
Freely available online PAPERS
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This work is motivated by the question of whether different loudspeaker-based multichan-
nel playback methods can be robustly characterized by measurable acoustic properties. For
that, underlying acoustic dimensions were identified that allow for a discriminative sound
field analysis within a music reproduction scenario. The subject of investigation is a set of
different musical pieces available in different multichannel playback formats. Re-recordings
of the stimuli at a listening position using a spherical microphone array enable a sound field
analysis that includes, in total, 237 signal-based indicators in the categories of loudness, qual-
ity, spaciousness, and time. The indicators are fed to a factor and time series analysis to
identify the most relevant acoustic dimensions that reflect and explain significant parts of the
variance within the acoustical data. The results show that of the eight relevant dimensions,
the dimensions “High-Frequency Diffusivity,” “Elevational Diffusivity,” and “Mid-Frequency
Diffusivity” are capable of identifying statistically significant differences between the loud-
speaker setups. The presented approach leads to plausible results that are in accordance with
the expected differences between the loudspeaker configurations used. The findings may be
used for a better understanding of the effects of different loudspeaker configurations on human
perception and emotional response when listening to music.

0 INTRODUCTION

The use of multiple loudspeakers for the reproduction of
music and other entertaining audio content has been estab-
lished within various technologies over decades. One of the
main motivations in developing technologies such as stereo,
surround sound, or 3D audio is to enhance the spatial im-
age and impression of the reproduced audio experience [1].
The evolution of these audio reproduction techniques does
not only involve the number of loudspeakers in use but also
their spatial arrangement. With the cinema industry as a
technology driver, the higher technical expenditure in each
case became affordable for home applications with only
a slight delay. Starting from stereo with two loudspeak-
ers, to quadrophonic sound with four loudspeakers to the
commercially very successful 5.1 surround sound with five
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loudspeakers and an additional subwoofer up to 7.1 sur-
round sound with seven loudspeakers plus subwoofer, the
number of loudspeakers increases analogously to the indus-
try’s promises of spatial imaging within the listening plane.
With the incorporation of additional elevated loudspeakers,
terms such as 3D audio or immersive audio become more
and more widespread in technology and marketing, that
comprise both audio rendering algorithms as well as loud-
speaker setups, such as 22.2 surround sound. The additional
height layer of loudspeakers is promised to further increase
listener envelopment and spatial plausibility. There exists
a mentionable body on research of perceptual effects pro-
voked by these technologies, e.g., in [2–4]. However, at the
same time, little information is available what properties of
the reproduced sound field actually change with different
reproduction technologies and if the perceptual effects can
be explained or modelled with acoustic terms. Thus, this
work proposes a methodology to identify statistically rele-
vant underlying acoustic dimensions of music reproduction
with different loudspeaker setups. These acoustic dimen-
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Table 1. Positions of the loudspeakers used in spherical
coordinates (origin at head position) with azimuth ϕ [−180◦,

180◦], elevation θ [−90◦, 90◦], and distance d in meters.

L R C LS RS TL TR TLS TRS

ϕ 30 -30 0 145 −145 30 -30 146 −146
θ 0 0 0 0 0 23 22 25.5 24.5
d 2.50 2.50 2.20 2.20 2.20 2.94 2.98 2.75 2.72

sions are then evaluated for four exemplary loudspeaker
layouts, namely mono, stereo, 5.1 surround sound, and 5.1.4
surround sound. Each layout studied adds spatial direction
to the speaker positioning, so this selection of formats can
serve as an example for other and/or more advanced speaker
configurations. Pieces of music that were explicitly pro-
duced for these loudspeaker setups were played back and
the generated sound field is analyzed at the proposed lis-
tening position in terms of a large number of signal-based
acoustic indicators. By means of multivariate methods, un-
derlying latent dimensions are deduced and subsequently
analyzed statistically. This procedure is known from other
fields of application, e.g., for the development of funda-
mental perceptual dimensions in the evaluation of envi-
ronments [5] where a large number of semantic items are
condensed to few latent constructs. This approach was also
applied in order to identify the two main affective qualities
of soundscapes valence and arousal summarized in [6] that
eventually found their way into standardization in ISO/TS
12913-1/2/3 [7]. In the field of audio signal processing, the
aggregation of individual indicators into abstract character-
izing constructs is also known as “Audio Fingerprinting”
[8], which is used to index audio files for automatic search
algorithms in commercially available applications. The pre-
sented work is a detailed continuation and refinement of [9].

1 TECHNICAL INFRASTRUCTURE

For the acoustic analysis, the music reproduction was
performed with a loudspeaker system within a listening
room of approximately 30 m2 that is acoustically treated
for optimized audio reproduction with reverberation time
between 0.2 and 0.3 s in compliance with the suggestions
from ITU-R BS.1116-3 [10] regarding background noise,
reflection pattern, and loudspeaker equalization. A detailed
description of the acoustic properties of the listening room
can be found in [11]. The loudspeaker system consists of
nine full-range speakers Neumann KH 120 A and two sub-
woofers Neumann KH 810 G with a crossover frequency
of 60 Hz. The positioning of the speakers is in agreement
with ITU-R BS.2051-2 [12] as shown in Table 1.

The loudspeaker system was equalized toward equal
gain and delay (distance compensation) and minimum fre-
quency response deviation. The target frequency response
is motivated by ITU-R BS.1116-3 [10]; however, the rec-
ommendation’s low-frequency roll-off was neglected, and
instead, a more natural room gain concept for low fre-
quencies was followed [13]. This idea aims to preserve
an expected low-frequency behavior for loudspeaker re-

Fig. 1. Relative room responses in third-octave bands for ear level
loudspeakers (a) and top level speakers (b).

production in rooms due to less low-frequency absorption
compared with high-frequency energy. The room gain was
estimated by modeling the low-frequency portion up to 200
Hz of the average room transfer functions from 42 loud-
speakers to 5 microphone positions by means of a shelving
filter. Equalization was applied by means of 8 biquad para-
metric peak/notch filters aiming to compensate an average
of room responses at three microphone positions (center
and 8.5 cm to the left and right) within a small listening
area of the potential head location comparable to the proce-
dure described in [14]. Furthermore, the octave around the
crossover frequency between 42 Hz and 84 Hz was opti-
mized with an allpass for each main loudspeaker so that the
resulting frequency response deviates minimally from the
target response. All equalization parameters were obtained
by a global optimization procedure with constraints such
that the phase response does not interfere with the repro-
duction in a negative way. The resulting room responses in
third-octave bands can be taken from Fig. 1 for the ear-level
loudspeakers (a) and top-level speakers (b).

2 STIMULI

The stimulus set comprises 8 excerpts of musical pieces
of varying genre, ensemble size, and recording/production
technique. Each piece of music is available in four ver-
sions of different channel-based loudspeaker reproduction
formats: mono (center loudspeaker), stereo (left + right
loudspeakers), 2D (5.1 surround sound), and 3D (5.1.4 sur-
round sound). For the production of the stimuli, two audio
engineers with experience in multichannel mixing were en-
gaged to produce three equally sounding mixes (stereo, 2D,
and 3D) from provided multitrack recordings that only vary
in their spatial distribution but not in their general aesthetic
characteristics. In practice, this was accomplished by man-
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Table 2. Overview of investigated musical pieces.

Label Piece Duration [s] Genre and Orchestration Production

Laudate Laudate Dominum (Josep Vila) 33.4 A cappella choir: 12 singers
(soprano, alto, tenor, bass)

3D microphone setup + support
microphones

Mellow In a Mellow Tone (Janna Berger) 35.4 Jazz band: drum set, double bass,
piano, female voice

3D microphone setup + support
microphones

Wunderschoen Im wunderschönen Monat Mai
(Robert Schumann)

38.6 Classic song: male voice, pf 3D microphone setup + support
microphones

School School’s Out (live; Alice Cooper) 57.5 Full live rock band spot microphones + 3D ambience
Bilder Pictures of an exhibition

(Mussorgsky)
37.3 Large Orchestra 3D microphone setup + support

microphones
Walkuere Ride of the Valkyries (Wagner) 62.5 Opera: Orchestra, female voices manual upmix from commercial

5.1 content
Hantel Die Hantel (Zweitaktmotor) 61.8 Electropop: synthesizers, male

and female voices
pure multitrack studio production

Rokoko Rokoko Variations
(Tchaikovsky)

68.1 Classic chamber music: cello,
woodwind quintet

manual upmix from commercial
5.1 content

ual downmixes (or upmixes in two cases) of a common
aesthetic 2D or 3D mix. The respective mono version was
deduced from the stereo version by averaging left and right
channel. An overview of the stimuli can be found in Table 2.

The loudness of the stimuli within the four playback
formats was calibrated to minimize the median deviation of
the short-term loudness units relative to full scale (LUFS)
(EBU R 128 [15]) time series from the stereo reference.
This procedure was validated by means of acoustic loud-
ness measures. Monophonic sound pressure levels LAeq and
loudness according to ISO 532-1 [16] were measured with
a Beyerdynamic MM1 microphone at the center of the lis-
tening area and binaural LAeq as well as loudness according
to ISO 532-2 [17], respectively, with a G.R.A.S 45BC-12
KEMAR. The comparison of loudness and level distribu-
tions between the formats revealed minor differences in
dependence of the respective musical piece; however, no
systematic and unexpected differences could be found. An-
other stage of validation was performed perceptually by an
experienced audio engineer. In order to use the calibrated
stimulus set for future listening tests, the overall loudness
between the individual pieces of music was adjusted sub-
jectively by the same audio engineer, aiming for plausibility
in the reproduction of music with different ensemble sizes
and genres.

3 IDENTIFICATION OF ACOUSTIC DIMENSIONS

The proposed methodology describes a process to obtain
fundamental acoustic dimensions that are suitable to char-
acterize and compare acoustic environments. The approach
to identify those dimensions is data-driven and based on
multivariate statistical analysis: A large number of obser-
vations of a large number of indicators are fed into appro-
priate methods for dimensionality reduction and variance
maximization. The aim is to deduce dimensions that are
interpretable with common acoustic terminology. The ap-
proach is exploratory, i.e., no hypothesis is formulated ini-
tially on how the dimensions must be composed of to be
capable of discriminating acoustic environments generated
with different loudspeaker setups. However, it can be as-

sumed that this acoustic characteristic is reflected in terms
of statistical variance within the acoustic data.

3.1 Acoustic Indicators
The indicators on which the dimension development is

based is a collection of well-known and established signal
parameters gathered from the fields of soundscape studies,
music information retrieval, psychoacoustics, sound field
analysis, and noise assessment. In fact, all of the indicators
are documented to be used in modeling attempts of certain
characteristics of general acoustic environments, such as
soundscape quality, annoyance, and computer-aided classi-
fication and detection of specific sound event and environ-
ment classes as elaborated in [18] and its supplementary
material. They are assigned to the three a priori categories
loudness, quality, and spaciousness as listed in the follow-
ing, with information on the respective conceptual reference
and implementation in parentheses:

Quality: Mel-frequency cepstral coefficients (MFCC)
(reference: [19]; implementation: [20]), Spectral Cen-
troid ([21];[20]), ∼ Crest ([21];[20]) Factor, ∼ De-
crease ([21];[20]), ∼ Entropy ([22];[20]), ∼ Flatness
([23];[20]), ∼ Flux ([24];[20]), ∼ Kurtosis ([21];[20]),
∼ Roll-Off ([24];[20]), ∼ Skewness ([21];[20]), ∼
Spread ([21];[20]), Timbral Booming ([25];[26]),
Roughness, Sharpness, Fluctuation Strength (all [27,
16];[20])

Loudness: Sound pressure level (SPL) (A-/Z-
weighting), octave band energy (all [28];[20]), loud-
ness (Zwicker [16], Moore-Glasberg [17]; [20]),
LUFS ([15, 29];[20])

Spaciousness: Inter-aural level differences (ILD)
([30];[31]), inter-aural time differences (ITD), inter-
aural cross correlation (IACC) (both [32];[31]), direc-
tion of arrival (horizontal, vertical), diffuseness (all
[33];[34]), directivity index (regarding azimuth, ele-
vation and full sphere) ([35];[18])

The indicators of the categories loudness and spacious-
ness were calculated both for a broadband frequency range
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as well as for 10 individual octave bands with center fre-
quencies ranging from 31 Hz to 16 kHz. The indicators
themselves are calculated on the basis of one of three sig-
nal representations of the stimuli. Loudness and quality in-
dicators are either calculated from a monophonic pressure
representation or binaural representation, while the spa-
ciousness indicators require binaural and Ambisonics sig-
nals. In order to analyze the resulting sound field present at
the listening location, a re-recording of all stimuli by means
of an mh acoustics em32 Eigenmike was performed. From
the encoded Ambisonics signal representation generated
by the mh acoustics EigenUnit-em32-Encoder, a binaural
version was deduced by means of the BinauralDecoder of
the IEM plugin suite [36] (fourth order), which implements
a dual-band magnitude least-square binaural rendering ap-
proach for Ambisonics signals [37] as convolution with pre-
processed head-related transfer functions measured with
the Neumann KU-100 dummy head [38]. The direction of
arrival and diffuseness indicators are calculated from the
first-order Ambisonics representation as suggested in the
DirAC approach [33], and the directivity indices are cal-
culated as fourth-order plane wave decomposition with 1◦

angular resolution. The third monophonic sound pressure
representation is finally generated from the 0th-order Am-
bisonic signals [33]. It has to mentioned that the two highest
frequency bands with center frequencies fc = 8 kHz and fc
= 16 kHz are potentially subject to spatial aliasing caused
by the discrete sampling of the individual microphone cap-
sules and the radius they are placed on [39, 40]. The used
Ambisonics encoder aims to reduce this effect with help
of a designated high-frequency extension [39] that helps to
maintain an undistorted frequency response but that alters
the spatial information in a nondetermined way at the same
time. Thus, we can assume proper spectral and energetic
characteristics within these frequency bands but unreliable
spatial information (regarding both the binaural and the
3D sound field representation). However, because all stim-
uli are recorded, encoded, and processed in the same way,
these artifacts should occur systematically and not between
the stimuli in the subsequent analysis, which is why these
frequency bands are kept for further investigations. In gen-
eral, the parametrization of all indicator calculations (e.g.,
encoding and decoding of Ambisonics and binaural signals,
choice of frequency bands and time-frequency resolution)
may lead to slightly differing indicator values.

All indicators were calculated as time series with win-
dow length lw = 0.1 s and hop size of lh = 0.05 s. The time
series were scaled to an expected value range, and loga-
rithmic sampling was applied where necessary. Finally, a
z-standardization (zero mean; unit variance) was applied to
all indicators individually. In total, the input data consists
of 237 indicators and 28,696 observations each.

3.2 Multivariate Statistics
The indicator’s time series were then subject to mul-

tivariate analysis methods, specifically to factor analysis
(FA) [41]. FA assumes that underlying latent factors be-
come manifest in observed indicators, as shown in Fig. 2.

Fig. 2. Concept of FA with loadings lij and unique variances εi.

FA can be used to transform data from the original space
into an optimized space of latent dimensions. In mathemat-
ical terms, FA can thus be described in a generative way as
Eq. (1)

X = L · Y + ε, (1)

where X is a [Nind × Nobs] matrix of the original data, L is a
specific loading matrix of dimension [Nfac × Nind], Y is the
resulting factor scores of [Nfac × Nobs], and ε is a diagonal
matrix of unique variances where Nobs represents the num-
ber of observations, Nind the number of indicators, and Nfac

the number of factors. This equation is solved by means of
an iterative estimation that minimizes the unique variance
ε using maximum likelihood and takes covariance Cov(X)
considerations into account, as formulated in [42] and im-
plemented in [43]. The loading matrix comprises the indi-
vidual weights of each indicator into each factor. The sum
over rows, i.e., among indicators, yields the sum of squared
loadings or the explained variance of a certain factor

s2
j =

Nind∑

i=1

l2
j i . (2)

The relative loading represents the direction of the
transformation and can be described as

Lrel = L · diag{s}−1. (3)

In FA, it is an important decision how many factors to
keep, i.e., in this case, underlying acoustic dimensions. The
Kaiser criterion assumes factors with s2

j ≥ 1 to be relevant
because they inhibit more variance than a single indicator.
However, the parallel analysis according to Horn [44] is a
more convenient method because it compares the explained
variance with a random sample of the same size by means
of a Monte Carlo simulation. The results for both criteria
can be found in Table 3 for pure and varimax rotated FA.

In this work, we follow the parallel analysis suggestion
for varimax rotated FA and keep the eight most prominent
factors. Their explained variance portion can be taken as
scree plot from Fig. 3 (top), and the associated loading
matrix L is visualized in Fig. 3 (bottom).

Table 3. Relevant number of factors Nrel according to Kaiser’s
criterion and parallel analysis for pure and rotated FA.

Kaiser Criterion Parallel Analysis

Nrel cumulative s2
j Nrel cumulative s2

j

FA 20 169.27 (71.42%) 7 141.02 (59.50%)
FA varimax 26 173.11 (73.04%) 8 139.35 (58.80%)
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Table 4. Indicator composition of the first eight relevant factors j with respective explained variance s2
j and relative loadings lrel, ij in

parentheses. Trailing numbers of the indicators denote the frequency bands. Nind, j denotes how many indicators account for ≥51% of
the factor’s explained variance.

Factorj s2
j Nind, j Indicators

1 69.74 (29.4%) 40 LAeq(0.116), LA(0.116), loudnessZwickerBands05(0.116), LApeak(0.116),
LAeqBands06(0.115), loudnessZwicker(0.115), LABands06(0.115), LAeqBands05(0.115),
LAmax(0.115), LApeakBands05(0.114), loudnessZwickerBands06(0.114),
lufsMomBands06(0.114), LABands05(0.114), LAmaxBands06(0.113),
lufsPeakBands05(0.113), lufsPeakBands06(0.113), LAeqBands07(0.113),
LApeakBands06(0.113), LABands07(0.113), LAmaxBands05(0.113),
lufsMomBands05(0.113), loudnessZwickerBands04(0.112), oct07(0.112), mfcc00(0.112),
lufsMomBands07(0.111), oct06(0.111), LApeakBands04(0.111), LAmaxBands07(0.110),
oct08(0.110), LAeqBands04(0.110), lufsMom(0.110), LABands04(0.109),
lufsPeakBands04(0.109), lufsPeakBands07(0.108), lufsPeak(0.108),
LAmaxBands04(0.107), lufsMomBands04(0.107), loudnessZwickerBands07(0.107),
LApeakBands07(0.105), oct05(0.104)

2 30.81 (13.0%) 26 spectralCentroid(−0.163), spectralDecrease(0.161), lufsMomBands00(0.150),
lufsShortBands00(0.149), lufsMomBands01(0.147), lufsPeakBands01(0.147), oct02(0.147),
lufsShortBands01(0.146), LAmaxBands00(0.146), lufsPeakBands00(0.145),
LABands00(0.143), spectralRolloffPoint(−0.143), oct01(0.142), LAeqBands00(0.142),
LAmaxBands01(0.142), LABands01(0.139), LApeakBands00(0.139), LAeqBands01(0.137),
LApeakBands01(0.136), lufsShortBands02(0.135), oct00(0.130), lufsMomBands02(0.129),
oct03(0.124), lufsPeakBands02(0.123), booming0(0.122), loudnessZwickerBands01(0.118)

4 13.63 (5.8%) 9 sphDIAz08(−0.250), sphDIAz07(−0.248), diff08(0.246), diff07(0.245),
sphDIAz09(−0.243), sphDI08(−0.239), sphDI07(−0.235), sphDI09(−0.234),
sphDIAz06(−0.232)

5 6.93 (2.9%) 5 fluct06(0.330), fluct05(0.329), fluct04(0.326), fluct07(0.319), fluct03(0.277)

7 5.76 (2.4%) 5 rough05(0.349), rough06(0.347), rough07(0.341), rough04(0.335), rough08(0.319)

3 4.80 (2.0%) 21 mfcc01(−0.306), sharp(0.231), booming2(−0.172), lufsShortBands09(0.153),
lufsShortBands08(0.151), lufsMomBands09(0.147), lufsPeakBands09(0.146),
oct04(−0.143), lufsPeakBands08(0.141), lufsMomBands08(0.140), LABands08(0.131),
LABands09(0.131), lufsPeakBands03(−0.130), LABands03(−0.130), oct05(−0.128),
loudnessZwickerBands03(−0.127), booming0(−0.127), LAeqBands03(−0.125),
lufsMomBands03(−0.124), LApeakBands08(0.120), LAmaxBands08(0.120)

8 4.15 (1.7%) 5 sphDIEl08(−0.344), sphDIEl09(−0.341), doaEl07(0.320), doaEl08(0.319),
sphDIEl07(−0.310)

10 3.52 (1.5%) 3 sphDI04(−0.449), sphDIEl04(−0.431), sphDIAz04(−0.351)

In order to interpret the resulting factor scores, the com-
position of the individual factors is analyzed. Table 4 lists
those indicators that load gravely to the respective factors.
Only those indicators are retained whose sum of squared
relative loadings accounts for ≥51% of a factor’s explained
variance and which, thus, have a characterizing effect. The
number of indicators necessary to achieve this is shown as
Nind, j.

The composition of the factors allow for a good in-
terpretation and the possibility to describe them semanti-
cally. Factor 1 comprises loudness and level indicators for
broadband and mid–high frequency range (frequency bands
4–7, respectively fc = 500. . .4,000 Hz). Factor 2 is dom-
inated by spectral metrics as well as low-frequency loud-
ness and levels (frequency bands 0–2, resp. fc = 31. . .125
Hz). The next factor 4 is composed of spherical directiv-
ity indices over the full sphere (“sphDI”) and regarding the
azimuthal plane (“sphDIAz”), as well as the DirAC diffuse-
ness (“diff”) based on the 3D intensity vector [33]. These

indicators are apparent for frequency bands 6–9 (resp. fc
= 2. . .16 kHz) and represent the high-frequency range. As
discussed here, the frequency bands 8 and 9 are potentially
subject to spatial aliasing. The fact that the indicators of
these bands correlate with their undistorted counterparts
of bands 6 and 7 suggest that the potential aliasing er-
rors do not degrade the common variance of these factors,
which is an important finding for the following analysis.
Factor 5 consists solely of fluctuation strength of the fre-
quency bands 3–8 (resp. fc = 250. . .5,000 Hz), whereas fac-
tor 7 consists of roughness indicators for frequency bands
with fc = 500. . .8,000 Hz. Factor 3 comprises 21 indicators
representing high-frequency timbre (sharpness, level, and
loudness for bands with fc = 8. . .16 kHz) as well as low-
frequency characteristics (timbral booming, low-frequency
MFCC, and loudness) and can be interpreted as ratio be-
tween high- and low-frequency aspects. Factor 8 includes
the elevational directivity index (“sphDIEl”) and direction
of arrival regarding the elevation (“doaEl”) and factor 10,
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Fig. 3. Top: explained variance portion in % (scree plot), bottom:
relative loading matrix Lrel .

Table 5. Semantic descriptors of identified relevant factors
forming underlying acoustic dimensions (cf. SEC. 3.2) as well
as Friedman test statistics: p-values (statistically significant
values are bold) and Kendall’s coefficient of concordance W

(cf. SEC. 4.1).

Factor Descriptor W p

1 “Loudness” 0.28 0.08031
2 “Low-Frequency Timbre” 0.10 0.49364
4 “High-Frequency Diffusivity” 0.93 0.00006
5 “Fluctuation” 0.10 0.49364
7 “Roughness” 0.29 0.07032
3 “High-Frequency Timbre” 0.26 0.10454
8 “Elevational Diffusivity” 0.73 0.00055
10 “Mid-Frequency Diffusivity” 0.53 0.00559

the spherical directivity index regarding the full sphere, el-
evation, and azimuth (“sphDI”, “sphDIEl”, “sphDIAz”) for
the single-octave frequency band with fc = 500 Hz. All in
all, the eight most relevant factors can be described seman-
tically as listed in Table 5. They finally form the underlying
acoustic dimensions of music reproduction with different
loudspeaker setups in this work.

4 RESULTS

4.1 Statistical Differences Within Acoustic
Dimensions

The underlying acoustic dimensions are formed from
the latent factors identified before. The expression of these
dimensions is represented for each individual acoustic en-
vironment by the factor scores Y calculated with Eq. (1).

The distribution of the resulting factor scores can be
found in Fig. 4. Each of the eight most relevant factors is
shown individually, where factor scores (ordinate) for the
individual loudspeaker setups (color coded) are grouped
for each piece of music (abscissa). Outliers exist but are
omitted in the visualization for clarity.

Fig. 4. Factor score distributions for the most relevant di-
mensions. “Loudness,” “Low-Frequency Timbre,” and “High-
Frequency Timbre” show differences between pieces, whereas
“High-Frequency Diffusivity” and “Elevational Diffusivity” show
differences between loudspeaker setups.

From that, different patterns between the dimensions can
be observed. For example, “Loudness,” “Low-Frequency
Timbre,” and “High-Frequency Timbre” show differences
between the musical pieces but seem to be stable be-
tween the loudspeaker setups. Other dimensions like “High-
Frequency Diffusivity” and “Elevational Diffusivity” show
distinct differences between loudspeaker setups but not that
much between musical pieces.

In order to find underlying acoustic dimensions that actu-
ally change with the loudspeaker setup, appropriate statis-
tics were applied. First, analysis of normality for each sub-
group (distribution of factor scores for a specific musical
piece and a specific loudspeaker setup) could not be as-
serted for all cases. For this purpose, Shapiro–Wilk tests
were conducted and additionally validated with Q-Q plots
to compensate their weakness for large sample sizes. Sub-
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sequently, nonparametric methods were applied, namely,
a Friedman test on ranks (as alternative for one-way re-
peated measure ANOVA), for testing the null hypothesis
H0: “There is no difference in scores of a specific acoustic
dimension between mono, stereo, 2D and 3D loudspeaker
setups.” with a level of significance of α = 0.05. The results
of the Friedman test can be found in Table 5.

It shows highly significant factors 4, 8, and 10 (p < 0.001)
with excellent, good, and moderate Kendall’s coefficient of
concordance W, respectively.

Post hoc paired Wilcoxon signed-rank tests (nonparamet-
ric alternative to paired t-tests) with one-sided alternative
hypothesis H1: “The scores of a specific acoustic dimen-
sion and musical piece are greater for loudspeaker setup A
compared to setup B.” were conducted for these three fac-
tors to examine differences between individual loudspeaker
setups for each piece of music.

Table 6 shows the resulting p-values with Bonferroni ad-
justment for these tests. The columns denote the respective
pairwise comparison, for example, whether the factor score
distribution of the 3D condition is greater compared with
the distribution of the 2D condition.

It can be seen that for factor 4 (“High-Frequency Diffu-
sivity”), the condition with the higher number of loudspeak-
ers exceeded the respective comparison condition in almost
all cases. Obviously, an increase of the sound sources (loud-
speakers) lead to higher factor scores within this dimension
of diffusivity, which is an expected outcome.

A similar pattern can be found in factor 8 (“Elevational
Diffusivity”) especially for the comparisons of the 3D loud-
speaker setups. This behavior also meets the expectations in
such a way that additional elevated sound sources alter the
directivity characteristic of the sound field regarding the el-
evation. However, the fact that the comparison between the
2D setup and the stereo setup also shows significant differ-
ences for six out of eight pieces of music in this dimension
impairs the robustness of this dimension’s interpretability.
Furthermore, the distribution of this factor in Fig. 4 even
shows a decreasing tendency for some pieces of music for
mono, stereo, and 2D reproduction. This indicates that the
elevational directivity index is sensitive to room acoustic in-
fluences such as floor and ceiling reflections, which might
lead to higher factor scores for mono reproduction.

Factor 10 (“Mid-Frequency Diffusivity”) exhibit 19 out
of 48 significant pairwise comparisons, which is a some-
what ambiguous result. This ambiguity can also be seen in
the distribution of this factor in Fig. 4 with large and over-
lapping interquartile ranges. A tendency that differences
might be due to the higher number of loudspeakers can be
observed; however, a content-dependent and nonsystematic
relationship can not be denied. Thus, this factor must be in-
terpreted as a vague measure for discriminating between
the loudspeaker setups under test.

4.2 Temporal Characteristics
The presented methodology is based on similarities and

differences of the distribution of factor scores. In princi-
ple, this would include the assumption that each short-term

Fig. 5. Mixing matrix of the ICA for the piece Laudate denoting
the composition of fundamental signal shapes s0, s1, s2, and s3
to represent the slopes of the factor score’s time series of the
respective loudspeaker setups.

observation is independent of any other observation. This
of course is not the case since time series are investigated
that are tied to a process with both stochastic and deter-
ministic features. Hence, in order to assure that the above
made statements are valid not only for the distributions but
also for the time series, a further analysis step was con-
ducted. With the help of independent component analysis
(ICA) [45] it is possible to detect underlying signal bases.
The method assumes that observed signals are mixtures of
superimposed basis signals. The decomposition of the four
signal observations (mono, stereo, 2D, 3D) for each dimen-
sion and each piece of music into subcomponents is ought
to reveal similarities in the temporal characteristic.

Fig. 5 shows the exemplary mixing matrix of the ICA
with four basis signal components s0, s1, s2, s3 of the piece
Laudate. It can be seen that for the factors 1, 2, 5, 7, and
3, a single component is mixed with large weights to the
time series of the factor scores of the respective loudspeaker
setups. This vertical structure means that all four conditions
are based on similar time series properties. The factors 4, 8,
and 10 have different characteristics. Here such structures
cannot be identified, which means that the time series of
the four loudspeaker conditions do differ in a relevant way.
These both findings of similarities and differences confirm
the assumptions that not only the distributions but also the
time series of the identified factor scores discriminate the
four loudspeaker conditions within the factors 4, 8, and 10.

5 SUMMARY AND DISCUSSION

The proposed methodology to identify underlying acous-
tic dimensions of general acoustic environments was capa-
ble of revealing acoustic properties that discriminate dif-
ferent loudspeaker systems for music reproduction. The
presented approach based on robust statistical treatment
of signal parameters produced plausible and expected
results but certain ambiguities at the same time: First,
with proper calibration, the acoustic dimensions “Loud-
ness,” “Low-Frequency Timbre,” “Fluctuation,” “Rough-
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Table 6. Paired Wilcoxon signed-rank tests with one-sided alternative (condition A is greater than condition B) for the factors found to
be significantly different between loudspeaker setups. Significance is shown with bold typeset Bonferroni-adjusted p-values p* = p · (8

· 6) for p* < 0.05 (*) and p* < 0.01 (**), whereas non significance is denoted with n/s.

Factor Piece 3D > 2D 3D > Stereo 3D > Mono 2D > Stereo 2D > Mono Stereo > Mono

4 Bilder ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001)
Hantel ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000)

Laudate ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001)
Mellow ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000)
Rokoko ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001)
School ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001)

Walkuere ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001)
Wunderschoen ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001)

8 Bilder ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000)
Hantel ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000) n/s (1.000)

Laudate ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000) n/s (1.000) n/s (1.000)
Mellow ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000) n/s (1.000)
Rokoko ** (<0.001) ** (<0.001) n/s (1.000) ** (<0.001) n/s (1.000) n/s (1.000)
School ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000) n/s (1.000)

Walkuere ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000) n/s (1.000)
Wunderschoen ** (<0.001) ** (<0.001) * (0.040) n/s (1.000) n/s (1.000) n/s (1.000)

10 Bilder ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) * (0.041) n/s (1.000)
Hantel ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (0.002) n/s (1.000)

Laudate ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000)
Mellow ** (<0.001) ** (<0.001) n/s (0.315) ** (<0.001) n/s (1.000) n/s (1.000)
Rokoko ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000)
School ** (<0.001) ** (<0.001) ** (<0.001) ** (<0.001) n/s (1.000) n/s (1.000)

Walkuere n/s (1.000) n/s (1.000) n/s (1.000) n/s (1.000) n/s (1.000) n/s (1.000)
Wunderschoen ** (<0.001) ** (<0.001) n/s (1.000) n/s (0.574) n/s (1.000) n/s (1.000)

ness,” and “High-Frequency Timbre” show no significant
differences between the loudspeaker setups.

Second, the acoustic dimension “High-Frequency Diffu-
sivity” (dimension 4) shows significant difference between
loudspeaker setup according to an omnibus Friedman test.
Furthermore, an increase of loudspeakers in use leads to
an increase in scores of this factor, as shown by a post hoc
Wilcoxon test.

Third, “Elevational Diffusivity” (dimension 8) is capable
of discriminating the 3D setup from the others as shown in
both Friedman and Wilcoxon test. At the same time, this
factor delivers ambiguous results when comparing mono,
stereo, and 2D where all loudspeakers are placed at the
same height and room acoustic effects dominate.

Fourth, despite significant omnibus Friedman test re-
sults, “Mid-Frequency Diffusivity” (dimension 10) shows
no systematic and robust post hoc test results for compar-
ing the different loudspeaker setups. A tendency toward
higher values with a larger number of loudspeakers used
can be observed, but a content-dependent and/or arbitrary
influence is highly present. This fact is also present in the
low-variance explanation of 1.5 % and low Kendall’s con-
cordance W = 0.53.

In summary, it can be stated that diffusivity—a dimen-
sion indicating whether the incoming sound comes from a
specific direction or diffusely from all sides—can be reli-
ably calculated and can serve as a distinguishing feature
for the investigated loudspeaker configurations. It may be
questioned at this point if the findings can be generalized
to either other pieces of music or other loudspeaker se-

tups or even for general acoustic environments. Indication
that the methodology of developing underlying acoustic di-
mensions itself is a suitable approach for general acoustic
environments can be found in [18]. At the same time, it may
be the case that a different set of acoustic stimuli produce
different factor compositions during FA. This is because,
strictly speaking, the characterizing loading matrix is only
valid for the population of observations that was originally
fed into it. In the present case and in similar cases, it is
important to make a balanced selection of stimuli and ob-
servations with respect to the hypothesis being pursued.

After all, a potential application of the findings could be
a contribution to the modeling of human perception. With
the robust identification of different acoustic dimensions, it
is now possible to investigate whether the effects of certain
loudspeaker configurations on human auditory perception
can be explained to some extent by these parameters. Ap-
propriate listening tests with assessment of physiological,
perceptual, and emotional responses were carried out and
currently analyzed within the project Richard Wagner 3.0
[46]. If perceptual qualities such as envelopment, appar-
ent source width, or even overall auditory experience are
to be predicted using acoustic parameters, the dimensions
of “High-Frequency Diffusivity,” “Elevational Diffusivity,”
and “Mid-Frequency Diffusivity” form a set of attributes
worth targeting. Apart from that, a general room acousti-
cal characterization with or without electroacoustic system
may be assessed in terms of the identified dimensions.

Finally, an exemplary comparison of all identified under-
lying acoustic dimensions can be found in Fig. 6. It shows
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Fig. 6. Acoustic fingerprints of music pieces Laudate (left
column) and School (right column) for the four loudspeaker
setups. The acoustic dimensions are arranged clockwise start-
ing from 12 o’clock: “Loudness,” “Low-Frequency Tim-
bre,” “High-Frequency Diffusivity,” “Fluctuation,” “Roughness,”
“High-Frequency Timbre,” “Elevational Diffusivity,” and “Mid-
Frequency Diffusivity.”

an acoustic fingerprint of two exemplary pieces of music for
all four loudspeaker setups. The polar axes of each finger-
print represent the respective factor or acoustic dimension.
Each time window of 0.1 s is represented by a faint blue po-
lar line, which also supports a general understanding of the
temporal distribution of factor scores. This visualization al-
lows us to intuitively compare general characteristics of the
musical piece, as well as the progression of the dimensions
between the loudspeaker setups.
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