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Audio inpainting aims to reconstruct missing segments in corrupted recordings. Most exist-
ing methods produce plausible reconstructions when the gap lengths are short but struggle to
reconstruct gaps larger than about 100 ms. This paper explores diffusion models, a recent class
of deep learning models, for the task of audio inpainting. The proposed method uses an uncon-
ditionally trained generative model, which can be conditioned in a zero-shot fashion for audio
inpainting and is able to regenerate gaps of any size. An improved deep neural network archi-
tecture based on the constant-Q transform that allows the model to exploit pitch-equivariant
symmetries in audio is also presented. The performance of the proposed algorithm is evaluated
through objective and subjective metrics for the task of reconstructing short to mid-sized gaps,
up to 300 ms. The results of a formal listening test indicate that, for short gaps in the range
of 50 ms, the proposed method delivers performance comparable to the baselines. For wider
gaps up to 300 ms long, the authors’ method outperforms the baselines and retains good or fair
audio quality. The method presented in this paper can be applied to restoring sound recordings
that suffer from severe local disturbances or dropouts.

0 INTRODUCTION

Audio inpainting refers to repairing or filling in missing
or degraded parts of an audio signal [1]. Inpainting can be
used to remove noise, glitches, or other unwanted artifacts
from an audio recording or to fill in missing sections of
audio that have been lost or damaged. Application examples
include the restoration of old recordings corrupted by local
disturbances [2, 3], the reconstruction of missing audio
samples caused by scratches in CDs [4], or compensation
for audio packet loss in communication networks [5]. In
addition audio inpainting can be used in music and audio
production to create special effects or to manipulate audio
signals in creative ways [6]. This paper presents a novel
audio inpainting method based on diffusion models [7, 8],
a recently proposed generative deep-learning technique.

The task of audio inpainting is an ill-posed inverse prob-
lem, characterized by a non-unique set of solutions. Audio
inpainting has been widely studied in the literature [1, 9–
12]. The methods employed in audio inpainting are primar-
ily distinguished by the way the observed signal samples are
used as a prior or how they incorporate pre-existing assump-
tions about the signal. For instance, some techniques are
based on autoregression [4] or signal sparsity [13]. However
most of these techniques demonstrate strong performance
only when applied to gaps of less than 100 ms in duration.
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Such techniques tend to encounter challenges with longer
gaps or in cases where the assumption of stationarity, ex-
plicitly required by autoregressive methods and implicitly
relied upon by sparsity-based methods, does not hold.

In this work, the authors use generative priors, learned
from a diffusion probabilistic model, assuming that the so-
lution belongs to the same probability distribution as the
dataset used for training. Inpainting methods based on deep
generative models can reach new levels of expressivity,
since they are not grounded by the stationarity condition
and can generate new events in the inpainted gap [14–16].
In particular diffusion models have a strong potential to ex-
cel at this task as they possess a great versatility for solving
inverse problems [17, 18, 16].

In the authors’ previous study [16], the invertible
Constant-Q Transform (CQT) was used with a diffusion
model to solve inverse problems in audio. This paper re-
visits the use of the CQT, proposing an improved neural
network architecture operating in the transform domain us-
ing a small amount of signal redundancy. A diffusion model,
built with a deep neural network, is first trained with audio
material as an unconditional generator. During inference,
the model is conditioned in a zero-shot manner to generate a
plausible reconstruction of the missing segment. In contrast
to existing audio inpainting methods [10–12], the proposed
diffusion model can restore gaps of arbitrary length, retain-
ing high quality for longer gaps.

This paper addresses the inpainting of compact gaps in
an audio signal without any accompanying side informa-
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tion. Specifically the authors focus on gaps in the short-to-
medium size range, ranging from 25 to 300 ms. Note that
this differs from the goal of the authors’ previous work [16],
in which the model was tested on larger gaps up to 1.5 s in
length. It was observed that when the gap was very long,
the model had to generate new events. Although these gen-
erated events were often statistically plausible, they did not
align with the musical context and were deemed musically
incorrect, which is undesirable. This led to the conclusion
that a practical inpainting method for large gaps would
require a high-level understanding of the music structure
or the ability to be conditioned with a guiding signal, as
proposed in recent research [19]. However such consider-
ations fall outside the scope of this paper. As a result, the
authors limit the evaluation to gaps no longer than 300 ms.
Within this range, they assume that the content to be filled
can be anticipated by a human listener, ensuring a reliable
evaluation of the inpainting performance.

The rest of this paper is organized as follows. SEC. 1
reviews the relevant audio and image inpainting literature.
SEC. 2 explains the basics of diffusion models and the con-
ditioning method for the inpainting task. SEC. 3 introduces
the new diffusion-model architecture, which employs the
invertible CQT. SEC. 4 compares the proposed method with
previous inpainting methods in terms of objective and sub-
jective metrics. SEC. 5 concludes the paper.

1 OVERVIEW OF INPAINTING METHODS

This section reviews some relevant methods in the au-
dio inpainting literature. In addition the authors summarize
some recent work on image inpainting with diffusion mod-
els that inspired this work.

1.1 Existing Audio Inpainting Methods
Adler et al. first used the term “audio inpainting” to de-

scribe the restoration of gaps in audio signals [1], adopting
the name from the image inpainting literature. However
this is an old problem in audio processing, and the same
task has been previously referred to in the literature as au-
dio interpolation [4, 20, 21], audio extrapolation [22, 23],
reconstruction of missing samples [24, 25], waveform sub-
stitution [5], and imputation [26], among other things. The
first methods used interpolation techniques based on the
observed samples surrounding the gap [4]. A family of suc-
cessful methods uses autoregressive modeling based on the
assumption that the signal is stationary and can be approx-
imated by a linear combination of past samples [4, 20, 21].

A more recent family of methods takes advantage of
sparse signal representations [9, 11, 13], such as the short-
time Fourier transform (STFT). These methods try to find
the sparse representation of the missing part of the signal
that best fits the surrounding, uncorrupted signal. An estab-
lished method to enhance sparsity-based audio inpainting
is to learn the dictionary of basis functions [12, 27]. An-
other recent work uses non-negative matrix factorization,
exploiting the low-rankness of the magnitude spectra as a
prior [28].

The methods mentioned above only perform well for in-
painting short gaps, roughly in the range from 10 to 100 ms.
For longer gaps, these methods tend to fail to produce plau-
sible reconstructions since the stationarity condition does
not hold true. Some inpainting attempts for long gaps are
based on strong assumptions about the underlying structure
of the gap, including sinusoidal modeling [29] or similarity
graphs [30].

1.2 Deep-Learning–Based Audio Inpainting
During the last few years, a new trend has emerged us-

ing deep-learning–based techniques for audio restoration,
including the task of inpainting. Most of these studies use
generative models as the prior for inpainting. This allows for
methods that are able to generate new content in the gaps
to be filled. For instance generative adversarial networks
have been explored for this task [14, 15, 31]. Most of these
methods are based on a supervised problem-specialized set-
ting, where a dataset of masked/reconstructed audio signals
needs to be built to train the model. A shortcoming of this
approach is that a model trained with a certain set of degra-
dations does often not generalize to unseen degradations
and, as a consequence, lacks the versatility to be applied
for restoring gaps of arbitrary length.

Some other closely related studies fall under the category
of packet-loss concealment, which is a similar problem to
audio inpainting but with real-time constraints and usu-
ally targeting speech signals. Within this context, predictive
methods based on convolutional and recurrent neural net-
works [32, 33] as well as generative adversarial networks
[34, 35] have been proposed.

Also worth mentioning are other recent works that have
applied multi-modal side information as a conditioner for
the inpainting algorithm, including video frames [36], sym-
bolic music [37, 19], or text [38, 39]. Although this idea
falls outside the scope of this paper, exploiting multi-modal
information may turn out to be beneficial to inpaint large
gaps, where the context of the gap does not contain enough
information to reconstruct the missing segment.

1.3 Diffusion Models for Image Inpainting
Deep generative models have tremendously impacted im-

age processing research, not least their application to the
image inpainting problem. Relevant to this paper are re-
cent papers applying diffusion models for image inpaint-
ing. There are two main strategies in the literature to solve
inverse problems with diffusion models, including inpaint-
ing. The first one consists of sequentially replacing the
observed part of the signal in the reverse diffusion process
[8, 40]. This idea ensures data consistency and is conceptu-
ally simple but, in practice, struggles to generate consistent
content. Other work refined this approach by incorporating
ideas that benefited its versatility and performance, such
as using singular-value decomposition [17] or multiple re-
sampling during each sampling step [41]. The other strategy
builds on a Bayesian interpretation of posterior sampling
and estimates the gradients of the log-likelihood function
[18, 42], as elaborated in SEC. 2.2. These methods allow for
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a good approximation of the posterior distribution, which
leads to enhanced inpainting results, at the expense of a
higher computational cost.

2 A DIFFUSION MODEL FOR AUDIO INPAINTING

Diffusion models are a class of generative models that
have gained interest during recent years for a wide range
of modalities, such as images [7, 43, 44], audio [45, 46,
16], video [47], and symbolic music [37], among others.
These models generate new data instances by reversing the
diffusion process, by which data x0 ∼ pdata is progressively
diffused into Gaussian noise xT ∼ N (0, σ2

maxI) over time τ

[7].1

The present authors follow the parameterization by Kar-
ras et al. [48], who define the reverse diffusion process with
the following probability flow ordinary differential equa-
tion (ODE):

dx = −σ̇(τ)σ(τ)∇x log pτ(xτ)dτ, (1)

where dτ is an infinitesimal negative timestep, the noise
level is defined as σ(τ) = τ, and its first derivative as
σ̇(τ) = 1. The ODE is governed by the gradient of the log
probability density ∇x log pτ(xτ), formally known as the
score function [49].

The score is analytically intractable but can be approxi-
mated as

∇x log pτ(xτ) ≈ (Dθ(xτ, τ) − xτ)/σ(τ)2, (2)

where Dθ(xτ, τ) = x̂0, which refers to x̂τ at τ = 0, is a deep
neural network with weights θ, optimized with a denoising
Euclidean objective:

Ex0,ε∼N (0,I)
[
λ(τ)‖Dθ(x0 + σ(τ)ε, τ) − x0‖2

2

]
, (3)

where λ(τ) is a time-dependent weighting parameter. Fur-
thermore, the preconditioning strategy proposed by Karras
et al. [48] is used:

Dθ(xτ, τ) = cskip(τ)xτ + cout(τ)Fθ(cin(τ)xτ, τ), (4)

where Fθ represents an optimizable deep neural network,
and cskip(τ), cout(τ), and cin(τ) are weighting parameters op-
timized in such a way that the input and output of Fθ always
have close-to-unit variance, a well-known good practice
when training deep neural networks.

For more comprehensive details on the diffusion model
formalism and optimization, as well as the optimal weight-
ing parameters, the authors refer to [48]. In the rest of this
section, the authors elaborate on the audio inpainting prob-
lem and required changes that are applied to the inference
process of a diffusion model to solve this task.

2.1 Inverse Problem Formulation
The audio inpainting task can be formulated as a linear

inverse problem [1]. Consider an audio signal x0 and its

1The “diffusion time” variable τ must not be confused with the
“audio time” t. The authors use this formulation for notational
consistency.

observed version y with missing samples. Their relation
can be written as

y = m � x0, (5)

where m is a binary mask operator and � represents the
Hadamard product, or element-wise multiplication. In this
work, the operator m is considered as a known compact
binary mask, having the value 0 at locations where samples
are missing and 1 otherwise. The goal is to recover the
original signal x0 when the observed measurements y and
mask m are known.

2.2 Audio Inpainting via Posterior Sampling
The iterative nature of diffusion models offers great flex-

ibility for solving inverse problems [18, 16]. All that is
needed is to substitute the score in Eq. (1) with the poste-
rior score ∇x log pτ(xτ| y) [8].

Applying Bayes’ rule, the posterior factorizes as
pτ(xτ| y) ∝ pτ(xτ)pτ( y|xτ), which leads to

∇xτ
log pτ(xτ| y) = ∇xτ

log pτ(xτ) + ∇xτ
log pτ( y|xτ). (6)

The authors refer to the term ∇xτ
log pτ( y|xτ) as the noise-

perturbed likelihood score. Note that this term cannot be
derived in closed form due to its dependence on the noise
level σ(τ), because xτ represents the noise-perturbed signal
xτ = x0 + σ(τ)ε, where ε ∼ N (0, I). However, Chung et
al. [18] propose to approximate the noise-perturbed likeli-
hood with pτ( y|xτ) � p( y|x̂0), where x̂0 is the denoised
estimate at an intermediate noise level.

Modeling the likelihood as a normal distribution, the
noise-perturbed likelihood score is approximated as

∇x log pτ( y|xτ) � −ξ(τ) ∇x‖ y − m � x̂0‖2. (7)

This strategy can be understood as a sort of guidance [47], in
analogy with classifier guidance [43]. Importantly, note that
the gradient computation requires differentiating through
the neural network Fθ, which is responsible for the estima-
tion of x̂0, resulting in computational overhead.

The variable ξ(τ) in Eq. (7) is a scaling function that de-
fines the amount of guidance that is applied during sampling
or, in other words, how strongly the conditioning affects the
sampling trajectories. The authors parameterize the scaling
function as [16]

ξ(τ) = ξ′√N/(σ(τ)‖∇x‖ y − m � x̂0‖2‖2), (8)

where N is the length of the audio signal in samples and
ξ′ is a scalar hyperparameter. Choosing ξ′ = 0 leads to an
unconditional sampler, but selecting too large a value for
ξ′ results in a degenerate solution. This parameterization
scales the likelihood gradient by its norm in a way similar to
[50], regularizing the influence of the likelihood throughout
the inference process. The authors empirically observed
through qualitative analysis that this strategy allows for
robust results.

However the above conditioning method does not ensure
data consistency with the observed samples. When the ob-
served samples y are noiseless and reliable, as is assumed in
this work, the preferred solution is to keep them unchanged

102 J. Audio Eng. Soc., Vol. 72, No. 3, 2024 Mar.



PAPERS DIFFUSION-BASED AUDIO INPAINTING

Fig. 1. Inference block diagram for audio inpainting, where all straight lines represent a feedforward signal flow in the time domain. The
deep neural network is included in the denoiser block. The computation of the reconstruction gradient requires differentiating through
the mask and denoiser block by means of backpropagation, denoted as “backprop.” above, requiring a backward pass through the deep
neural network, illustrated here with a curved dotted line. The spectrograms are shown for illustrative purposes.

in the final output. A straightforward way to avoid changing
the existing samples is replacing the reliable samples from
the intermediate estimates x̂0 using the inpainting mask. To
keep the observed samples, the following data consistency
step at each sampling iteration can be applied:

x̂′
0 = y + (1 − m) � x̂0. (9)

Although some studies have proved the data consistency
step suboptimal [18, 51], others rely solely on data consis-
tency as a method to condition the diffusion model to solve
inverse problems [8, 41]. The authors observe that apply-
ing data consistency steps usually produces discontinuity
effects at the boundaries of the mask. To mitigate this effect,
the authors apply a smoothed version of the mask m for the
data consistency step of Eq. (9), which is implemented by
fading 1 ms of the reliable signal at the edges of each gap
with a raised cosine function.

2.3 Inference
Having defined the probability flow ODE, Eq. (1), and

the posterior sampling mechanism, Eq. (7), the next tasks
are to discretize and solve the reverse diffusion process,
using a trained diffusion model. In this work, the authors
use the second-order stochastic sampler proposed by Kar-
ras et al. [48], offering a good tradeoff between algorithmic
complexity and accuracy. This sampler also adds control-
lable stochasticity into the process, which is intended to
regularize approximation errors. The sampling algorithm,
specific for inpainting, is described in Algorithm 1. Fig. 1
summarizes graphically the sampling process, omitting the
second-order correction for brevity. It is important to note
that implementing the second-order correction would ne-
cessitate an additional denoising forward pass and the guid-
ance computation.

As presented on the left-hand side of Fig. 1, the audio
signal xT is initialized with Gaussian noise, and the noise is
iteratively removed throughout the inference process. Dur-
ing each discretization step, the authors acquire a denoised
estimate denoted as x̂0. They then condition this estimate
with the input observations shown at the top of Fig. 1 by
incorporating the reconstruction gradient from Eq. (7) and
implementing the data consistency step described in Eq.
(9). Each update step is a weighted sum of the noisy signal

Algorithm 1. Inference conditioned for audio inpainting.

Require: observations y, inpainting mask m, number of
iterations T, noise schedule τi, stochasticity Schurn

Sample xT ∼ N (0, σ2
maxI) � Initial noise is xT

γ = min(Schurn/T,
√

2 − 1) � Amount of stochasticity
for i = T, . . ., 1 do � Step backwards

τ̃i = (1 + γ)τi � Increased noise level
Sample ε ∼ N (0, I)
x̃i = xi +

√
σ(τ̃i )2 − σ(τi )2ε � Add extra noise

x̂0 = Dθ(x̃i , τ̃i ) � Denoiser
x̂0 = Hpost(x̂0) � Post-processing filter
x̂0 = x̂0 − σ(τ̃i )2ξ(τ̃i ) ∇x̃‖ y − m � x̂0‖2 � Eq. (7)
x̂ ′

0 = y + (1 − m) � x̂0 � Data consistency

xi−1 = x̃i − (σ(τi−1) − σ(τ̃i ))
(

x̂′
0−x̃i

σ(τ̃i )

)
� Update step

end for
return x̂0 � Output is the reconstructed signal

at the given step xi and the modified denoised estimate x̂′
0.

At the end of the process, shown on the right-hand side of
Fig. 1, the noise level becomes imperceptible, and thus the
reconstructed output signal x̂0 is obtained.

The noise schedule represents one of the most critical
design choices. Also following [48], given a number of
discretization steps T, the authors define the noise levels as

τi =
(

σ
1
ρ

max + i
T −1

(
σ

1
ρ

min − σ
1
ρ

max

))ρ

, (10)

where 0 ≤ i ≤ T − 1 is the discretization index; σmin and
σmax are, respectively, the minimum and maximum noise
levels; and ρ is a parameter controlling the warping of the
schedule, with higher values of ρ representing more steps
at lower noise levels. As in [16], the authors choose σmin

= 10−4, σmax = 1, and ρ = 13. The number of steps T
exhibits a clear tradeoff between sample quality and speed.
The authors use the value T = 70 in these experiments.

The amount of stochasticity injected into the process
is controlled with the parameter Schurn [48]. Empirically,
the authors have observed that adding a certain amount
of stochasticity helps to produce clean outputs. In these
experiments, they choose Schurn = 10.
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3 IMPROVED CQT-BASED ARCHITECTURE

Diffusion models are architecture agnostic, imposing no
constraints on how the denoiser backbone architecture Fθ

is designed. However, although the choice of architecture
does not have theoretical implications, in the best case it
can accelerate the convergence of the diffusion, producing
perceptually satisfying samples efficiently.

In their previous study [16], the authors used an invertible
CQT [52] to leverage structure from the audio signal and to
exploit the pitch-equivariant symmetry that harmonic sig-
nals exhibit when they are represented in a logarithmically
spaced time-frequency domain. The most interesting prop-
erty of the CQT is that a translation on the frequency axis
is equivalent to pitch transposition. This symmetry moti-
vates the usage of two-dimensional convolutional neural
networks (CNNs), considering that the convolutional oper-
ator, which CNNs are composed of, is translation equivari-
ant. In this section, the authors elaborate the usage of a CQT
and introduce an improved neural network architecture that
processes audio signals as CQT spectrograms. The authors
call the improved diffusion model based on this architecture
the CQT-Diff+ algorithm.

3.1 Using a CQT Representation
The diffusion process described in SEC. 2 is developed

in the time domain. However, as part of the computation
inside the deep neural network Fθ, the input waveform is
represented with an invertible CQT. Concisely, the neural
network Fθ is composed as

Fθ = ICQT ◦ F ′
θ ◦ CQT, (11)

where CQT and ICQT are the constant-Q-transform oper-
ation and its inverse, respectively; ◦ is the function compo-
sition operation; and F ′

θ refers to the neural network layers
with trainable weights. This approach takes advantage of
the structure imposed by the CQT while maintaining max-
imum versatility. Applying the neural network weights in
the transform domain does not impact the optimization,
because both the forward transform and its inverse are dif-
ferentiable.

The authors use the CQT proposed by Velasco et al. [52]
and by Holighaus et al. [53]. Briefly, this transform is built
on a set of K bandpass filters gk with an equal Q-factor and
logarithmically spaced center frequencies, defined as

fk = fmin2
k−1

B , for k = 1, 2, 3..., K , (12)

where B is the number of bins per octave band (when the
number of octave bands is Noct = K/B) and fmin = f1 is the
lowest center frequency. The maximum center frequency
can be designed to be placed at the Nyquist limit fK =
fs/2. The CQT is applied using the fast Fourier transform–
based processing, as introduced in [52], which allows for
a computationally efficient implementation. The authors
refer to [52, 53] for further details on the CQT transform,
as well as to their publicly available implementation.2

2https://github.com/eloimoliner/CQT_pytorch.

3.1.1 Discarding the DC Component
An obvious inconvenience caused by the logarithmic fre-

quency resolution is that there is no DC bin at 0 Hz. If
perfect reconstruction is required, one solution is to encode
the DC component with a low-pass filter gDC. In the au-
thors’ prior work [16], the DC component was included in
the model input by concatenating it to the time-frequency
matrix. However the authors observed the presence of low-
frequency artifacts in the generated outputs, which they
attribute to the disruption of the logarithmically uniform
frequency resolution at the DC component. Therefore the
authors made the decision to discard the DC component.
By excluding the DC component, the completeness of the
CQT as a transform is compromised. The model would
now train on only a subset of the transformed space, pro-
ducing an irreducible error in the frequency bands that it is
blind to. However this issue does not represent a problem in
practice, because the audio signals are assumed to be ban-
dlimited, and very little relevant information exists below
43 Hz, which corresponds to the lowest frequency band in
the authors’ specific case.

Nevertheless this irreducible error must be accounted for
when propagating the loss during training as well as during
the sampling stage. This compensation can be implemented
by applying a post-processing filter to the denoiser output:

x̂0 = Hpost(Dθ(xσ, σ)), (13)

where Hpost is a DC notch filter, designed to suppress the
frequency range that is not covered by the CQT bandpass
filters gk. This filter is applied during both training and
inference after each forward evaluation of Dθ( · ).

3.1.2 Optimizing Redundancy
In CQTs the receptive field of the filters decreases ge-

ometrically with frequency. To guarantee invertibility, the
decimation factors of the frequency bands also need to de-
crease geometrically, producing a non-uniform sampling
grid. This feature is not only impractical for constructing
a parallelizable and GPU-efficient implementation but also
complicates the architecture of the neural network.

An easy way to overcome this problem is to use instead
a CQT with a uniform sampling grid, where the decimation
factors remain constant across the frequency range [54].
Previously this approach allowed treating the CQT as a 2D
matrix and thus directly applying 2D CNNs [16]. A major
drawback of this strategy is its overcompleteness, which
leads to a suboptimal consumption of memory and compu-
tational requirements, as the 2D CNN is forced to process
a substantial amount of signal redundancy. This consider-
ably slowed down the training and inference processes in
the authors’ previous study [16] and limited the potential
scalability of the model.

Schörkhuber et al. [55] proposed splitting the CQT into a
sequence of octave-wise sub-transforms as a way to reduce
redundancy. The present authors adopt this strategy and
apply different sub-transforms with a constant decimation
factor for each octave band, in this case, each of them
having 64 frequency bins. A strong advantage of separating
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Fig. 2. Main diagram of the CQT-U-Net deep neural network architecture. In the diagram, only three octaves of eight are shown for
clarity. The sizes of the spectrograms are not proportional to the real signals.

the CQT into octave bands is that, when powers of two are
used as the sequence length, the time resolution decreases
exactly by a factor of two between two consecutive octaves.
This choice leads to a hierarchical representation that is
suitable for processing with a U-Net architecture [56].

3.2 Architecture Design
A U-Net has a hierarchical encoder/decoder structure, as

shown in Fig. 2, where the left-hand side is the encoder
and right-hand side is the decoder. The center part of Fig. 2
is called the “bottleneck,” which corresponds to the lowest
point of the letter “U.” The temporal resolution is progres-
sively reduced by a factor of two between consecutive layers
in Fig. 2, while the frequency resolution remains unchanged
[16]. The authors make use of this hierarchy by concate-
nating features from each CQT octave at the U-Net layers
where the time resolutions match, as Fig. 2 also illustrates.

The proposed architecture utilizes a double real repre-
sentation of the complex CQT features, where the real and
imaginary parts are stacked as two separate channels. Thus
the real and imaginary parts are freely merged in the chan-
nel dimension of the network, where the number of chan-
nels is further increased, but the synchrony between real
and imaginary parts in the time-frequency space is con-
served. The chosen strategy aims to circumvent the compu-
tational complexity associated with complex-valued layers,
since they generally lack empirical performance advantages
compared to their real-valued counterparts while imposing
higher computational costs [57]. However, even though the
neural network views the features as real, the underlying
data is complex, and one must be cautious with how the
features are processed.

In particular it was observed that shift-based operations,
such as biases in convolutional layers or mean normal-
izations, introduced perceptual artifacts to the generated

output and, as a consequence, they should be avoided. The
intuition behind this lies in the unique nature of complex
numbers and the way they interact during computations.
In a complex number, the real and imaginary parts rep-
resent different dimensions of information. If shift-based
operations were applied, they could introduce imbalances
between the real and imaginary components, leading to in-
consistent phase relationships and distorted information.
Thus bias terms in all the layers are set to zero. However
this does not apply to additive residual connections, since
they are designed to add the activations of one layer to an-
other without altering their phase relationships. Note that
this does not represent a practical limitation to the model
because all the signals are approximately zero mean.

In accordance with typical U-Net architectures, concate-
native skip connections bridge the intermediate resolutions
of the encoder and decoder as shown in Fig. 2. An an-
tialiasing filter was used in the downsampling and upsam-
pling layers in the encoder and decoder stages, respectively.
At each resolution of both the encoder and decoder stages
and at the bottleneck, a residual block (referred to as “Res.
Block”) is applied, which constitutes the primary building
block of the architecture.

In the encoder, the left-hand side of Fig. 2, the input
coefficients are divided into octave-specific “pieces” and
processed separately using “In. Blocks.” The features from
each octave are then concatenated along the frequency di-
mension to the corresponding latent vectors of the U-Net at
corresponding time resolutions, as represented graphically
in Fig. 2. Additionally residual connections are applied be-
tween the (resized) input features and the corresponding
latent vectors of the U-Net to facilitate information flow
through all layers of the encoder.

The decoder, or the right-hand side of Fig. 2, comprises
the main signal path containing “Res. Blocks” and the outer
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Fig. 3. Building blocks of the backbone U-Net architecture, cf.
Fig. 2.

path with residual connections. As the temporal resolution
is upsampled in the main path, the features from the lowest
octaves at each layer are discarded and projected to the
“outer” path via “Out. Blocks.” In the outer path, at each
resolution, the lowest octave is extracted and sent to the
ICQT block, as indicated at the right part of Fig. 2 with
green lines. This dual-path strategy is inspired by Karras
et al. [44], and its purpose is to improve the gradient flow
during the optimization process.

3.2.1 Building Blocks of the Architecture
The building blocks of Fig. 2 are presented in detail

in Fig. 3. They are all conditioned with the noise-level
embedding σ-emb, which is built with random Fourier
features (RFF) [58] followed by a multi-layer perceptron
(MLP) having three layers. The conditioning is realized
with feature-wise linear modulation [59], without shifts.
The “In. Block” shown in Fig. 3(b) applies a 1×1 convo-
lution to expand the channel size from two (real and imag-
inary) to the required number of latent features at every
layer. They are followed by Group Normalization (without
shift operations), a Gaussian-error-linear-unit (“GELU”)
non-linearity, and a linear layer. The “Out. Blocks” have
a similar form, but with the 1 × 1 convolution placed at the
end, mapping the latent vector to a channel size of two.

Fig. 3(a) shows that each residual block, “Res. Block,”
contains a stack of shift-free Group Normalization layers,
followed by a “GELU” non-linearity and convolutions in
both time and frequency, but with exponentially-increasing
dilations in the frequency dimension, meant to provide a
wide receptive field while exploiting the symmetry of pitch-
equivariance. The authors additionally include a timewise
self-attention layer in the deeper “Res. Block” layers, as
explained in SEC. 3.2.2.

In contrast to the authors’ former work [16], frequency-
positional embeddings designed to encode absolute fre-

Fig. 4. Timewise self-attention block used in Fig. 3.

quency positional information are not used. The reason is
that, while the absolute frequencies cannot, in principle,
be retrieved with a CNN, they can, in practice, be spuri-
ously learned through the use of zero padding [60]. With
this modified architecture, zero padding is used in the con-
volutional layers at each intermediate stage, also in the
frequency dimension, propagating absolute positional in-
formation throughout the network, even at the shallower
layers. The authors observed that, in this setting, the use of
frequency-positional embeddings provided no significant
benefit.

3.2.2 Timewise Self-Attention
The motivation behind using timewise self-attention is to

allow the model to learn global features in the time dimen-
sion, overcoming the locality of CNNs. The use of atten-
tion would allow the model to analyze similarities between
different segment pairs in time, a feature that could intu-
itively be highly beneficial for the task of inpainting. The
latent features are two-dimensional (time and frequency),
but since the idea is to apply attention only through time
and not in frequency, some modifications are required with
respect to the basic self-attention mechanism [61].

Fig. 4 presents the functionality of the timewise self-
attention block. In order to reduce the otherwise unfeasible
computational complexity, the authors introduce a 1 × 1
convolution before the self-attention mechanism. This re-
duces the number of channels, which can be quite large (up
to 256), to only a few attention heads (set to eight in this
work). For each head, the queries Q and keys K are com-
puted with a linear layer that sees the frequency dimension
as the feature dimension. A timewise attention mask is com-
puted via standard dot-product attention and is later applied
to the values V. In order to preserve the structure in the fre-
quency dimension, the authors do not apply any processing
to the values V, apart from the timewise attention. Finally,
another 1 × 1 convolution is applied at the output to expand
the reduced number of heads to the original channel size.

Note that, as implemented in this work, the use of time-
wise self-attention breaks the translation-equivariant prop-
erty of fully convolutional networks, rendering the model
unsuitable for processing sequences of different lengths
than the one used during training. If one wishes to process
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a longer sequence, a segment-by-segment approach with a
fixed segment length can be applied.

3.2.3 Hyperparameter Specification
The architecture of Fig. 2 is designed to work at a sam-

pling frequency of fs = 44.1 kHz. The authors use a CQT
with B = 64 bins per octave and Noct = 8 octaves. The depth
of the U-Net matches the number of octaves, and the feature
sizes range from 64 features at the shallower U-Net layers
to 256 features at the bottleneck. The number of stacked
dilated convolutions on each “Res. Block” ranges from two
to eight, with fewer dilations at the shallower layers since
they need to cover fewer frequency bins and, thus, a large
receptive field is not needed. Because of their quadratic
complexity, timewise self-attention is only used at the three
deepest layers, where the time resolution has been signif-
icantly reduced. The total parameter count is 242 million
parameters. The authors refer to the public repository for
further specifications.3

4 EVALUATION

The performance of the proposed method, which the au-
thors refer to as CQT-Diff+, is evaluated for inpainting short
to middle-sized gaps in musical recordings, ranging from 25
to 300 ms. For comparison, two baselines are considered:

• LPC: A method based on signal extrapolation using
linear predictive coding [23].

• A-SPAIN-L: A sparsity-based method for audio in-
painting with dictionary learning [12], which is re-
garded as a state-of-the-art method for short-gap in-
painting.

Results of both objective and subjective experiments are
reported. All experiments use the sample rate of 44.1 kHz.
In the objective evaluation, the authors analyze various gap
lengths within intervals of 25 ms.

In the subjective evaluation, the authors examine four
different gap sizes: 50, 100, 200, and 300 ms. In all in-
stances, they intentionally introduce four gaps uniformly
across audio segments that have a duration of 4.17 s. These
gaps are applied simultaneously at predetermined time lo-
cations. Other machine-learning–based methods could not
be included in the evaluation, since they either were not
designed for wideband music audio [14, 34, 16] or do not
allow enough flexibility to be tested with gaps of different
length [10, 15]. For instance, the authors’ previous diffu-
sion model [16], which corresponds to a prior iteration of
the proposed method, could not be included as a baseline
either, being unsuitable to work at sample rates higher than
22.05 kHz due to memory constraints.

The initial hypothesis is that the authors’ method pro-
vides no advantage against the baselines when the gap is
very short, as, in this case, stationary conditions can be

3https://github.com/eloimoliner/audio-inpainting-diffusion/
tree/main/conf.

safely assumed. However, as the duration of the gap in-
creases, the problem gets more challenging, and the perfor-
mance of the baselines is likely to degrade. On the other
hand, a diffusion-based generative model should not suffer
from this limitation and should be capable of generating
audio content regardless of the gap length. Thus, the ques-
tion the authors want to resolve is the following: How does
the performance of CQT-Diff+ compare to the baselines in
terms of reconstruction quality as the gap length increases?

4.1 Training
The authors train their model with the MusicNet dataset,

a collection of 330 freely licensed classical music record-
ings sampled at 44.1 kHz. MusicNet is a multi-instrument
dataset containing recordings from a wide variety of acous-
tical environments and recording conditions, representing
a challenging and realistic scenario. The authors use a seg-
ment length of 4.17 s, limited by memory requirements.
The training is performed using the Adam optimizer, with
a learning rate of 2 × 10−4 and a batch size of four. The
model is trained for roughly 500,000 iterations, taking ap-
proximately 5 d on a single NVIDIA A100 GPU. During
training, the authors track an exponential moving average
of the weights, which corresponds to the one used during
testing.

4.2 Objective Evaluation
The authors first conduct an objective evaluation where

they report three metrics. The first one is log-spectral dis-
tance (LSD) [62], a reference-based metric specified as

LSD = 1

T

T∑
t=1

√√√√ 1

K

K∑
k=1

(
log |Xt,k |2 − log |X̂t,k |2

)2
, (14)

where Xt,k = STFT(x0) and X̂t,k = STFT(x̂0) are the STFTs
of the reference x0 and the restored audio signal x̂0, respec-
tively. For the STFT computation, an analysis window of K
= 2,048 samples and a hop length of 512 samples is used.
The LSD provides information about the reconstruction
performance, with respect to the original signal.

The authors also use the Objective Difference Grades
(ODG), estimated using the PEMO-Q auditory model [63].
This metric is also reference-based and aims to replicate
the subjective difference grades that are obtained through a
subjective listening test. The last metric is the reference-free
Fréchet Audio Distance (FAD) that compares the statistics
of a set of generated data against those of a reference dataset
[64]. This metric has been demonstrated to correlate with
perceptual audio quality [64]. In this case, the authors com-
pare the distribution of inpainted audio signals with that of
the original ones.

The results for different gap lengths are plotted in Fig. 5.
In their evaluation, the authors used a subset of the Music-
Net test set [65] comprising 60 randomly selected 4.17-s
samples, each of them containing four equally spaced gaps.
The test samples were not seen during the training of the
proposed method. The authors deliberately chose a smaller
test set due to computational limitations. They believe that
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Fig. 5. Average objective metrics, including (a) LSD, (b) ODG, and (c) FAD, computed for various gap lengths from 25 to 300 ms.
Lower is better for LSD and FAD, whereas higher is better for ODG. The proposed method (CQT-Diff+) obtained competitive results
against the baselines in the reference-based metrics LSD and ODG, while being superior in terms of FAD.

expanding it would not notably alter the results, considering
the added computational load.

Fig. 5(a) shows that, according to the LSD metric, for
gaps smaller or equal to 100 ms, the proposed method yields
a performance similar to the baselines and marginally out-
performs them for longer gaps. The results of the ODG
metric are presented in Fig. 5(b), showing how all meth-
ods obtain similar values for small gap lengths, with LPC
performing marginally better. Above 100 ms, all the ODG
values are below −3, which refers to annoying or very an-
noying sound quality [66]. Finally Fig. 5(c) shows the FAD
results, where lower values (<5) indicate that the distri-
bution of inpainted audio is statistically similar to the ref-
erence. The proposed method consistently achieves lower
FAD values than the compared baselines, meaning that the
inpainted audio is in-distribution with the rest. On the other
hand, the baselines show a strong decline in terms of FAD
as the gap size increases.

4.3 Subjective Evaluation
Since there is no guarantee that objective metrics pro-

vide reliable information about the perceived quality of
the inpainting methods, the authors conducted a subjective
listening experiment. The listening test was designed in ac-
cordance with the MUSHRA recommendation [67], using
the webMUSHRA evaluation tool [68]. The participants
were asked to rate, on a scale from 0 to 100, the perceptual
similarity of each item with respect to the reference, which
was the original audio sample (without gaps).

The conditions included a low anchor (a masked ver-
sion of the reference with four gaps); three reconstructed
versions of the low-anchor, produced using the LPC, A-
SPAIN-L, and the proposed CQT-Diff+; and a hidden ref-
erence (the original unprocessed signal). Fig. 6 shows an
example of all five conditions with two gaps. The listen-
ers were allowed to loop and focus in detail on the gap
locations. The items represented four gap lengths (50, 100,
200, and 300 ms) and 12 randomly picked 4.17-s examples
from the MusicNet test set. The test contained a total of 48
pages of the five items above to be evaluated. In order to
reduce the duration of the experiment and avoid listening
fatigue, the test was split into two equal-length parts of 24

pages that were alternatively assigned to the participants.
A total of 15 volunteers, all of whom reported no hearing
loss, participated in the experiment. The average age of the
listeners was 28 years. The audio examples used for the
listening test are available at the companion webpage.4

The results of the listening test are presented in Fig. 7.
Except for the 50-ms case where A-SPAIN-L was superior,
LPC obtained higher scores than A-SPAIN-L. For the gap
length of 50 ms, the proposed method obtained scores sim-
ilar to the compared baselines, all of them close to 100.
For the remaining evaluated gaps longer than 50 ms, the
proposed method outperformed the baselines. The authors
studied the statistical significance of the score differences
between CQT-Diff+ and LPC through a Wilcoxon signed-
rank test that gave a p value of 1.2 × 10−4, 1 × 10−9,
and 3.5 × 10−9 for the gap lengths 100, 200, and 300 ms,
respectively. The authors conclude that the differences are
significant since the p values are way below 0.05. With the
exception of gap lengths of 50 ms, the findings depicted
in Fig. 7 reveal that the proposed approach consistently
achieves median scores ranging from 50 to 80. These scores
exhibit a proportional decrease as the gap length increases.
In the case of the shortest 50-ms gaps, the median score for
the CQT-Diff+ method reaches 100, indicating that it was
difficult for listeners to find discerning differences in this
particular test scenario.

Considering the test question, the listening test result can
be interpreted so that the proposed diffusion model per-
forms at least as well as the compared baselines for all gap
lengths. The minimum gap length for which the reconstruc-
tion using the proposed method is better than the baselines
is 100 ms; above that CQT-Diff+ consistently outperforms
the baselines. The authors can conclude that, up to the
length of 200 ms, the proposed CQT-Diff+ algorithm pro-
duces perceptually “good” audio inpainting (median scores
above 60), although distinguishable from the reference in
pairwise comparison. For the gap length of 300 ms, the
proposed method offers “fair” sound quality.

To gain a deeper understanding of the subjective test
results, the authors qualitatively analyze a specific exam-

4http://research.spa.aalto.fi/publications/papers/jaes-diffusion-
inpainting/.
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Fig. 6. Audio inpainting examples with two gaps of 200 ms, for all five signal types included in the listening test, including waveform
and spectrogram representations. The start and end timestamps of the gaps are highlighted with vertical lines. The masked waveform (a)
and the original waveform (e) are included for comparison. The proposed method, CQT-Diff+ (d), produces more coherent and realistic
reconstructions than the compared baselines (b) and (c).

ple depicted in Fig. 6. This figure exhibits waveform and
spectrogram representations of a masked music signal in
Fig. 6(a), along with three reconstructed versions, Figs.
6(b), (c), and (d), and the original signal for reference in
Fig. 6(e), all with a gap length of 200 ms. Upon examina-
tion, A-SPAIN-L evidently generates an attenuated recon-
struction that fades out toward the middle of the gap and
fades in again before reaching the gap’s end. In practice the
method shortens the dropout but cannot fill it. The decay
observed in the reconstruction arises due to the sparsity
penalty that restricts the generation of content further into
the gap. On the other hand, relying on extrapolation, LPC
suffers less from this issue. Nevertheless this method is only
capable of extending stationary sounds and cannot create
new attacks and events. Consequently the reconstructions
produced by LPC often sound artificial.

Visually the reconstruction generated with the proposed
CQT-Diff+ algorithm fills the gap in a credible manner in
Fig. 6(d). However the comparison with the original signal
shown in Fig. 6(e) reveals that the reconstruction of the
proposed methods is not exact, since the two waveforms
look different.

5 CONCLUSION

This paper presents a novel audio inpainting method
CQT-Diff+ that is based on recent diffusion models. For
the reconstruction of short gaps of 50 ms or less, the pro-
posed method works as well as a previous high-quality
inpainting method. For longer gaps, from 100 to 300 ms,
the CQT-Diff+ method outperforms the baseline algorithms
and retains good or fair quality.

One limitation of the method presented in this paper is
that the performance is limited to the types of audio record-
ings seen during the training, in this case, classical music.
To demonstrate the versatility of the proposed approach,
the authors also report, in the form of audio examples
in the companion webpage, results obtained with a model
trained on a large variety of sound effects. However these
results were excluded from the evaluation in this paper. In
the future, the generalizability of the diffusion-based audio
inpainting technique should be evaluated by considering
models trained on a wider variety of audio recordings.

Another promising direction for future work could in-
volve providing the CQT-Diff+ model with conditional in-
formation. In the results of the authors’ tests reported else-

Fig. 7. Boxplot diagram representing the results of the subjective listening experiment for evaluated gap lengths of 50 ms (a), 100 ms
(b), 200 ms (c), and 300 ms (d).
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where, a generative method based on a diffusion model
created plausible content and new events, when the gaps
were 1.5 s long [16]. However, due to the lack of con-
textual information, the results were difficult to control. A
conditional diffusion approach may offer a higher degree
of control over the results, especially when dealing with
extremely long gaps.
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“Introducing SPAIN (Sparse Audio Inpainter),” in Pro-
ceedings of the 27th European Signal Processing Confer-
ence (EUSIPCO), pp. 1–5 (A Coruña, Spain) (2019 Sep.).
https://doi.org/10.23919/EUSIPCO.2019.8902560.

[14] P. P. Ebner and A. Eltelt, “Audio In-
painting With Generative Adversarial Network,”
arXiv preprint arXiv:2003.07704 (2020 Mar.).
https://doi.org/10.48550/arXiv.2003.07704.

[15] A. Marafioti, P. Majdak, N. Holighaus, and N. Per-
raudin, “GACELA: A Generative Adversarial Context En-
coder for Long Audio Inpainting of Music,” IEEE J. Sel.
Top. Signal Process., vol. 15, no. 1, pp. 120–131 (2021
Jan.). https://doi.org/10.1109/JSTSP.2020.3037506.

[16] E. Moliner, J. Lehtinen, and V. Välimäki, “Solv-
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