the z-axis shall be defined,
meaning that vin(t) = (0, 0, CAcos (ωst)):

vout(t) = Ry(ωr4 t)Rx (α)Rz(ωr3 t)Ry(ωr2 t)Rx (ωr1 t)vin(t).

(75)

For Eq. (75), the even and odd harmonics are distributed
between vxout (t) (or vzout (t)) and vyout (t) respectively, as can
be seen in Fig. 5. The variations in magnitude differ quite
extensively between many overtones. Thus altering α in Eq.
(75) results in numerous combinations of different weight-
ings between overtones, resulting in a multitude of possible
timbres using only a combination of rotations on a single
harmonic source.

Finally, the authors want to show that this spectral shap-
ing technique can also be used with harmonically oscillat-
ing rotations in 3D. For this example, they chose a simple
scenario, similar to what was used in SEC. 2.3.2, using two
rotations Rz with an intermediate, parametric constant ro-
tation. Defining τi (t) = Di sin(ωoi t) in this case, as well as
vin(t) = (CAcos (ωst), 0, 0), the following is obtained:

vout(t) = Rz(τ2(t))Rx (α)Rz(τ1(t))vin(t). (76)

The harmonic series depicted in Fig. 6 results from defining
fs = 1 kHz, f1 = 7 kHz, and f2 = 2 kHz as well as D1 =
2.5 and D2 = 2.5 in Eq. (76).

In this case, most harmonics are contained in vxout (t)
and vyout (t), with only some even harmonics represented in
vzout (t) as well. It can be seen that the influence of α only ex-
tends to the even harmonics in this example, having roots

at α = ±π
2 , while the odd harmonics remain unaffected.

While this turns α into a spectral parameter controlling the
balance of even harmonics against odd harmonics, some
select even harmonics do reemerge in vzout (t), since the
roots for the overtones in vzout (t) are located at α = 0 and
α = π instead. However, unlike altering the depth param-
eters Di (as is a common technique with FM synthesis),
where most overtones would follow complex undulations
that would also affect the magnitudes of odd harmonics, α

synchronously reduces or increases the magnitudes of only
even harmonics, giving it a slightly different application
and justifying using both approaches for different goals in
spectral shaping. In APPENDIX A.3 the interested reader
may find additional information on some sound examples
that are similar to those shown in this subsection and that
were prepared to provide a more tangible illustration.

3 IMPLEMENTING SM SYNTHESIS

Rotating physical sources around a listener at the veloci-
ties described here could be considered impractical. There-
fore, the authors suggest implementing a simulation of a
rotating source using a multichannel loudspeaker array. An
example of a simulation of a source rotating at high veloci-
ties using a circular and spherical secondary source array by
the means of Wavefield Synthesis [45, 46] is demonstrated
in [16]. However, simulating the sound field of a rotating
source at high fidelity using Wavefield Synthesis may also
not be considered particularly practical in most cases.

Instead, the authors have implemented SM synthesis us-
ing a virtualization in the spherical harmonic domain and

Fig. 5. The spectrum in each component of the velocity vector v as a function of α, as given in Eq. (75), with fs = 1 kHz, f1 = 12 kHz, f2

= 6 kHz, f3 = 2 kHz, and f4 = 1 kHz.
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Fig. 6. The spectrum in each component of the velocity vector v as a function of α, as given in Eq. (76), with fs = 1 kHz, fm1 = 7 kHz,
fm2 = 2 kHz, and D1 = D2 = 2.5.

decoding the simulated velocity field with the help of Am-
bisonics [3, 4, 47]. Because Ambisonics decomposes the
acoustic field as a series of spherical harmonics from a
central reference point, it is relatively straight forward to
implement SM synthesis so that it can be reconstructed with
most speaker layouts or even in binaural over headphones.

It has been shown in [47] that the acoustic pressure at
a position r, generated by sources outside of the listening
area, can be approximated by the following truncated series:

p(r) =
M∑

m=0

im Jm(kr )
∑

0≤n≤m
σ=±1

Bσ
mnY σ

mn(φ, θ), (77)

for the radius r and wave number k = 2πf/c, where Y σ
mn

represents the spherical harmonic function for order m and
degree n and Bσ

mn are weighting coefficients and are asso-
ciated with the spherical harmonics expansion. For a plane
wave, this is given as [47, 48]:

Bσ
mn = p0Y σ

mn(φ, θ), (78)

with p0 being the pressure at the source. Eq. (78) shows
that a source may be encoded simply using gain factors on
a source signal s(t).

For first-order Ambisonics, only the terms corresponding
to the zeroth and first order are considered. An encoding
technique of a virtual sound source in first-order Ambison-
ics can thus be derived from Eq. (78) as follows [49]:

W (t) = a0s(t), (79)

X (t) = a1s(t) cos φ sin θ, (80)

Y (t) = a1s(t) sin φ sin θ, (81)

Z (t) = a1s(t) cos θ, (82)

where a0 and a1 are normalization factors for the zeroth and
first order, respectively, and depend on the standard adhered
to. Thus, if the input signal is set to s(t) = cos(ωst) in Eqs.
(79)–(82) and a constant rotation is chosen for φ = ωr1 t
and θ = ωr2 t along both the azimuth and inclination, the
same result as demonstrated in [16] is achieved, and the
analysis done in SECS. 1 and 2 applies.

The four components of first-order Ambisonics can be
mapped to the pressure and velocity components of the
acoustic field at the central listening position, respectively
[3, 47, 49, 50]. Moreover, though, the spherical harmonic

representation can be regarded as an ideal free field in which
SM synthesis may be implemented to produce the desired
acoustic field. An Ambisonic signal can therefore be rotated
by applying one of the rotation matrices given in SECS. 2.2
and 2.3 to the first-order components [51]. Also, it should
be noted that several sources encoded in Eqs. (79)–(82) may
simply be summed together into a single Ambisonic signal
to achieve more complex scenes. Referring back to SEC. 1.3,
this implies that not only can a simple source be rotated,
but an entire periphonic scene of arbitrary complexity.

Therefore, for a practical implementation of rotational
SM synthesis, one can directly take advantage of this rep-
resentation and implement time-varying rotation matrices
using input control signals si(t) that represent the angles
of rotation. For example, a unipolar sawtooth wave can be
easily mapped to the angle of rotation, representing a full
revolution at the sawtooth wave’s frequency. Likewise, a
sinusoidal input signal with varying amplitude, using the
same mapping as above, would represent a harmonic oscil-
lation around a fixed angle ωr = 0, where the input control
signal’s amplitude represents the angular distance D of the
oscillation—or depth of the modulation. Furthermore, the
separate normalization factors for each order can be used to
overcome the level difference encountered in [16] by using
a′

1 = ca1 with a correction factor c, similarly to how CA =
1 was set in SEC. 1.2.2 to achieve a better comparison with
AM and FM synthesis.

To better illustrate this, an example for a z-axis rotation is
given in Fig. 7, using a similar style as was used in [20]. A
sine tone generator is used as an input sound in this example.
The input frequency is given as fs at full scale, to be able
to scale it later separately by the factors a0 and a1 for each
spherical harmonic order. A sawtooth generator generates
a unipolar control signal at a frequency fr at full scale. The
cos and sin modules accept the control signal and map the
full scale range to the range 2π. The resulting coefficients
are used to scale the input signal and convert it into the
spherical harmonic domain. The final signal, comprising
the components W, X, and Y, can then be combined with
any other signal already encoded in Ambisonics.

Finally, the spherical harmonic domain will need to be
decoded. There are several techniques to decode an Am-
bisonic signal to a loudspeaker array or headphones, de-
pending on the selected optimization criterion among other
factors [4, 52]. Nevertheless, a general decoder to obtain the
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Fig. 7. An implementation diagram for a sound generated by
SM synthesis using a z-axis rotation in the first-order spherical
harmonic domain. Note that the channel order is given in the
common Ambisonics Channel Number format [64].

loudspeaker signals x for a finite number of loudspeakers
L is given as [52]

x = D diag{aN }χN , (83)

where D is a sampling decoder, dependent on the spherical
harmonics Ynm(φl, θl), with φl and θl describing the position
for a loudspeaker l; aN is the side-lobe suppressing weights;
and χN is the encoded Ambisonic signal for N harmonics.
Thus, if the loudspeaker positions φl and θl remain constant,
the operation is linear and the frequency content found in
the spherical harmonic representation is not altered.

The spatial reconstruction of the acoustic field using a
finite set of points over a sphere, however, may suffer from
spatial artifacts and can limit the sweet spot area. A common
approach to mitigate these is to use higher-order Ambison-
ics, which the authors plan to investigate more thoroughly
in the context of SM synthesis in future work. The decoding
techniques presented in [4, 52] should serve as a starting
point, as this is an issue in spatial audio and Ambisonics in
general.

4 CONCLUSION

In this paper, the authors presented a method for audio
synthesis in the acoustic velocity field using spatial trans-
formation matrices. They looked at the various secondary
effects caused by different rotation behaviors of a sound
source in both 2D and 3D and compared them to more
traditional synthesis approaches.

It has been shown that the spectral result in the velocity
field using a single constant angular rotation in 2D pro-
duces a spectrum split akin to RM synthesis. Yet, because
the pressure component maintains the input signal, it can
be said that the spectral result in the entire acoustic field is
more comparable to AM synthesis. Increasing the spectral
complexity by using successive constant angular rotations
is not possible in 2D, due to the fact that applying succes-
sive rotations is the same as merely adding their angles of
rotation.

An additional interesting case that was shown are har-
monically oscillating rotations in 2D, where it was found

that the spectral result in the velocity field is comparable
to FM synthesis instead. If no base rotation is present and
the rotation oscillates around a center direction, then the
even and odd multiples are distributed in the x and y com-
ponents of the velocity field, respectively, increasing the
spatial decorrelation. Moreover, chaining successive har-
monically oscillating rotations is comparable to PMMFM,
meaning that the spectrum can similarly be enriched by ap-
plying more harmonically oscillating rotations to the same
source.

It was found that certain limitations in 2D could be over-
come in 3D. Particularly, it is possible to split the spectrum
found in the velocity field after n constant angular rota-
tions by applying an additional rotation with a rotation axis
(ideally) perpendicular to the previous one. The spectral re-
sult is unique to 3D SM synthesis, compared to traditional
synthesis methods. An iterative method to determine the
spectral potential after n pairwise perpendicular rotations
has shown that the potential spectral complexity of 3D SM
synthesis lies in between the potential of multi-modulator
RM and AM synthesis.

Moreover, it was shown that rotating the rotation axes
of multi-rotation SM synthesis against each other has the
potential to be a parameter for spectral shaping. Since the
spectral result of a 3D multi-rotation system depends on
the relative orientations of successive rotation axes, both
constant angular velocity rotations as well as harmonically
oscillating rotations can be rotated against each other to
produce varying weightings of the overtones produced.

Finally, a practical implementation of SM synthesis
within the spherical harmonic domain using Ambisonics
was outlined in SEC. 3. Linear ramps, like a sawtooth wave,
can be used as input control signals to control the speed
at which the source rotates around the circle. Moreover,
a sinusodial control signal then represents a harmonically
oscillating movement, where the amplitude of the control
signal defines the depth. Using Ambisonics, the result of
SM synthesis can reproduced over a loudspeaker array with-
out any loss in spectral content. However, spatial artifacts
due to the truncation of the Ambisonic order and the fi-
nite number of loudspeakers in the array may cause spatial
artifacts in the reproduced sound.

4.1 Beyond Rotational SM Synthesis
This paper has focused on orthogonal rotation matrices as

one solution to SM synthesis. However, the general defini-
tion has been specifically chosen to encompass any spatial
transformation matrix. Considering that SM synthesis will
most likely always be implemented in virtual environments,
this can also include non-orthogonal matrices.

Thus, future work may also include the analysis of al-
ternate solutions for SM synthesis. One inspiration could
be Ambisonics itself, where many spatial transformations
have already been well established. For example, mirroring
[51] uses a diagonal matrix T = diag{c} with a corre-
sponding sign change sequence c and could be adapted to
use a sequence of continuous, periodic sign changes c̃ =
(cos(ωx t + φx ), cos(ωyt + φy), cos(ωz t + φz)), which can
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be considered a non-orthogonal generalization to rotational
SM synthesis.

4.2 Inherently Spatial Sounds
Although SM synthesis moves a source along a circle

around a listener, the speed of the movement is too high to
be perceived [15], and the synthesis result is instead per-
ceived as immersive and surrounding. Therefore, frequency
distribution and decorrelation are an inevitable part of rota-
tional SM synthesis. Unlike usual approaches to 3D sound
reconstruction and synthesis, the implementation in SEC. 3
demonstrates that SM synthesis does not reconstruct point
sources at certain positions but instead creates inherently
spatial sounds.

Because all sound synthesis happens in the velocity field
by the means of spatial transformations, any effect done
by SM synthesis theoretically disappears if analyzed at the
center of rotation via the pressure field exclusively. As such,
space plays an integral part in the use and application of
SM synthesis, and the authors therefore coined the term
inherently spatial to denote that sounds created by this or
similar methods exist not only in but specifically because
of the use of space. Accordingly, SM synthesis differs from
most previous spatial sound synthesis methods [22–30] in
that they first synthesize a sound and apply spatialization on
the synthesized result afterward, as opposed to achieving
synthesis through spatialization. Future work will encom-
pass the analysis of inherently spatial sounds from two
perspectives: first, from a musicological perspective, i.e.,
what are the compositional implications of inherently spa-
tial sounds, and, second, perceptually, in how far inherently
spatial sounds affect the perception of space.

Composition happens both on a macroscopic as well as a
microscopic scale [53], and it may be argued that sculpting
a sound using SM synthesis also sculpts a space. Thus, the
authors identify SM synthesis as a potential tool to aid and
reflect on musicological research in spatial music, that is,
as a tool for both the technical analysis of existing works as
well as the contemplation on the potential of spatial music.
For his composition Sirius, Stockhausen used a modified
version of his Rotationstisch, with which he could quickly
pan sounds by mechanically rotating a loudspeaker at the
center of a ring of eight microphones reproduced through
an octophonic loudspeaker setup thereafter [54]. In an in-
terview conducted in 1977, he described perceiving sounds
that were rotated “fast” by this technique as both “standing
still” while also “vibrating” [55].

Previous research has already shown that the auditory
spatial sensation of immersion can be further subdivided
and refined, which could help analyze the output of SM
synthesis in this aspect. For example, in [56] it has been
argued in favor of a distinction between the sensation of 2D
envelopment and 3D engulfment, the latter being unique to
auditory height perception, and [57] has expanded this re-
search to compare different methods of decorrelation using
qualitative perceptual gradients of the above. Composers
of spatial music have also attempted to classify spatial im-
pressions as a matter of perspectives [8, 58], while others

have described spatial sounds and metaphors as a matter
of spatial texture [59, 60]. The fact that the perception of
frequency and spatial location are not independent [61–

63] hints at the interplay of frequency and space and the
complications regarding this matter. Thus, concerning its
perception, the analysis SM synthesis can be approached
from another angle entirely in future work: in how far does
SM synthesis, as well as other spatial synthesis methods,
not only create sounds spectrally but also create sensation
of a space, as perceived through audition.

4.3 Future Work and Commercial Viability
Additionally to the points already mentioned in this sec-

tion, future work will also have to focus on practical im-
plementations of SM synthesis. The approach discussed
in SEC. 3 describes only a basic implementation of the
raw, bare-bones algorithm. However, a commercially vi-
able synthesizer requires work on additional details that
go beyond the basic synthesis process, as described here.
This may include effects and other modifications as well
as studies on the user experience of a potential product, in
both software and hardware. In particular, these effects and
processes most likely need to be adapted to the 3D spa-
tial domain. Furthermore, as addressed, e.g., in [27], user
experience studies would extend to the interface of such a
product, as it may require careful consideration of which
parameter to expose, while others may be grouped into
meta-parameters, since the user is presented with a differ-
ent approach to sound synthesis that strictly creates results
in the 3D spatial domain.
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A.1 BESSEL FORMULAE

Throughout the paper, the following expansions using
Bessel functions of the first kind have been used:

cos(D sin(θ)) = J0(D) + 2
∞∑

n=1

J2n(D) cos(2nθ)

=
∞∑

n=−∞
J2n(D) cos(2nθ), (84)

sin(D sin(θ)) = 2
∞∑

n=1

J2n−1(D) sin((2n − 1)θ)

=
∞∑

n=−∞
J2n−1(D) sin((2n − 1)θ), (85)

where the following has been used:
∞∑

n=−∞
J2n(D) f (2n) =

∞∑
n=−∞

J2n(D) f (−2n), (86)

∞∑
n=−∞

J2n−1(D) f (2n − 1)

= −
∞∑

n=−∞
J2n−1(D) f (−2n − 1). (87)

Eqs. (86) and (87) can be easily derived using the well-
known relation:

Jn(D) = (−1)n J−n(D). (88)

As a consequence, the following is obtained:

cos φ cos(D sin θ) =
∞∑

n=−∞
J2n(D) cos(φ + 2nθ), (89)

cos φ sin(D sin θ) =
∞∑

n=−∞
J2n+1(D) sin(φ + (2n + 1)θ),

(90)

sin φ cos(D sin θ) =
∞∑

n=−∞
J2n(D) sin(φ + 2nθ), (91)

sin φ sin(D sin θ) = −
∞∑

n=−∞
J2n+1(D) cos(φ + (2n + 1)θ),

(92)

as well as:

cos(φ + D sin(θ)) =
∞∑

n=−∞
Jn(D) cos(φ + nθ), (93)

sin(φ + D sin(θ)) =
∞∑

n=−∞
Jn(D) sin(φ + nθ) . (94)

A.2 CONCATENATING HARMONICALLY
OSCILLATING ROTATIONS IN 2D

Consider a frequency-modulated rotation matrix of the
following type:

R(ωr + D sin(ωmt))

=
[

cos(ωr + D sin(ωmt)) − sin(ωr + D sin(ωmt))
sin(ωr + D sin(ωmt)) cos(ωr + D sin(ωmt))

]
.

(95)

To show the effect of two or more such rotations applied to
the same source, the strategy used in [21], which replaces
one of the time-dependent terms with a generic variable
C1. Because R(θ1) · R(θ2) = R(θ1 + θ2), the compound
matrix R(C1) · R(D1 sin(ωm1 t)) = Rc(C1 + D1 sin(ωm1 t)),
where C1 = C2 + D2 sin(ωm2 t) + ωr1 t shall be considered.
For the purpose of only concatenating two frequency-
modulated rotation matrices, C2 = ωr2 t can be considered,
which will prove useful later. Also, because mc11 = mc22

and mc21 = −mc12 , only the first column of Rc shall be
considered:

mc11 = cos(C1) cos(D1 sin(ωm1 t))

− sin(C1) sin(D1 sin(ωm1 t)), (96)

mc21 = sin(C1) cos(D1 sin(ωm1 t))

+ cos(C1) sin(D1 sin(ωm1 t)). (97)

Using Eqs. (93) and (94), the following is received:

mc11 =
∞∑

n1=−∞
Jn1 (D1) cos(C1 + n1ωm1 t), (98)

mc21 =
∞∑

n1=−∞
Jn1 (D1) sin(C1 + n1ωm1 t). (99)

C1 = C2 + D2 sin(ω2t) + ωr1 t is now unpacked. In or-
der to simplify the next steps, C∗

2 = C2 + ωr1 t + n1ωm1 t
may also be defined:

mc11 =
∞∑

n1=−∞
Jn1 (D1) cos(C∗

2 + D2 sin(ωm2 t)), (100)

mc21 =
∞∑

n1=−∞
Jn1 (D1) sin(C∗

2 + D2 sin(ωm2 t)). (101)

The resulting factors are identical to Eqs. (96) and (97) after
applying the trigonometric identity in each case, meaning
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the previous steps can be applied once more, using the new
terms:

mc11 =
∞∑

n1=−∞
Jn1 (D1)

∞∑
n2=−∞

Jn2 (D2) cos(C∗
2 + n2ωm2 t),

(102)

mc21 =
∞∑

n1=−∞
Jn1 (D1)

∞∑
n2=−∞

Jn2 (D2) sin(C∗
2 + n2ωm2 t).

(103)

What remains is to unpack C∗
2 , and the nearly final solution

is received:

mc11 =
∞∑

n1=−∞

∞∑
n2=−∞

Jn1 (D1)Jn2 (D2) cos(C2

+ n2ωm2 t + ωr1 t + n1ωm1 t), (104)

mc21 =
∞∑

n1=−∞

∞∑
n2=−∞

Jn1 (D1)Jn2 (D2) sin(C2

+ n2ωm2 t + ωr1 t + n1ωm1 t). (105)

If only two frequency-modulated rotation matrices are
considered, C2 = ωr2 t can be set. However, the steps in
Eqs. (100)–(105) can be repeated, setting Ci = Ci+1 +
Di+1 sin(ωmi+1 t) + ωri t and C∗

i+1 = Ci+1 + ∑i
k=0(ωrk t +

nkωmk t). Thus, for a series of harmonically oscillating ro-
tations applied to a front-facing source,

vout(t) = R(ωrN + DN sin(ωm N t)) . . .

R(ωr1 + D1 sin(ωm1 t))

(
C A cos(ωs t)

0

)
, (106)

the following harmonic output is therefore received:

vxout (t) = C A

2

∞∑
k1=−∞

· · ·
∞∑

kN =−∞
Jk1 (D1) . . . JkN (DN )

[
cos((ωs + ωr1 + k1ωm1 + · · · + ωrN + kN ωm N )t)

+ cos((ωs − ωr1 − k1ωm1 − · · · − ωrN − kN ωm N )t)
]
,

(107)

vyout (t) = C A

2

∞∑
k1=−∞

· · ·
∞∑

kN =−∞
Jk1 (D1) . . . JkN (DN )

[
sin((ωs + ωr1 + k1ωm1 + · · · + ωrN + kN ωm N )t)

− sin((ωs − ωr1 − k1ωm1 − . . . − ωrN − kN ωm N )t)
]
.

(108)

A.3 SM SYNTHESIS SOUND EXAMPLES

The following appendix will briefly give some addi-
tional information on the sound examples provided with
this publication.2 In general the examples closely follow
the approach taken in each example of SEC. 2.3.3. In each
example, a sound was constructed using Eqs. (71), (75), and

The examples can be heard using the following link:
https://github.com/multimedia-eurecat/SMS.

(76), respectively, and the spectral shaping effect is demon-
strated by slowly changing the parameter of each respective
parametric time constant rotation matrix. However, because
SEC. 2.3.3 features examples with fundamental frequencies
in the kilohertz range for better visual display, lower val-
ues were chosen for the audible examples because the high
frequencies may be harsh to the ear.

Each example was rendered to binaural stereo, using sub-
ject D1’s binaural room impulse response from the SADIE
database [65]. As mentioned throughout the text above, be-
cause the sounds created using multiple-rotation SM syn-
thesis cannot be replicated using RM, AM, or FM without
filtering, an approximation using additive synthesis [18]
over mono was done in each case. For a better compari-
son of the spatial qualities created using SM synthesis, the
additive synthesis’ mono signal is also rendered using a
single loudspeaker virtually placed in front of the listener
using binaural stereo. In order to imitate the change in tone
color as the parametric time-independent rotation changes,
the envelope of each harmonic in all three velocity compo-
nents of the respective SM synthesis sound was extracted
and then applied to each frequency produced via additive
synthesis. Note, however, that, due to SM synthesis’ spa-
tial distribution of harmonics across the velocity vectors, as
well as phase differences between frequencies shared across
some velocity vectors, the summation in the 1D mono sig-
nal using additive synthesis results in a tone color that does
not perfectly match that of SM synthesis in all cases.

The SM synthesis values used in each example are the
following:

• Example 1 uses Eq. (71) with fs = 200 kHz, f1 = 1.2
kHz, and f2 = 600 kHz.

• Example 2 uses Eq. (75) with fs = 500 Hz, f1 = 6
kHz, f2 = 3 kHz, f3 = 2 kHz, and f4 = 500 Hz.

• Example 3 uses Eq. (76) with fs = 250 kHz, f1 = 3.5
kHz, and f2 = 1 kHz, as well as D1 = 0.3 and D2 =
0.6.

The order of each example is the same in each case. Each
example always starts with 5 s of the additive synthesis
approximation, weighting the harmonics according to the
starting values of each respective envelope. Then, the en-
velope is traced over the course of 5 s. After that, the fi-
nal spectrum is heard for another 5 s. Each example then
switches immediately to the SM synthesis case. Again, each
sound is first presented for 5 s with the parameter for the re-
spective parametric time constant rotation at 0. Then, each
respective parametric time constant rotation is then slowly
changed to rotate from 0 to 2π over the course of 5 s. Fi-
nally, the sound with the parametric time constant rotation
at 2π is heard for a last 5 s before each example concludes.
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