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Instrument sound synthesis using deep neural networks has received numerous improve-
ments over the last couple of years. Among them, the Differentiable Digital Signal Processing
(DDSP) framework has modernized the spectral modeling paradigm by including signal-based
synthesizers and effects into fully differentiable architectures. The present work extends the
applications of DDSP to the task of polyphonic sound synthesis, with the proposal of a differ-
entiable piano synthesizer conditioned on MIDI inputs. The model architecture is motivated
by high-level acoustic modeling knowledge of the instrument, which, along with the sound
structure priors inherent to the DDSP components, makes for a lightweight, interpretable,
and realistic-sounding piano model. A subjective listening test has revealed that the proposed
approach achieves better sound quality than a state-of-the-art neural-based piano synthesizer,
but physical-modeling-based models still hold the best quality. Leveraging its interpretability
and modularity, a qualitative analysis of the model behavior was also conducted: it highlights
where additional modeling knowledge and optimization procedures could be inserted in order
to improve the synthesis quality and the manipulation of sound properties. Eventually, the
proposed differentiable synthesizer can be further used with other deep learning models for
alternative musical tasks handling polyphonic audio and symbolic data.

0 INTRODUCTION

Digital instruments and synthesizers have greatly im-
pacted the way music is being composed, produced, and
played and have thus participated in the shaping of new
musical genres. Analog and digital synthesizers undoubt-
edly allowed for the exploration of new sounds, by produc-
ing them in very different manners compared to physical
instruments. Additionally, progresses made in instrument
modeling have made it possible for more musicians to use
the sounds of more acoustic instruments in a simplified
way. Therefore, for these instrument models to be effective
in the music-making process, they have to be easily con-
trolled while accurately reproducing the subtle nuances of
the modeled instrument sounds.

Among the many methods for digital sound synthesis,
generative models based on neural networks have gained
a consequent interest recently, as they have shown to be
capable of reproducing, manipulating, and understanding
musical sounds in unprecedented ways. Their ability to
model nonlinear relationships, as well as the release of
associated datasets, have allowed the flourishing of neural-
based methods for instrument sound synthesis. For mono-
phonic and percussive sound synthesis, such models include

autoregressive models [1], recurrent models [2], (varia-
tional) auto-encoders [3, 4], Generative Adversarial Net-
work (GAN) [5–7], and diffusion models [8–10]. Although
these neural methods generate or manipulate audio in the
waveform or a time-frequency domain, the Differentiable
Digital Signal Processing (DDSP) framework [11], on the
other hand, predicts controls for manipulating audio synthe-
sizers. By implementing traditional synthesizers and digi-
tal processing operations as differentiable layers, the spec-
tral modeling paradigm [12] has been made compatible
and controllable with neural networks. These DDSP com-
ponents are designed to exhibit and to take advantage of
known properties of audio signals, such as periodicity and
harmonicity. As these strong priors on the sound structure
are introduced, the amount of training data and model pa-
rameters can be significantly reduced, and the synthesis
process is more interpretable.

In view of these results, new DDSP components were de-
veloped and used in end-to-end neural models by revisiting
synthesizer and signal-based techniques. For sound gen-
eration, such components include wavetables [13], wave-
shapers [14], and frequency modulation [15]. As for differ-
entiable signal processing, infinite impulse response filters
[16], parametric equalizers [17], and artificial reverbera-
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tion [18] were also revamped. For better manipulation of
DDSP-based synthesis models, several improvements [19–
21] have been made to make them controllable with the Mu-
sical Instrument Digital Interface (MIDI) protocol. Finally,
polyphonic mixtures of audio signals were also achieved by
combining multiple monophonic DDSP-based models [22,
23].

As of now, all these methods have only been applied
for modeling the sound of monophonic audio sources (in-
strument or voice). Although DDSP does not prevent its
application for the polyphonic case, to the best of the au-
thors’ knowledge, no extension has been made to the DDSP
components for handling simultaneous pitches on a single
instrument. Specifically, the piano has been one of the most
popular instruments through the history of western music,
notably because of its versatility as a polyphonic instrument
with a wide range of pitches and dynamics. The controls
for playing it remain fairly simple despite its complexity,
which inspired researchers for modeling it with different
simulation systems for decades before the advent of deep
generative models.

This paper presents DDSP-Piano, a MIDI-controllable
model that extends the DDSP approach for handling poly-
phonic inputs. Through the modularity of the DDSP compo-
nents, the model incorporates high-level modeling knowl-
edge as structural constraints in order to reproduce speci-
ficities of the piano sound (e.g., partials inharmonicity and
beatings). This fully differentiable synthesizer was trained
on a publicly available dataset of piano performances and
was evaluated in a listening test against other piano sound
synthesis models. Ratings indicate that with significantly
fewer parameters, and even with less training data, the
DDSP-Piano model has a better sound quality than a state-
of-the-art neural synthesizer. Deeper analysis were con-
ducted on the system initially presented in [24], which re-
veal the behaviors learned by the model and help identifying
its shortcomings and how it can be further improved.

This paper is organized as follows. SEC. 1 presents differ-
ent categories of piano sound synthesizers. Our proposed
model is then introduced in SEC. 2, with its implementation
and training procedure explained in SEC. 3. Quality eval-
uation of the model is then conducted against other piano
sound generation algorithms in SEC. 4, and SEC. 5 shows
qualitative results of the synthesis made by the DDSP-
Piano. Broader reflections on the approach are given in
SEC. 6. Completing this paper, examples of audio synthesis
and the source-code for model training and inference can
be found online.1

1 RELATED WORKS

Numerous methods have been proposed for piano sound
synthesis, each with varying complexity, needs for data, and
overall quality. The most common approach in the industry,
which is also the most straightforward, is the concatenative
synthesis, or sampling-based synthesis [25]. High-fidelity

1https://github.com/lrenault/ddsp-piano

recordings of isolated notes are played back upon triggers
from the MIDI input. The notes can be recorded at dif-
ferent velocities to cover the amplitude range, which can
require significant memory storage, depending on the cho-
sen resolution. Although single notes can be perceived as
realistic, mutual interactions between simultaneous notes
(such as sympathetic resonances) are not reproduced with
this approach, and the user has very limited control over the
model.

On the contrary, physical-modeling-based systems rely
on explicitly modeling the sound generation and propaga-
tion processes in the physical instrument. These systems
can achieve realistic, interpretable, and controllable sound
synthesis, but they require extensive modeling and precise
measurements of physical elements [26]. For practical us-
ages, such approaches can be efficiently implemented with
digital waveguides [27] or modal synthesis [28].

Signal-based methods can model the instrument by anal-
ysis and synthesis of audio examples with hand-crafted
models. Underlying models include additive synthesis
[29] and source-filter models [30]. These lightweight ap-
proaches are controllable and flexible as they can be directly
applied to other instruments, but they often lack realism in
the synthesis because of insufficient representation of phys-
ical details of the instrument or too-simplistic controls.

Finally, data-driven neural-based systems train black-box
models to synthesize audio from a large annotated dataset.
Most of these models adapt successful text-to-speech tech-
niques to the task of MIDI-to-audio synthesis for piano.
The first works for this category of systems synthesize au-
dio directly from the MIDI data using an auto-regressive
WaveNet [1]. Others works make use of an acoustic model
followed by a vocoder model to synthesize audio while usu-
ally predicting Mel-spectrograms as the intermediate audio
representation [31–33, 10]. The authors from [34] achieved
better quality by predicting MIDI-filter-bank–based spec-
tra instead: this time-frequency representation is a vari-
ant of the Mel-spectrogram, in which the filters for com-
puting it from the Short-Term Fourier Transform (STFT)
are centered around the MIDI note frequencies instead of
the Mel frequencies. Although differentiable, these neural-
based systems require a significant amount of annotated
recordings [1], and they do not explicitly model instrument
properties. Controlling these systems is limited to the con-
ditioning inputs provided during model training.

2 MODEL ARCHITECTURE

The proposed synthesis model is a harmonic-plus-noise
synthesizer [12] with polyphonic controls and outputs. It
separately generates the inharmonic and noisy components
yadditive and ynoise of up to P simultaneous notes. The syn-
thesized audio ŷ is produced by summing all monophonic
signals and by applying the estimated response IRi of the
recording environment i:

ŷ(t) =
⎛
⎝IRi ∗

P∑
p=1

(
yadditive

p + ynoise
p

)
⎞
⎠ [t]. (1)
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Fig. 1. Full architecture of the proposed piano sound synthesizer. The rounded boxes represent the trained modules for the control of the
synthesis. The synthesis modules from DDSP are represented by octagon boxes (Additive, Filtered Noise, and Reverberation). Finally,
the Multi-Resolution Spectral Loss compares the input target signal (bottom left) and the output synthesized sound (bottom right).

The following sections detail the submodules composing
the full model architecture, which is illustrated in Fig. 1.

2.1 Inputs
DDSP-Piano is conditioned on all the controls a pianist

has over its instrument: the sequence of notes being played,
the pedals action, and the recording environment. The en-
codings chosen for each control are detailed in the follow-
ing.

The monophonic conditioning of DDSP [11, 21] is com-
posed of F0 and loudness control signals, which provides
the instantaneous fundamental frequency and intensity of
a note sequence at a constant frame rate. For MIDI com-
patibility, the F0 control is substituted by an active pitch
control signal xpitch(t) that indicates the MIDI pitch of the
note at time t, taking the sustain pedal effect into account
for its duration. Note that xpitch(t) = 0 means that no note
is currently being played at frame t. Likewise, the loudness
control is replaced by an onset velocity control xvel(t) that
specifies the note velocity (scaled to the range [0, 1]) only
at onset time. This encoding allows for the disentangling of
sustained notes from repeated notes within an active sus-
tain pedal, as in [31]. The polyphonic conditioning X(t) is
obtained by splitting all the input notes into P sequences
of nonoverlapping notes, or voices, and by stacking these
monophonic conditionings as in [22]:

X (t) = {x pitch
p (t), xvel

p (t)}p≤P . (2)

The pedal input controls x ped (t) are extracted from the
MIDI data at the same frame rate as the conditioning input
X(t). Most notably, the sustain pedal control is included.

Finally, the piano model, the room reverberation, and
the microphone choice and placement are all entangled
independently of the piano performance: each recording

environment is provided as a one-hot encoding i ∈ [1, I],
for I different recording environments in the dataset.

2.2 Global Model
One piano model can differ from another one because

of its size and its tuning, which changes its inharmonicity
profile over the piano pitch range, or tessitura [35], and
its global detuning. We thus use an embedding layer, the
Z-Encoder, to compute an embedding vector zi , an inhar-
monicity modifier bi, and an instrument specific detuning
δfi for each recording environment i.

Also, during a performance, the pedals activity and the
interaction between simultaneous notes (e.g., sympathetic
resonances) can change the timbre of an individual note
[26]. This effect is modeled by a C-dimensional context
control c(t) computed by the Recurrent Neural Network
(RNN)-based context network F , from the piano embed-
ding zi , the pedal controls x ped (t) and the conditioning
X(t):

c(t) = F{X (τ), x ped (τ), zi }τ≤t . (3)

This context control is duplicated across all monophonic
voices, which give the subsequent monophonic layers (to
be presented in SEC. 2.3) access to global and polyphonic
information and thus adjust the computation of monophonic
note properties accordingly.

2.3 Monophonic String Model
The piano dampers stop the strings from vibrating when

the key is released. However, the attenuation of the en-
ergy is not instantaneous, and higher notes do not even
have dampers [26]. Hence, in practice, the piano strings
still vibrate for a certain amount of time after the note off-
set. Taking inspiration from the release parameter of digital
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synthesizers, a Note Release module is implemented to gen-
erate an extended pitch signal x̃ pi tch(t) by prolonging the
active pitch component of the conditioning signal xpitch(t)
by a learned duration Trelease. Note that the extended pitch
conditioning signal x̃ pi tch(t) does not replace the original
pitch conditioning xpitch(t), as we would lose the note offset
information.

Furthermore, the stiffness of piano strings induces the
partials of a piano note to not be pure harmonics of the
fundamental frequency. This characteristic is implemented
with an explicit inharmonicity model over the piano tessi-
tura, taken from [35]: the inharmoncity factor along the p-th
voice Bp(t) is computed from the extended pitch x̃ pi tch

p (t)
and the instrument specific modifier bi:

Bp(t) = exp (αT x̃ pitch
p (t) + βT )

+ exp (αB x̃ pitch
p (t) + βB + γBbi ), (4)

with {αT , βT} and {αB, βB} the parameters of the linear
asymptote in the treble and bass ranges, respectively. The
treble asymptotes are very similar across all pianos, ac-
cording to [36], so bi only influences the bass asymptote,
weighted by the parameter γB.

Another peculiarity of the piano tone is the presence of
string duets and triplets: higher strings are duplicated in
order to even out the loudness and the duration of notes
across the whole tessitura. Partials beating can be heard
because the duplicated strings are slightly detuned from
one another [37]. A simple approximation to model this
phenomenon is to consider a monophonic note as the sum
of nstrings sub-strings, each detuned by a detuning factor
δf. The detuner submodel gathers the per-string deviations
predicted by a time-distributed linear layer gδ from the pitch
and a global instrument-specific detuning δfi:

δ f p(t) = tanh(gδ(x̃
pi tch
p (t)) + tanh(δ fi ). (5)

Each command contributing to the detuning is limited
to a semitone range [ − 1, 1], as in [21], using the tanh
activation function.

Finally, the spectral envelopes of notes and their evo-
lution are predicted by the monophonic network G. It is
implemented as a causal RNN that computes the remaining
synthesizers controls from the extended pitch x̃ pi tch(t), the
conditioning vector X(t), and the context vector c(t). This
recurrent network is applied along each voice p � P, in
order to learn a monophonic string model and to predict
the notes amplitude a(t), the energy distribution h(t) for K
partials, and noise filter magnitudes η(t):

ap(t), hp(t),ηp(t) = G{X p(τ), x̃ pi tch
p (τ), c(τ)}τ≤t . (6)

2.4 Differentiable Synthesizers
The outputs of the neural network are used to control

the differentiable synthesizers, which generate and process
audio signals in the spectral modeling paradigm [12]. As in
the original DDSP autoencoder [11], controls are upsam-
pled from the controls frame rate to the audio sampling rate.
Amplitude, energy distribution, and noise filter magnitude
controls are also scaled with the same modified sigmoid
function in order to be non-negative.

Along a monophonic voice p � P, the additive synthe-
sizer generates the inharmonic audio component yadditive

p (t)
of the piano notes. It sums multiple sinusoids at frequencies
computed from the extended pitch x̃ pi tch

p (t), inharmonicity
Bp(t), and detuning δfp(t) controls, and with amplitudes
provided by the global amplitude ap(t) and harmonic dis-
tribution hp(t):

yadditive
p (t) = ap(t)

nstrings

nstrings∑
n=1

K∑
k=1

h p,k(t) sin(�p,n,k(t)), (7)

with �p,n,k(t) the instantaneous phase of the k-th partial:

�p,n,k(t) = 2π

t∑
τ=0

f p,n,k(τ). (8)

The inharmonic frequencies {fp,n,k(t)}k�K are deduced
from the fundamental frequency fp,n,0(t) and the inhar-
monicity coefficient Bp(t) with the inharmonicity model
of [35]:

f p,n,k(t) = k f p,n,0(t)
√

1 + Bp(t)k2, (9)

with the fundamental frequency fp,n,0 obtained by convert-
ing the detuned pitch x̃ pi tch

p + δ fn with the MIDI note-to-
frequency formula:

f p,n,0(t) = 440 × 2
1
12 (x̃ pi tch

p (t)+δ fn (t)−69). (10)

The subtractive synthesizer generates the residual noises
that happen during a performance, mainly the hammer and
key noise upon note onsets, the pedal noises, and even
the recording background noise. As in [11], a white noise
N(t) is filtered in the frequency domain with the noise
filter magnitudes η(t) computed by the model, before being
inverted in the audio domain:

ynoise
p (t) = DFT−1(ηp(t)N(t)). (11)

The room response in the piano recordings is modeled
by a differentiable convolutional reverberation. A finite im-
pulse response IRi is learned for each recording environ-
ment i, and it is applied to the sum of audio signals output
by the bank of additive and subtractive synthesizers (Eq.
(1)).

3 EXPERIMENTAL SETUP

3.1 Dataset
DDSP-Piano is trained and evaluated with performances

from the MAESTRO dataset (v3.0.0) [1]. This dataset con-
tains almost 200 h of professional piano performances
spanning over I = 10 editions of the International Piano-
e-competition. Pianists performed on Yamaha Disklaviers
where MIDI data were recorded and aligned with the au-
dio recordings. The ground-truth audio performances are
downsampled to 16 kHz and downmixed to mono, which
reduces the memory footprint of the training. Training at a
higher frequency rate is possible and left for future works, at
it requires to increase accordingly the number of harmonics
and noise filter coefficients. The una corda, sostenuto, and
sustain pedal controls are available in the MIDI recordings
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through the 64, 66, and 67 Control Change (CC) messages,
which corresponds to the three pedals of most grand pianos
[26]. Conditioning and pedal controls are extracted with a
frame rate of 250 Hz, as the conditioning controls in [11].

Tracks are split into 3-s-long segments, with a 50% over-
lap between two consecutive segments. Segments in which
the maximum number of simultaneous notes is greater than
the model polyphonic capacity P are removed from the
training set.

3.2 Baseline Systems
The proposed DDSP-Piano model is evaluated against

other piano sound synthesis methods presented in SEC. 1.
All samples synthesized with the following systems are
also downsampled to 16 kHz and converted to mono. For
the sampling-based benchmark, performances are synthe-
sized by stitching isolated note recordings from the YDP
Grand Piano2 soundfont, using the open-source soft-
ware Fluidsynth.3

The commercial software Pianoteq 74 with the de-
fault preset NY Steinway D Classical is used as
the physical-modeling-based baseline. Results from the
physical modeling of the instrument are synthesized in real
time using modal synthesis [28].

Finally, we chose the Text-to-Speech (TTS)-inspired
model from [34] as the pure neural synthesizer bench-
mark. In particular, the taco3-mfb-noi variant has the
best synthesis quality according to their evaluation. Also
trained on the MAESTRO dataset, this model is a mod-
ified Tacotron-2 acoustic model [38] followed by a sim-
plified Neural Source Filter (NSF) vocoder model [39].
MIDI-filter-bank–based spectra are used as the intermedi-
ate representation between the two submodels, which has
the advantage of being aligned with the input piano rolls in
the frequency/pitch axis.

3.3 Model Implementation Details
The proposed system is implemented with a polyphonic

capacity of P = 16. The Z-Encoder outputs an embedding
zi of size 16 for each recording environment. The context
network F is composed of a time-distributed dense layer of
size 32 with leaky ReLU activation, followed by a causal
Gated Recurrent Unit (GRU) layer of hidden size 64 and
with layer normalization, then by a time-distributed linear
layer outputting a context signal of size 32.

The Note Release module is initialized to extend the
pitch conditioning control by Trelease = 1s, which is longer
than the observed attenuation time of piano notes after key
release [40]. The inharmonic model is initialized with the
parameters estimated in [35]: α0

B = −0.0847, β0
B = −5.82,

α0
T = 0.0926 and β0

T = −13.64. We generate nstrings = 2
string signals per note, but their detuning are initialized
to zero in the linear model gδ of the detuner. The model-
specific inharmonicity and detuning modifiers of the Z-

2https://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
3https://www.fluidsynth.org/
4https://www.modartt.com/pianoteq

Table 1. Approximate number of trainable
parameters of the evaluated neural-based models and

their submodels.

Model Parameters

Piano-TTS 31,335,000
- Tacotron-2 30,600,000
- NSF 736,300

DDSP-Piano 521,507
- Sub-models 281,507
- Reverb 240,000

encoder are also set first to zero, to learn a generic piano
model during early training.

The monophonic model G input is processed by a 128-
unit time-distributed dense layer with leaky ReLU activa-
tion, then by a 192-unit GRU layer and another dense layer
of size 192 with leaky ReLU activation. Layer normaliza-
tion is then applied before computing the note amplitude, K
= 96 harmonic amplitudes and 64 noise-filter coefficients
with a linear layer.

Finally, the different reverb impulse responses are 1.5 s
long at 16 kHz (24k parameters for each recording environ-
ment), with the same random initialization as in [14] and
the inference decay function from [21]. The total number
of training parameters in this Default configuration is given
in Table 1, against Piano-TTS, the neural-based benchmark
from SEC. 3.2.

3.4 Training
As with many recent neural-based audio synthesis meth-

ods [11, 14, 34], the model is trained to minimize the
spectral difference between the target audio y and the syn-
thesized audio ŷ with a multiresolution spectral loss. The
component Lm of the spectral loss with resolution m com-
pares the two audio signals by summing the L1 differences
between both their spectrogram magnitudes and log spec-
trograms, as in [11]:

Lm(y, ŷ) = ‖|STFTm(y)| − |STFTm(ŷ)|‖1

+‖ log |STFTm(y)| − log |STFTm(ŷ)|‖1, (12)

with ‖.‖1 the L1 norm and STFTm the STFT with Fast
Fourier Transform size m ∈ {2048, 1024, 512, 256, 128,
64}.

In preliminary experiments, it has been observed that the
reverb module tried to model the notes’ sustain and release
behaviors, which resulted in abnormal reverberations and
unrealistic unreverberated signals. A L1 regularization loss
LL1 is applied on the learned impulse responses to reduce
the reverb complexity and thus discouraging the module
from learning characteristics of the piano tones (such note
sustain and release) that can be modeled by the other un-
regularized modules.

Furthermore, the correct placement of partials in fre-
quency is decisive for training stability, especially during
early training. As partial frequencies in our system are de-
duced from explicit submodules, we propose a two-phase
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training procedure for separately optimizing the pure Deep
Neural Network (DNN) components and the explicit sub-
models.

During the first training phase, weights responsible for
computing the partials frequencies are frozen to their ini-
tial values from SEC. 3.3, as they should be close to their
optimal values. The concerned weights are those from the
detuner, the inharmonicity model, and the model-specific
detuning and inharmonicity modifiers of the Z-encoder.
The other modules can thus learn to reproduce the notes
spectral envelopes, residual noises, and the reverberation
without displacing the note partials. The model is opti-
mized using the Adam optimizer [41] with a learning rate
of 10−3 and a batch size of 6, with regard to the first phase
loss function L1:

L1 =
∑

m

Lm(y, ŷ) + λIRLL1(IRi ), (13)

with λIR the balancing weight for the reverb regularization
loss with regard to the spectral loss, here set to 0.01.

During the second training phase, the trainability of the
model weights are reversed compared with the first train-
ing phase. In such a manner, the system should match the
learned partials frequency and beating to each piano specifi-
cally. For training stability purpose, a L1 regularization loss
is applied on the inharmonicity model parameters deviation
from their initial values. The total loss associated with this
second training phase can be expressed as:

L2 =
∑

m

Lm(y, ŷ) + λB

∑
θ∈{αB ,βB ,αT ,βT }

|θ − θ0|, (14)

with λB = 0.1 the weight on the inharmonicity model regu-
larization loss with regard to the spectral loss. The param-
eters of the detuner, inharmonicity model, and Z-Encoder
model-specific modifiers are fine-tuned by Adam with a
learning rate of 10−5 and a batching size of three.

The whole system is optimized and fine-tuned by suc-
cessively alternating between these two training phases. In
our experiments, the system is trained with the first phase
formula for two full epochs on the 160 h of training data,
until note partials are correctly generated by the additive
synthesizer. It is then fine-tuned for one full epoch on the
training data with the second training phase. Finally, the
model is further fine-tuned using the first training phase
again for three epochs, until the minimal validation loss
value is reached. The full model training takes about 340k
steps, which corresponds to around 8 days of training on a
single Nvidia GeForce GTX 1080 Ti GPU.

3.5 Ablation Study
The relevance of our system submodules are evaluated by

training and evaluating alternate versions of DDSP-Piano.
All following variants are trained with the same procedure
and hyper-parameters (losses balance, number of training
steps, learning rates, batch sizes) exposed in SEC. 3.4.

The Deep Inharmonicity variant replaces the explicit in-
harmonicity model from [35] with by a DNN. Ideally, this
DNN should reproduce Eq. (4): we use a Multi-Layer Per-
ceptron (MLP) with sinusoidal activation functions as in

[14]. This model takes the same inputs as the explicit in-
harmonicity model, and it is composed of three dense layers
with sinusoidal activation and a hidden size of eight, fol-
lowed by a linear layer with ReLU activation. The final
output is scaled in order to keep the estimated inharmonic-
ity factor within a realistic range B ∈ [0, 0.02].

The Reduced-context variant imitates sampling-based
synthesis by removing the conditioning input from the con-
text vector computation. Because the synthesizer controls
are computed on all monophonic channels independently,
a monophonic note control would not have information on
which other notes are also played, thus preventing mutual
interaction between notes.

The No Fine-tuning variant is the Default configuration
wherein the inharmonicity model and the detuner sub-
modules are reverted back to their initial values before
training. This variant is similar to a model trained solely
with the first training phase of SEC. 3.4.

As stated in the original DDSP paper [11], the sound
structure priors inherent to the DDSP synthesizers enable
full model training with a reduced amount of data. In the
same manner, we test DDSP-Piano on the simpler but also
less resourceful task of single piano modeling. The 2009-
only variant is trained by only keeping performances from
the year 2009 in the MAESTRO dataset, which amount for
about 20 h of training data.

4 EVALUATION

Evaluations of the DDSP-Piano model has been con-
ducted against its ablated variants from SEC. 3.5 and other
piano synthesis methods from SEC. 3.2.

4.1 Objective Evaluation: Reconstruction
Quality

The reconstruction quality of the model can be measured
with the spectral difference between real and synthesized
performances from the test subset. Using the multiresolu-
tion spectral loss presented in SEC. 3.4, the reconstruction
quality of the model variants on each recording environ-
ment in the MAESTRO dataset are given in Fig. 2. An
approximate per-note evaluation of the models is also pre-
sented in Fig. 3: for a given note, the approximate value is
obtained by gathering the loss value of the test segments for
each time the note is present before computing the mean.

On all recording environments and over the whole piano
tessitura, the Deep Inharmonicity variant has higher loss
values than variants using the explicit inharmonicity model
from [35]. This explicit submodule proves to be valuable for
the overall reconstruction quality of the model as it allows
it to control the additive synthesizer with better estimated
spectral envelopes.

The variant solely trained on performances from the year
2009 seems to have slightly better reconstruction quality on
the 2009 subset compared with the Default configuration,
although not significantly. If the difference is confirmed
perceptually, that would suggests that the piano model em-
bedding in the multi-instrument setting is not sufficient for
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Fig. 2. Systems evaluation on the MAESTRO test set, broken
down by recording environments. Measured by mean and standard
deviation values of the multi-resolution spectral difference (as
presented in SEC. 3.4) with the original recordings. Low loss value
indicates better reconstruction quality.

achieving the same quality as for single-piano modeling.
Nonetheless, if one wants to profile a single-piano model,
training on the full MAESTRO dataset is not necessary, and
smaller aligned datasets could be used instead [42].

Reducing the global context appears to have different
consequences, as the Reduced Context variant can have sim-
ilar, better, or worse reconstruction quality than the Default
configuration depending on the piano model. Although mu-
tual notes interaction should be present in all performances,
independently of the recording year, the perceived effect
may not be exhibited in the interpreted piano pieces. If mod-
eling such interaction is unnecessary, the Reduced Context
variant, with reduced complexity, can converge faster than

the Default configuration and achieve better reconstruction
quality for the same number of training epochs: this would
be the case for pieces of the years 2004 and 2009. On
the contrary, if such effects are significantly present in the
training pieces, the ablated variant cannot reproduce it and
thus achieves worse reconstruction quality, which concerns
the years 2006 and 2014. Mutual interaction between notes
(sympathetic resonances) is more exploited in contempo-
rary music for instance: using such examples may help the
system to systematically learn this specificity.

The approach performs similarly with and without ap-
plying the fine-tuned inharmonicity and detuning parame-
ters. The loss profile over the piano tessitura is unchanged
between the Default and No Fine-Tuning variant for all
recordings years. This indicates that the second training
phase proposed in SEC. 3.4 could not successfully fine-tune
the inharmonicity and detuning parameters to the target pi-
anos. Otherwise, the note partials would have been exactly
matched in frequency, and the model could better reproduce
the associated amplitude through the spectral loss, during
the third training phase.

For all piano models, the loss curves along the tessitura
show better reconstruction in the middle range than for
lower- and higher-pitched notes. This behavior can come
from the imbalance toward middle notes in the training data,
as illustrated in Fig. 4, or also because of the imperfect esti-
mation of the inharmonicity coefficients, which are higher
in the lower- and higher-pitch ranges [35]. This indicates
that the model could benefit from training data rebalancing,
either by putting higher weights on the loss when training on
underrepresented notes or by providing training segments
with underrepresented notes more frequently. The highest
notes (above pitch 100) can have slightly better reconstruc-
tion quality than the notes in the 80–100 pitch range, as
the nonmatched inharmonic partials are located above the
Nyquist frequency and thus ignored in the spectral loss
computation.

In conclusion, the DDSP-Piano model can be trained for
single-piano modeling and only with the first training phase

Fig. 3. Approximate mean values of note-wise spectral differences between real and synthesized audio samples. Results are detailed for
each piano model in the test set. Low loss value indicates better reconstruction quality.
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Fig. 4. Histogram of the notes distribution in the MAESTRO
v3.0.0 training dataset.

from SEC. 3.4, without significant loss of reconstruction
quality. Reducing the context may accelerate the training
if mutual note interactions are ignored in the modeling.
Nevertheless, the explicit inharmonicity model is crucial
for reaching good reconstruction quality.

4.2 Subjective Evaluation: Listening Test
A listening test was conducted for gathering Mean Opin-

ion Score (MOS) on all systems under evaluation. Eleven
performances were hand-picked from the test data, cov-
ering all recording environments and with a diversity of
composers, registers, and note densities. The first 9 s of the
performances were synthesized with all systems, which,
with the real recordings, gives 99 audio samples to evalu-
ate. Listeners were asked to rate their overall quality with a
scale from 1 (very annoying) to 5 (real recording). In each
trial, two samples from each of the eight systems and two
real recordings were randomly presented to the listener for
rating. We gathered 52 participants who are musicians or
audio professionals: 14 among them have notions of piano
playing and 29 have been playing the instrument for several
years. Box-plot and mean values of the MOS ratings are re-
ported in Fig. 5, and Fig. 6 shows the results of two-sided
Mann–Whitney U tests with Holm–Bonferroni correction,
following the evaluation procedure of [34].

The quality difference between the Deep Inharmonicity
variant and the models including the explicit inharmonicity
model is confirmed perceptually. Only the Default-against-
Deep Inharmonicity hypothesis is not statistically signif-
icant, but the median and quartile values still suggest a
slight advantage in favor of the Default configuration. Rat-
ings also confirm that the second training phase does not
improve the perceived quality, suggesting that the natural
beating between simultaneous notes in harmony may be
sufficient for achieving realistic sounding partial beatings
during polyphonic performances. Reducing the context also
does not significantly hinder the perceived quality of the
DDSP-Piano model. It can be deduced that other compo-
nents of the approach can be improved before the lack of
note interaction limits the perceived quality. Single-piano
modeling is still perceived as good sounding as variants

Fig. 5. Box-plots of MOS for each system. The thickened bars
indicate the median values while the white triangles indicates the
mean values.

Fig. 6. Results of Holm–Bonferroni corrected two-sided Mann–
Whitney U tests. A darkened block indicates a statistically signif-
icant difference at α = 0.05 between two synthesis models.

trained on several pianos simultaneously, which raises the
question of the minimum amount of training data required
for achieving such quality.

All variants of DDSP-Piano have a significant difference
over the neural-based Piano-TTS benchmark. Although this
baseline is more versatile because it was developed for
speech synthesis at first, our approach is better suited for
piano sound synthesis, achieving better sound quality with
significantly less training parameters, as shown in Table 1.

Only the physical-modeling-based method achieves
sound quality comparable with the real recordings (even
slightly better, although not significantly, as in [34]). Var-
ious unwanted noises and the recording quality of the real
samples may have been perceived as slightly annoying com-
pared with the clean sounds synthesized by the Pianoteq
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software. The quality of the training data represents the
upper bound limit of neural-based synthesizers, thus our
model can benefit from cleaner audio recordings. Nonethe-
less, there is still a significant gap in the perceived quality
between the synthesis offered by the DDSP-Piano model
and the real recordings. As it stands, all variants of our
approach are not significantly different from the sampling-
based synthesizer in terms of overall quality ratings, al-
though with less variability. Among all evaluated systems,
the ratings given to the synthesis from Fluidsynth are
the most scattered: this may suggest that some listeners are
more sensitive than others to an unrealistic feature in this
synthesis algorithm.

4.3 Computational Load for Inference
The inference time of the Default model was mea-

sured on the test data to assess if the provided Tensorflow
implementation5 is capable of real-time synthesis. For all 3-
s-long segments of the test data, the average synthesis time
is measured on the same hardware as for GPU training in
SEC. 3.3 (Nvidia GeForce GTX 1080 Ti) and on an 2.6 GHz
Intel Xeon E5-2623 v4 CPU processor. We report real-time
factors of 0.6 ± 0.1 on the GPU and 1.9 ± 0.1 on CPU.
This invalidates the usage of the current implementation for
real-time applications without relying on a GPU. However,
model architecture design choices were made in order to
reduce the structural latency of the model: the GRU layers
do not rely on future samples as they are unidirectional,
their hidden sizes are compatible for CPU computation in
real-time [43], and the model does not rely on noncausal
convolution operations as they raise a challenge for real-
time applications [44]. Therefore, by exporting the learned
model for inference into efficient frameworks dedicated to
real-time neural audio processing [43, 45, 46], the real-time
factor of DDSP-Piano on CPU can be improved.

5 QUALITATIVE RESULTS

As the synthesis relies on spectral modeling, it is pos-
sible to examine the behavior of the model and interpret
what it has learned more easily than with pure deep learning
models. To this end, the following section will put into re-
lation different DDSP-synthesizers inputs and outputs with
expected results from signal-based and acoustic modeling
works.

5.1 Additive Synthesizer
For a single input note, the note amplitude envelope ap(t)

predicted by the default configuration of DDSP-Piano is
shown in Fig. 7. In the logarithmic scale, one can see that
the amplitude decays at two distinct and successive rates:
the piano note decays faster right after the onset before set-
tling down to an aftersound with a slower decay. This cor-
responds to the "double decay" phenomenon [47], which
is characteristic of piano notes. Previous piano modeling
works have explained the "double decay" as a result of

5https://github.com/lrenault/ddsp-piano

Fig. 7. Amplitude control input (in log scale) of the additive
synthesizer predicted by the default model for a sustained A3
note with a velocity value of 100.

Fig. 8. MIDI-filter-bank–based spectra [34] of the subtractive
synthesizer output. The active piano roll of the input performance
is superposed over in black. Both are zoomed around the MIDI
range [40,120].

the double polarization of piano string and the detuning
between substrings in a duet [37]. No prior knowledge of
this effect was incorporated in the architecture of DDSP-
Piano, but thanks to the recurrent layers, it has successfully
captured it directly from the audio data. Thus, explicit mod-
eling of the double decay is not necessary for improving
the synthesis quality, but it can help reducing the number
of training parameters nonetheless.

5.2 Filtered Noise
The filtered noise output by the subtractive synthesizer

from a real test performance input is shown in Fig. 8. The
audio is represented with the MIDI-filter-bank-based spec-
tra proposed in [34], which has the advantage of being
aligned both in time and frequency with the input MIDI
represented as a piano roll. Noise is synthesized in all fre-
quency bands during note onset times, which corresponds
to the impacts of the key on the keyboard base and the ham-
mer on the string. However, the noise spectrum presents a
correspondence between the played notes and the energy
location in frequency, which can coincide with the piano
soundboard modes. These modes have proven to be quite
challenging to model because of the peculiar shape of the
piano [48]. Indeed, the key and hammer impacts excite the
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Fig. 9. Mel-spectrograms of the reverb impulse responses {IRi}i�I learned by the Default configuration for each recording year in the
MAESTRO dataset.

soundboard from different positions according to the note:
higher modes are typically excited when higher notes are
being played, as they are located in the shorter area of the
soundboard curve. The model successfully replicated this
relationship between the soundboard modes and the input
pitch by learning from the target audio data, without the
need for explicit modeling of the soundboard modes.

Several participants in the listening test have reported
hearing a continuous background noise in the lower fre-
quencies of the samples synthesized by the model. The
authors have noticed, empirically, that this noise is output
by the subtractive synthesizer and it is different from one
piano model to another. This behavior may reflect the vary-
ing quality of the recordings in the MAESTRO dataset. One
way to circumvent this issue would be to train the model
with an auxiliary noise generator conditioned only on the
recording environment label i. This constant noise gener-
ator would then be disabled during inference in order to
obtain cleaner audio synthesis from the main model only.

5.3 Reverberation
Spectrograms of real room impulse responses have been

analyzed and modeled as having high energy in all fre-
quency bands during the early reflections and only in the
lower frequency bands for the late reverberation [49]. As
it can be seen in Fig. 9, some impulse responses learned
by the reverb module of DDSP-Piano do not totally satisfy
this modeling because one can distinguish modes in the
higher frequencies in the late reverberation. When put into
relation with the reconstruction quality presented in Fig. 2,
the least-well-modeled pianos (most notably from the years
2006, 2004, and 2011) show such modes in their impulse
responses estimated by the model. These modes may cor-
respond to either prevalent note partials in the training data
(as the authors observed before adding the L1 regulariza-
tion constraint) or soundboard modes, which can also be
simulated with reverberation algorithms [50].

In either case, such features should have been generated
by other DDSP components instead. Despite the L1 regu-
larization, the reverberation module remains too expressive
and does not achieve a realistic sounding reverberation, as
it also tries to model behaviors not related to the record-

ing environment. Thus, using a differentiable reverberation
model with added constraints, informed by room impulse
response modeling works [18], can help achieving better
behavior disentanglement between the DDSP components.

6 DISCUSSION

Training a neural piano synthesizer directly on poly-
phonic performance data enables the reproduction of com-
plex interactions between different sound sources in the
instrument. Previous works mainly focus on achieving re-
alistic sounding synthesis by adapting state-of-the-art audio
synthesis models. However, in order to better control the
learned model, another challenging issue can be raised in
the form of correctly disentangling the sound components,
especially when the training data do not present these com-
ponents separately.

In the continuity of DDSP [11], the proposed DDSP-
Piano model further incorporates signal-based and acoustic-
modeling knowledge into the differentiable framework for
handling different instrument specificities. Such knowledge
can be integrated as architectural constraints through ex-
plicit submodels (such as the inharmonicity model pre-
sented in SEC. 2.3), layers connections motivated by mean-
ingful inputs and outputs (by knowing which variable
contributes to which phenomenon) and variable process-
ing (with the monophonic network being applied on each
monophonic channel for example). The model successfully
achieves better sounding quality than a pure neural-based
synthesizer and shows promising results for disentangling
the different sound components.

After conducting evaluations against ablated variants and
observing qualitative results from the interpretable DDSP
components, the need for improving the optimization pro-
cess has been revealed, in order for the submodules to cor-
rectly match their expected behaviors. In particular, training
through minimization of the spectral loss is not sufficient
for pitch estimation [51]: this hinders the optimization of the
inharmonicity and detuning submodules in an end-to-end
manner. On the other hand, very expressive submodules can
help the synthesizer reproduce behaviors that are difficult
to model explicitly. Yet they can also be responsible for the
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imperfect disentanglement of sound components between
each other. Such behavior could be regularized by adding
constraints, through architectural design choices with more
specialized or explicit submodules or through optimization
constraints with informed losses.

Finally, the integrated constraints require the data to ful-
fil associated assumptions: here, DDSP-Piano would not be
able to profile instruments with extreme properties, such as
highly detuned pianos. On the other hand, if the data fulfill
the assumptions, less training data will be required when
compared with the case when models do not incorporate
any constraints. Future physics-informed models should
thus balance the neural networks’ expressivity and the in-
strument knowledge constraints to the quantity of training
data available and the desired model flexibility.

7 CONCLUSION

This work introduces an extension of DDSP models for
the task of polyphonic instrument modeling. A realistic-
sounding piano synthesizer is conceived using high-level
modeling knowledge in order to combine expressive neural
networks with explicit submodules that take care of piano
specificities, such as the inharmonicity of note partials. In a
subjective evaluation, this hybrid model, with significantly
less parameters, has achieved better synthesis quality than
a state-of-the-art neural model but does not outperform
sampling-based and physical-modeling-based systems.

Thanks to its interpretability, further analysis of the
model behavior has been conducted, which has revealed
that some results found in acoustic modeling works were
reproduced by the model. It has also been revealed that
the different sound components were not as well disentan-
gled as the model architecture would allow, which opens
up perspectives for further integration of acoustic modeling
knowledge as constraints and for adapting the training pro-
cedure with regard to such constraints. Future works could
also leverage the interpretability and the differentiability
of DDSP-Piano to address other polyphonic music-related
tasks, such as source separation [23] and self-supervised
multi-pitch transcription [52].
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