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Computer musicians refer to mesostructures as the intermediate levels of articulation be-
tween the microstructure of waveshapes and the macrostructure of musical forms. Examples
of mesostructures include melody, arpeggios, syncopation, polyphonic grouping, and textural
contrast. Despite their central role in musical expression, they have received limited attention
in recent applications of deep learning to the analysis and synthesis of musical audio. Cur-
rently, autoencoders and neural audio synthesizers are only trained and evaluated at the scale
of microstructure, i.e., local amplitude variations up to 100 ms or so. In this paper, the authors
formulate and address the problem of mesostructural audio modeling via a composition of a
differentiable arpeggiator and time-frequency scattering. The authors empirically demonstrate
that time–frequency scattering serves as a differentiable model of similarity between synthe-
sis parameters that govern mesostructure. By exposing the sensitivity of short-time spectral
distances to time alignment, the authors motivate the need for a time-invariant and multi-
scale differentiable time–frequency model of similarity at the level of both local spectra and
spectrotemporal modulations.

0 INTRODUCTION

0.1 Differentiable Time–Frequency Analysis
Time–frequency representations (TFRs) such as the

short-time Fourier transform (STFT) or constant-Q trans-
form (CQT) play a key role in music signal processing
[1, 2] because they can demodulate the phase of slowly
varying complex tones. As a consequence, any two sounds
x and y with equal TFR magnitudes (i.e., spectrograms)
are heard as the same by human listeners, even though the
underlying waveforms may differ. For this reason, spec-
trograms can not only serve for visualization, but also for
similarity retrieval. Denoting the spectrogram operator by
�, the Euclidean distance ‖�( y) − �(x)‖2 is much more
informative than the waveform distance ‖ y − x‖2, because
the waveform distance diverges quickly even when phase
differences are small.

In recent years, existing algorithms for STFT and CQT
have been ported to deep learning frameworks such as Py-
Torch, TensorFlow, MXNet, and JAX [3–5]. By doing so,
the developers have taken advantage of the paradigm of
differentiable programming, defined as the ability to com-

pute the gradient of mathematical functions by means of
reverse-mode automatic differentiation. In the context of
audio processing, differentiable programming may serve
to train a neural network for audio encoding, decoding, or
both. Hence, the umbrella term may be coined differentiable
time–frequency analysis (DTFA) to describe an emerging
subfield of deep learning in which stochastic gradient de-
scent involves a composition of neural network layers as
well as TFR. Previously, TFR were largely restricted to
analysis frontends, but now play an integral part in learning
architectures for audio generation.

The simplest example of DTFA is autoencoding. Given
an input waveform x, the autoencoder is a neural network
architecture f with weights W, which returns another wave-
form y [6, 7]. During training, the neural network fW aims
to minimize the following loss function:

Lx(W) = ‖(� ◦ fW )(x) − �(x)‖2, (1)

on average over every sample x in an unlabeled dataset.
The function above is known as spectrogram loss because
� maps x and y to the time–frequency domain.
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Another example of DTFA is found in audio restoration.
This time, the input of fW is not x itself but some degraded
version h(x)—noisy or bandlimited, for example [8, 9].
The goal of fW is to invert the degradation operator h by
producing a restored sound ( fW ◦ h)(x), which is close to
x in terms of spectrogram loss:

Lx(W) = ‖(� ◦ fW ◦ h)(x) − �(x)‖2. (2)

Thirdly, DTFA may serve for sound matching, also
known as synthesizer parameter inversion [6, 10, 11]. Given
a parametric synthesizer g and an audio query x, this task
consists in retrieving the parameter setting θ such that
y = g(θ) resembles x. In practice, sound matching may be
trained on synthetic data by sampling θ at random, generat-
ing x = g(θ), and measuring the spectrogram loss between
x and y:

Lθ(W) = ‖(� ◦ g ◦ fW ◦ g)(θ) − (� ◦ g)(θ)‖2. (3)

0.2 Shortcomings of Spectrogram Loss
Despite its proven merits for generative audio modeling,

spectrogram loss suffers from counterintuitive properties
when events are unaligned in time or pitch [12]. Although
a low spectrogram distance implies a judgment of high per-
ceptual similarity, the converse is not true: one can find
examples in which �(x) is far from �( y) yet judged musi-
cally similar by a human listener. First, � is only sensitive
to time shifts up to the scale T of the spectrogram window,
i.e., around 10–100 ms. The authors exemplify this in Fig.
3 with a visualization of a multi-scale spectrogram’s (MSS)
loss surface under time-shifts. In the case of autoencoding,
if fW (x)(t) = x(t − τ) with τ � T, Lx(W) may be as large
as 2‖�(x)‖2 even though the output of fW would be easily
realigned onto x by cross-correlation. In the case of audio
restoration of pitched sounds, listeners are more sensitive
to artifacts near the onset (e.g., pre-echo) [13], even though
most of the spectrogram energy is contained in the sustain
and release parts of the temporal profile.

Lastly, in the case of sound matching, certain synthe-
sizers contain parameters that govern periodic structures
at larger time scales while being independent of local
spectral variations. In additive synthesis, periodic modu-
lation techniques such as vibrato, tremolo, or trill have
a “rate” parameter that is neither predictable from iso-
lated spectrogram frames, nor reducible to a sequence of
discrete sound events. A small perturbation to synthesis
parameters of ε will induce a g(θ + ε) globally dilated
or compressed but locally misaligned in time, rendering
‖(� ◦ g)(θ + ε) − (� ◦ g)(θ)‖ not indicative of the mag-
nitude of ε. Comparison of timbre similarity is no longer
possible at the time scale of isolated spectrogram frames.

Modular synthesizers shape sound via an interaction be-
tween control modules (sequencers, function generator) and
sound processing and generating modules (oscillators, fil-
ters, waveshapers) [14]. In a “patch,” sequencers determine
the playback speed and actuate events, while amplitude en-
velopes, oscillator waveshapes and filters sculpt the timbre.
Changing the clock speed of a patch would cause events to

be unaligned in time, but not alter the spectral composition
of isolated events.

0.3 Musical Timescales: Micro, Meso, Macro
The shortcomings of modeling music similarity solely at

the microscale of short-time spectra is exemplified by the
terminology of musical structure used in algorithmic com-
position. Curtis Roads outlines the challenge of coherently
modeling multiscale structures in algorithmic composition
[15]. Computer musicians refer to musical structures at a hi-
erarchy of time scales. At one end is the micro scale, from
sound particles of few samples up to the milliseconds of
short-time spectral analysis [16]. Further up the hierarchy
of time is the meso scale, structures that emerge from the
grouping of sound objects and their complex spectrotem-
poral evolution [17], and the macro scale broadly includes
the arrangement of a whole composition or performance.
In granular synthesis, microstructure arises from individ-
ual grains, and their rate of playback forms texture clouds
at the level of mesostructure. Beyond the micro scale and
spectrogram analysis are sound structures that emerge from
complex spectral and temporal envelopes, such as sound
textures and instrumental playing techniques [18].

0.4 Contributions
In this paper, the authors pave the way toward DTFA of

mesostructure. The key idea is to compute a 2D wavelet de-
composition (“scattering”) in the time–frequency domain
for a sound x. The result, named joint time–frequency scat-
tering (JTFS) transform, is sensitive to relative time lags and
frequency intervals between musical events. Meanwhile,
JTFS remains stable to global time shifts: going back to
the example of autoencoding, fW (x)(t) = x(t − τ) leads to
(�JTFS ◦ fW )(x) ≈ �JTFS(x), which is in line with human
perception.

To illustrate the potential of JTFS in DTFA, an example
of differentiable sound matching in which microscale dis-
tance is a poor indicator of parameter distance is presented.
In this example, the target sound x = g(θ) is an arpeggio
of short glissandi events (“chirplets”), which spans a scale
of two octaves. The two unknowns of the problem are the
number of chirplets per unit of time and the total duration
of the arpeggio. The authors show that it is possible to re-
trieve these two unknowns without any feature engineering,
simply by formulating a least squares inverse problem in
JTFS space of the form:

θ = arg min
θ̃

Lθ (̃θ)

= arg min
θ̃

‖(� ◦ g)(̃θ) − (� ◦ g)(θ)‖2
2. (4)

Intuitively, for the inverse problem above to be solvable
by gradient descent, the gradient ofLθ should point towards
θ when evaluated at any initial guess θ̃. The authors’ main
finding is that such is the case if � is JTFS, but not if �

is the MSS. Moreover, the authors find that the gradient
of Lθ remains informative even if the target sound is sub-
ject to random time lags of several hundred milliseconds.
To explain this discrepancy, the concept of differentiable
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Fig. 1. Illustration of chirps overlapping in time and log–frequency. In each pair of chirps, one is displaced in time from the other. We
progressively increase the chirp rate, γ, for one chirp in the pair (left to right). The bars indicate the distance between two chirps in the
MSS (gray) and time–frequency scattering (black) domains, respectively. The authors observe that when the chirp rates γ governing
mesostructure are equal, the JTFS distance is at a minimum, while spectrogram distance is around its maximum. JTFS distance correlates
well with distance in γ. The authors give a more detailed discussion of the importance of a time-invariant differentiable mesostructural
operator in SEC. 3.

mesostructural operator is defined as yielding the Jacobian
matrix of (� ◦ x) at θ̃, i.e., the composition between audio
synthesis and JTFS analysis at the parameter setting of in-
terest. This concept is not limited to sound matching but
also finds equivalents when training neural networks for
autoencoding and audio restoration.

The authors release a differentiable implementation of
JTFS in Kymatio v0.4,1 an open-source software for DTFA
on GPU, which is interoperable with modern deep learning
libraries [19]. To encourage reproducibility of numerical
experiments, this paper is supplemented with open-source
code.2

1 MOTIVATING EXAMPLE

1.1 Comparing Time-Delayed Chirps
Fig. 1 illustrates the challenge in DTFA of reliably com-

puting similarity between chirps synthesized by g. In the
example, the first-order moments of two chirps in the time–
frequency domain are equal, regardless of frequency mod-
ulation (FM) rate. Consider two chirps that are displaced
from one another in time. Their spectrogram distance is at a
maximum when the mesostructure is identical, i.e., the FM
rates are equal and the two signals are disjoint. As the FM
rate increases, the two chirps overlap in the time–frequency
domain, resulting in a reduction of the spectrogram dis-
tance that does not correlate with correct prediction of θ.
The spectrogram loss changes little as γ is varied. Moreover,
local micro segments of a chirp are periodically shifted in
both time and frequency under γ, implying that comparison
of microstructure is an inadequate indicator of similarity.
A possible solution would be to dynamically realign the
chirps; however, this operation is numerically unstable and
not differentiable. The following sections outline a differ-
entiable operator that is capable of modeling distance in
θ and stable to time shifts. A representation that is well-
equipped to disentangle these three factors of variability
should provide neighborhood distance metrics in acoustic
space that reflect distance in parameter space.

1Kymatio v0.4: https://github.com/kymatio/kymatio.
2Experiments repository: https://github.com/cyrusvahidi/meso-

dtfa.

1.2 Chirplet Synthesizer
A chirplet is a short sound event that produces a diag-

onal line in the time–frequency plane. Generally speak-
ing, chirplets follow an equation of the form x(t) =
a(t) cos(2πϕ(t)) where a and ϕ denote instantaneous am-
plitude and phase respectively. In this paper, the authors
generate chirplets whose instantaneous frequency grows ex-
ponentially with time, so that their perceived pitch (roughly
proportional to log-frequency) grows linearly. This FM is
parametrized in terms of a chirp rate γ, measured in octaves
per second. Denoting by fc the instantaneous frequency of
the chirplet at its onset, the following is obtained:

ϕ(t) = fc

γ log 2
2γt . (5)

Then, the instantaneous amplitude a of the chirplet is
defined as the half-period of a sine function, over a time
support of δt. This half-period is parameterized in terms of
amplitude modulation (AM) frequency fm = 1

2δt. Hence:

a(t) = sin(2π fmt) if 0 ≤ fmt < 1
2 and 0 otherwise. (6)

At its offset, the instantaneous frequency of the chirplet
is equal to fm = fc2γδt = fm2γ/ fm . The notation θ was used
as a shorthand for the AM/FM tuple (fm, γ).

1.3 Differentiable Arpeggiator
The authors now define an ascending “arpeggio” such

that the offset of the previous event coincides with the
onset of the next event in the time–frequency domain. To
do so, the chirplet is shifted by nδt in time and multiply its
phase by 2nδf = 2nγδt

for integer n. Lastly, a global temporal
envelope is applied to the arpeggio, by means of a Gaussian
window (t �→ φw(γt)/γ) of width γw where the bandwidth
parameter w is expressed in octaves. Hence:

x(t) = 1

γ
φw(γt)

+∞∑
n=−∞

a
(

t − n

fm

)
cos

(
2γ n

fm ϕ

(
t − n

fm

))
= gθ(t), where θ = ( fm, γ). (7)

In the equation above, the number of events with non-
negligible energy is proportional to:

ν(θ) = fmw

γ
, (8)
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which is not necessarily an integer number because it varies
continuously with respect to θ. Here it is seen that the
parametric model g, despite being very simple, controls
an auditory sensation whose definition only makes sense
at the mesoscale: namely, the number of notes ν in the
arpeggio that form a sequential stream. Furthermore, this
number results from the entanglement between AM (fm)
and FM (γ) and would remain unchanged after time shifts
[replacing t by (t − τ)] or frequency transposition (varying
fc). Thus, although the differentiable arpeggiator has limited
flexibility, the authors believe that it offers an insightful test
bed for the DTFA of mesostructure.

2 TIME–FREQUENCY SCATTERING

JTFS is a convolutional operator in the time–frequency
domain [20]. Via two-dimensional wavelet filters applied
in the time–frequency domain at various scales and rates,
JTFS extracts multiscale spectrotemporal modulations from
digital audio. When used as a frontend to a 2D convolutional
neural network, JTFS enables state-of-the-art musical in-
strument classification with limited annotated training data
[21]. Florian Hecker’s compositions, e.g., FAVN in 2016,
mark JTFS’s capability of computer music resynthesis (see
a full list of compositions from [22]).

2.1 Wavelet Scalogram
Let ψ ∈ L2(R, C) be a complex-valued wavelet filter

of unit center frequency and bandwidth 1/Q1. The au-
thors define a constant-Q filterbank of dilations from ψ as
ψλ : t �−→ λψ(λt), with constant quality factor Q1. Each
wavelet has a center frequency λ and a bandwidth of λ/Q1.
The frequency variable λ is discretized under a geometric

progression of common ratio 2
1

Q1 , starting from λ/Q1. For
a constant quality factor of Q1 = 1, subsequent wavelet
center frequencies are spaced by an octave, i.e., a dyadic
wavelet filterbank.

Convolving the filterbank ψ with a waveform x ∈ L2(R)
and applying a pointwise complex modulus gives the
wavelet scalogram U1:

U1x(t,λ) = |x ∗ ψλ|(t). (9)

U1 is indexed by time and log -frequency, corresponding
to the commonly known CQT in time–frequency analysis.

2.2 Time–Frequency Wavelets
Similarly to SEC. 2.1, the authors define another two

wavelets ψt and ψf along the time and log -frequency axes,
with quality factors equivalent to Q2 and Qfr, respectively.
Then, two filterbanks ψt

α and ψf
β are derived, with center

frequencies of α and β, in which

ψt
α(t) = αψt(αt), (10)

ψf
β(log2 λ) = βψf(β log2 λ). (11)

As in the computation of U1, α and β are discretized by

geometric progressions of common ratios 2
1

Q2 and 2
1

Qfr . The
frequency variable α and β are interpreted from a perspec-

Fig. 2. Illustration of the shape of 2D time–frequency wavelets
(second-order JTFS). Each pattern shows the response of the real
part of 2D filters that arise from the outer product between 1D
wavelets ψα(t) and ψβ(log λ) of various rates α and scales β (re-
spectively). Orientation is determined by the sign of β, otherwise
known as the spin variable falling in { − 1, 1}. See SEC. 2 for
details on JTFS.

tive of auditory spectrotemporal receptive fields [23]: α is
the temporal modulation rate measured in Hz, and β is the
frequential modulation scale measured in cycles per octave.

The outer product between ψt
α and ψf

β forms a family of
2D wavelets of various rates α and scales β. ψt

α and ψf
β are

convolved with U1x in sequence and a pointwise complex
modulus applied, resulting in a four-way tensor indexed (t,
λ, α, β):

U2x(t,λ, α, β) = |U1x(t,λ) ∗ ψt
α ∗ ψf

β|. (12)

In Fig. 2, the real part of the 2D wavelet filters are visu-
alized in the time–frequency domain. The wavelets are of
rate α, scale β and orientation (upward or downward) along
log2λ, capturing multiscale oscillatory patterns in time and
frequency.

2.3 Local Averaging
The authors compute first-order JTFS coefficients by

convolving the scalogram U1x of Eq. (9) with a Gaussian
low-pass filter φT of width T, followed by convolution with
ψβ (β � 0) over the log-frequency axis, then pointwise
complex modulus:

S1x(t,λ, α = 0, β) = |U1x(t,λ) ∗ φT ∗ ψβ|. (13)

Before convolution with ψβ, the output of U1x(t,λ) ∗
φT is subsampled along time, resulting in a sampling rate
proportional to 1/T. Indeed, Eq. (13) is a special case of Eq.
(12) in which modulation rate α = 0 by the use of φT .

The authors define the second-order JTFS transform of
x as

S2x(t,λ, α, β) = U2x(t,λ) ∗ φT ∗ φF , (14)

where φF is a Gaussian low-pass filter over the log -
frequency dimension of width F. For the special case of β

= 0 in Eq. (12), ψβ performs the role of φF , yielding

S2x(t,λ, α, β = 0) = |U1x(t,λ) ∗ ψt
α ∗ φF | ∗ φT . (15)

In both Eqs. (14) and (15), S2x is subsampled to sampling
rates of T−1 and F−1 over the time and log-frequency axes,
respectively. Low-pass filtering with φT and φF provides
invariance to time shifts and frequency transpositions up
to a scale of T and F respectively. The combination of
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S1x and S2x, i.e., Sx = {S1x, S2x}, allows for covering all
paths combining the variables (λ, α, β). SEC. 3 introduces
the use of Sx as a DTFA operator for mesostructures.

Fig. 1 highlighted the need for a operator that models
mesostructures. The stream of chirplets is displaced in fre-
quency at a particular rate. At second-order, JTFS describes
the larger scale spectrotemporal structure that is not cap-
tured by S1. Moreover, JTFS is time-invariant, making it
a reliable measure of mesostructural similarity up to time
scale T.

3 DIFFERENTIABLE MESOSTRUCTURAL
OPERATOR

This section introduces a differentiable mesostructural
operator for time–frequency analysis. Such an operator is
needed in optimization scenarios that require a differen-
tiable measure of similarity, such as autoencoding.

In SEC. 1, the authors defined a differentiable arpeggia-
tor g whose parameters θ govern the mesostructure in x.
The authors now seek a differentiable operator � ◦ g that
provides a model to control the low-dimensional parame-
ter space θ. By way of distance and gradient visualization
under � ◦ g, the authors set out to assess the suitability of
� for modeling θ in a sound matching task.

Two DTFA operators in the role of � are considered:
(i) the MSS (approximately U1x) and (ii) time–frequency
scattering (Sx = {S1x, S2x}) (JTFS). In case (i), a small
distance between two sounds is deemed to be an indication
of same microstructure. On the contrary, similarity in case
(ii) suggests the same mesostructure. Although identical U1

implies equality in mesostructure, the reverse is not true,
e.g., in the case of time shifts and non-stationary frequency.

Previously, JTFS has offered assessment of similarity be-
tween musical instrument playing techniques that underlie
mesostructure. With the DTFA operator �, there is poten-
tial to model mesostructures by their similarity as expressed
in terms of the raw audio waveform, synthesis parameters
or neural network weights. In cases such as granular syn-
thesis, it may be desirable to control mesostructure, while
allowing microstructure to stochastically vary.

3.1 Gradient Computation and Visualization
A distance objective is evaluated under the operator � ◦

g as a proxy for distance in θ:

Lθ(θ̃) = ‖(� ◦ g)(θ) − (� ◦ g)(θ̃)‖2
2. (16)

For a given parameter estimate θ̃, the gradient ∇Lθ of
the distance to the target θ is

∇Lθ(θ̃) = −2
(

(� ◦ g)(θ) − (� ◦ g)(θ̃)
)T

· ∇(� ◦ g)(θ̃).

(17)

The first term in Eq. (17) is a row vector of length

P = dim
(

(� ◦ g)(θ)
)

and the second term is a matrix

of dimension P × dim(θ̃). The dot product between the
row vector in the first term and each column vector in the
high-dimensional Jacobian matrix ∇(� ◦ g) yields a low-

dimensional vector of dim(θ). Each column of the Jacobian
matrix can be seen as the direction of steepest descent in
the parameter space, such that distance in � is minimized.
Therefore the operator � ◦ g should result in distances that
reflect sensitivity and direction of changes in θ.

In Lθ of Eq. (16), time–frequency scattering (Sx) is
adopted (see SEC. 2) in the role of �. Otherwise, LM SS

θ

is referred to when using the MSS. In the JTFS transform,
the authors set J = 12, Jfr = 5, Q1 = 8, Q2 = 2, Qfr = 2,
and set F = 0 to disable frequency averaging.

Alternatively, LM SS
θ is referred to when using the MSS.

Let �
(n)
STFT be the STFT coefficients computed with a win-

dow size of 2n. The MSS loss is computed in Eq. (18),
which is the average of L1 distances between spectrograms
at multiple STFT resolutions:

LM SS
θ (θ̃) = 1

N

10∑
i=5

|(�(n)
STFT ◦ g)(θ) − (�(n)

STFT ◦ g)(θ̃)|.

(18)

The chosen resolutions account for the sampling rate of
8,192 Hz used by g. The authors set w = 2 octaves in
all subsequent experiments and normalize the amplitude of
each gθ .

For this experiment, the authors uniformly sample a
grid of 20 × 20 AM/FM rates ( fm, γ) on a log-scale
ranging from 4 to 16 Hz and 0.5 to 4 octaves per sec-
ond, leading to 400 signals with a carrier frequency of
fc = 512 Hz. The center of the grid fm = 8.29 Hz and
γ = 1.49 octaves / second is designated as the target sound.
A constant time shift τ = 210 samples is introduced to the
target sound in order to test the stability of gradients under
perturbations in microstructures. Lθ and ∇Lθ associated
to each sound are evaluated for the two DTFA operators
�STFT and �JTFS.

The loss surfaces and gradient fields are visualized with
respect to θ̃ in Fig. 3. The authors observe that the JTFS
operator forms a loss surface with a single local minimum
that is located at the target sound’s θ. Meanwhile, gradients
across the sampled parameters θ̃ consistently point towards
the target, despite certain exceptions at high γ, which acous-
tically correspond to very high FM rate. Contrarily, MSS
loss gradient suffers from multiple local minima and does
not reach the global minimum when θ̃ is located at the tar-
get due to time shift equivariance. The authors highlight
that the MSS distance is insensitive to variation along AM,
making it unsuitable for modeling mesostructures.

In line with these findings, previous work [21] found
that 3D visualizations of the manifold embedding of JTFS’s
nearest neighbor graph revealed a 3D mesh whose principal
components correlated with parameters describing carrier
frequency, AM and FM. Moreover, K-nearest neighbors
regression using a nearest neighbors graph in JTFS space
produced error ratios close to unity for each of the three
parameters.

3.2 Sound Matching by Gradient Descent
Unlike classic sound matching literature, in which θ̃ is

estimated from a forward pass through trainable fW (i.e.,
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Fig. 3. Loss surface and gradient field visualization under � as
JTFS (a) and MSS (b) for sounds synthesized by g (see SEC.
1). Sounds are sampled from a logarithmically spaced grid on
fm and γ. The target sound is plotted as a dot and the loss is
computed between the target and a sound generated at every point
on the grid. The generated sound is time-shifted relative to the
target by a constant of τ = 210 samples. In the quiver plots, the
gradient of the loss operator is evaluated with respect to synthesis
parameters fm and γ. The direction of the arrows is indicative of the
informativeness of the distance computed on � ◦ g with respect to
θ. In the case of �JTFS, a 3D loss surface whose global minimum
is centered around the target sound is observed, whereas gradients
point toward the target. Contrarily, the global minimum of �MSS

does not center around the target or reach 0. In the presence of
small time shifts, the MSS loss appears insensitive to differences
in AM and uninformative with respect to θ.

neural network weights), sound matching is formulated as
an inverse problem in (� ◦ g). For the sake of simplicity,
the authors do not learn any weights to approximate θ.

Using the gradients derived in SEC. 3.1, sound matching
of a target state in θ is attempted using a simple gradient de-

scent scheme with bold driver heuristics. Additive updates
to θ̃ are performed along the direction dictated by gradient
∇θ̃Lθ:

θ̃ ← θ̃ − α∇θ̃Lθ. (19)

The bold driver heuristic increases the learning rate α

by a factor of 1.2 when Lθ decreases it by a factor of
2 otherwise. The evaluation metric in parameter space is
defined as

Lθ (̃θ) = ‖θ − θ̃‖2
2. (20)

Fig. 6 shows the mean L2 parameter error over gradient
descent steps for each �. A fixed target and initial prediction
are selected. Multiple optimizations are run that consider
time shifts between 0 and 210 samples on the target audio.

Across time-shifts within the support T of the low-pass
filter in �J T F S , convergence is stable and reaches close
to 0. The authors observe that MSS does not converge
and Lθ (̃θ) does not advance far from its initial value, in-
cluding the case of no time shifts. In Fig. 7, the effects
of time shifts for DTFA are further illustrated, validating
that JTFS is a time-invariant mesostructural operator up to
support T.

3.3 Time Invariance
In Fig. 4, the gradient convergence for different initial-

izations of θ̃ are explored but without time shifting the pre-
dicted sound. In each plot, gradient descent is performed for
5 different initializations of θ̃: (i) far away from the target
sound, (ii) in the local neighborhood of the target sound,
and (iii) broadly across the parameter grid. The authors
highlight that JTFS is able to converge to the solution in
each of the three initialization schemes, as corroborated by
its gradients in Fig. 5. The authors observe that even with-
out time shifts, MSS fails to recover the target sound in the
case that the parameter initialization is far from the target.
MSS does indeed recover the target sound if θ̃ is initialized

Fig. 4. Parameter distance ||θ − θ̃|| (log-scale) over gradient descent iterations with � as MSS and JTFS in three scenarios: (a) five
initializations of θ̃ far from the target, (b) five initializations of θ̃ in the neighborhood of the target, and (c) five initializations of θ̃
across the range of the grid. A time shift is not applied to the predicted sound (see Fig. 3 for gradient visualization). The target sound
has parameters θ = [8.49, 1.49]. The lines indicate the mean distance at each iteration across five runs of different θ̃ initialization. The
shaded region indicates the range across the five initializations. The titles indicate the range of the initial θ̃. The authors highlight that
even with no time shifts, MSS only recovers θ well when θ̃ is initialized in its local neighborhood (b). When θ̃ is initialized far from the
target (a), MSS fails to converge. Starting anywhere (c) converges in the best case but on average fails to converge and is close to the
worst case.
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Fig. 5. Loss surfaces (a) and gradient fields (b) under �JTFS and the �MSS for sounds synthesized by g (see SEC. 1), sampled from
a logarithmically spaced grid on fm and γ. Each sound is randomly shifted in time relative to the target by 2n samples, in which n is
sampled uniformly between [8, 12]. The target sound is plotted as a dot and the loss is computed under �JTFS and �MSS between each
sound and the target. In the quiver plots, the gradient of the loss operator is evaluated with respect to the synthesis parameters fm and γ
of the generated sound. In the case of both no time shifts, JTFS gradients point toward the target and the distance around 0 when is at the
target. Without time shifts, MSS computes distance between objects that intersect in the time–frequency domain. Its gradients appear to
lead to the target; however, it suffers from local minima along AM, as demonstrated by convergence in Fig. 4. In the presence of random
time shifts, JTFS is appears robust while MSS is highly unstable and prone to local minima.

Fig. 6. Parameter distance ||θ − θ̃||2 over gradient descent it-
erations with � as MSS and JTFS. The target sound has pa-
rameters θ = [8.49, 1.49]. The predicted sound is initialized at
θ̃0 = [4, 0.5]. The line plots the mean distance at each iteration
for multiple runs that shift the predicted sample in time by τ =
{22, 24, 27, 210} samples. The shaded region indicates the range
across different time shifts.

in the neighborhood of the target. Although when starting
anywhere, MSS does indeed converge in the best case, but
on average, it is close to the worst case, which does not
converge.

Fig. 5 shows the loss surface and gradient fields for �JTFS

and �MSS with no time shifts and random time shifts ap-
plied to the predicted sound. Despite MSS reaching the
global minimum when the predicted sound is centered at

Fig. 7. Final parameter distance ||θ − θ̃||2 after gradient descent
for g(θ)(t) and g(̃θ)(t − τ), for θ = [8.49, 1.49], θ̃0 = [4, 0.5].
Each run (x axis) is optimized under a different time shift τ on the
predicted audio. JTFS is invariant up to the support T = 213 of its
low-pass filter. The authors observe that convergence in parameter
recovery is stable to time shifts under the differentiable mesostruc-
tural operator � ◦ g, in the case that � is JTFS. Optimization is
unstable when � is a spectrogram operator.

the target, these experiments in gradient descent demon-
strate that it is only stable when θ̃ is initialized within the
local region of the target θ. When a random time shift
is applied to the predicted sound, the MSS loss is highly
unstable and produces many local minima that are not lo-
cated at the target sound. As expected, the JTFS gradient is
highly stable with no time shifts. Even in the presence of
random time shifts, JTFS is an invariant representation of
spectrotemporal modulations up to time shifts T.

J. Audio Eng. Soc., Vol. 71, No. 9, 2023 September 583



VAHIDI ET AL. PAPERS

4 CONCLUSION

DTFA is an emerging direction for audio deep learn-
ing tasks. The current state-of-the-art for autoencoding, au-
dio restoration, and sound matching predominantly perform
DTFA in the spectrogram domain. However, spectrogram
loss suffers from numerical instabilities when computing
similarity in the context of (i) time shifts beyond the scale of
the spectrogram window and (ii) nonstationarity that arises
from synthesis parameters. These prohibit the reliability of
spectrogram loss as a similarity metric for modeling multi-
scale musical structures.

This paper introduced the differentiable mesostructural
operator, comprising of modeling synthesis parameters
that generate mesostructure by way of DTFA with time–
frequency scattering. Synthesis parameters are modeled for
a sound matching task using the JTFS for DTFA of struc-
tures that are identifiable beyond the locality of microstruc-
ture, i.e., amplitude and frequency modulations of a chirplet
synthesizer. Notably, JTFS offers a differentiable and scal-
able implementation of auditory spectrotemporal receptive
fields, multiscale analysis in the time–frequency domain,
and invariance to time shifts.

However, despite prior evidence that JTFS accurately
models similarities in signals containing spectrotemporal
modulations, JTFS is yet to be assessed in DTFA for in-
verse problems and control in sound synthesis. By analysis
of the gradient of the DTFA operator with respect to syn-
thesis parameters, the authors showed that in contrast to
spectrogram losses, JTFS distance is suitable for modeling
similarity in synthesis parameters that describe mesostruc-
ture. The stability of JTFS was demonstrated as a DTFA
operator in sound matching by gradient descent, particu-
larly in the case of time shifts.

This work lays the foundations for further experiments
in DTFA for autoencoding, sound matching, resynthesis,
and computer music composition. Indeed, the differentiable
mesostructural operator could be used as a model of the raw
audio waveform directly; however this approach is prone
to resynthesis artifacts [24, 22]. The authors have shown
that by means of DTFA, low-dimensional synthesis param-
eters that shape sequential audio events can be modeled.
The mesostructural operator’s invariance under frequency
translations has yet to be investigated. Frequency invari-
ant differentiable digital signal processing warrants an in-
vestigation of its own; the authors plan to address this in
future work. Another direction for future work lies in dif-
ferentiable parametric texture synthesis, in which texture
similarity may be optimized in terms of parameters that
derive larger scale structures, e.g., beyond the definition of
individual grains in granular synthesis.
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