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As the potential of networked multiuser virtual environments increases under the concept
of the metaverse, so do the interest and artistic possibilities of using them for live music
performances. Live performances in online metaverse environments offer an easy and en-
vironmentally friendly way to bring together artists and audiences from all over the world.
Virtualization also enables countless possibilities for designing and creating artistic experi-
ences and new performance practices. For many years, live performances have been estab-
lished on various virtual platforms, which differ significantly in terms of possible performance
practices, user interaction, immersion, and usability. With Orchestra, we are developing an
open-source toolbox that uses the Web Audio Application Programming Interface to realize
live performances with various performance practices for web-based metaverse environments.
Possibilities vary from live streaming of volumetric audio and video, live coding in multiple
(including audiovisual) programming languages, to performing with generative algorithms or
virtual instruments developed in Pure Data. These can be combined in various ways and also
be used for telematic/networked music ensembles, interactive virtual installations, or novel
performance concepts. In this paper, we describe the development and scope of the Orchestra
toolbox, as well as use cases that illustrate the artistic possibilities.

0 INTRODUCTION

The term metaverse originated in the dystopian science
fiction novel “Snow Crash” [1], in which it describes a vir-
tual world interwoven with people’s physical reality. In our
current technology landscape, it has come to serve as an um-
brella term for a specific category of virtual environments.
In contrast to standalone, offline virtual- or augmented-
reality (VR/AR) applications, metaverse environments are
understood as “an interconnected web of social, networked
immersive environments in persistent multiuser platforms”
[2]. Although there is some consensus on this definition, the
term metaverse is used to market all kinds of VR/AR appli-
cations, virtual multiplayer games, or social experiences. In
particular, multiplayer games like Fortnite [3] are often used
as examples of metaverse environments [4]. However, strict
to the definition given, these environments do not meet the
metaverse requirements, because they are self-contained
environments, which also have a domain-specific purpose

*To whom correspondence should be addressed:
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due to the respective game mechanics. Although virtual so-
cial worlds such as VRChat [5], Horizon Worlds [6], or the
pioneering Second Life [7] are much more diverse in their
possibilities, social interactions, and immersion, they are
still self-contained applications that cannot connect to each
other.

Therefore, it is primarily web-based multiuser virtual
environments that can be experienced through browsers
on immersive VR/AR devices, in addition to computers or
smartphones, that meet the definition of metaverse envi-
ronments. Depending on the implementation, these appli-
cations can include a wide range of social and cultural in-
teractions, and because they are internet-based, enable con-
nectivity between these environments. Collectively, these
web-based environments can be seen as the current state
of the metaverse. Platforms that allow the creation of such
metaverse environments are, for example, STYLY [8] or
Mozilla Hubs [9].

There are several approaches to virtual live music per-
formances on the aforementioned platforms and beyond.
A particular advantage of virtualization is that artists and
audiences are independent of location. In addition to solo
artists, ensembles and groups of geographically distributed
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performers can also realize so-called telematic/networked
music performances (NMPs) [10]. In the same way, audi-
ences can also participate in such performances regardless
of their location. Virtual live performances may involve dif-
ferent concert formats or performance practices, depending
on the technological implementation used.

Audio streaming is probably the most common technol-
ogy. Local audio streams from artists can be transmitted,
often using streaming technology optimized for musical
performances [11, 12]. In this way, signals from acoustic
or electronic instruments, as well as speech or vocals, can
be used.

Virtual instruments are another suitable form of technol-
ogy. Depending on the implementation, virtual instruments
in a network can replace the need to transmit audio be-
tween participants with the ability to transmit control data
and perform sound synthesis locally at each site [13].

Live coding is a growing form of performance practice
and technology [14]. It is a performance practice where
the on-the-fly programming of algorithms for the genera-
tive composition of music and/or visuals is performed live
in front of an audience [15]. The reproduction of sound
through loudspeakers, usually in stereo, and the projection
of the programming code, optionally with visual elements,
on a screen behind the performer and their laptop on stage,
is a common form of presentation in a musical context. As
with virtual instruments, in suitable networked music or vir-
tual live performance environments, instead of audio, only
the source code for local audio rendering can be transferred
between participants [16].

Using these technologies, a variety of virtual live perfor-
mances can be realized. However, the crucial factor here is
how these are presented and how the audience participates,
as well as the interactions that are made possible between
each other and the performers. In contrast to 2D, in au-
dio and video, virtual live performances using video con-
ferencing and/or streaming platforms [17], performances
and composition in 3D virtual (especially metaverse or
metaverse-like) environments can offer crucial advantages
[18–21]. Here, immersion and a sense of presence can be en-
hanced for both audience and performers, especially in con-
junction with VR/AR devices [22]. Direct and augmented
social (as well as cultural) interaction and participation can
be enabled, allowing users to interact with the environment
and each other [23]. Text, voice, and video chats enable
social interactions for and between the audience and per-
formers. As will be shown throughout the paper, the poten-
tial of 3D virtual environments opens up a wide range of
possibilities for environmental and stage design, allowing
the development and realization of unique artistic concepts
and novel performance practices.

For this purpose, we have developed the open-source Or-
chestra toolbox for live performances in web-based meta-
verse environments. The meaning of the name is ambigu-
ous: like the large instrumental ensemble, the toolbox can
be used to bring together different instruments and perform-
ers. The word originated in ancient Greek, meaning a part of
the stage of a Greek theatre, just as the toolbox can be seen
as a part of the novel stages in the form of metaverse envi-

ronments. Orchestra consists of individual components that
cover the aforementioned virtual live performance formats:
volumetric audio and video streaming, virtual instruments,
and live coding. The components are compatible with each
other and have been developed for widely used web-based
frameworks for metaverse environments. This allows Or-
chestra to be used in arbitrarily designed, networked, social,
and immersive multiuser metaverse environments to create
diverse live performances and musical art experiences.

In the following, we describe the development of the
audio-based components for live music performances in-
cluded in the Orchestra toolbox. We show the integration
of the selected frameworks for web-based metaverse en-
vironments (SEC. 2) and spatial audio (SEC. 2.2). Further-
more, the development of the Web Audio-based compo-
nents (SEC. 3) and the resulting artistic possibilities and use
cases (SEC. 4) will be presented.

1 MOTIVATION AND RELATED WORK

There is a long history of numerous realizations of mu-
sic performances on the platforms mentioned in SEC. 0
[24]. Very common is the playback of audio to perform-
ing virtual avatars in a virtual environment [25], sometimes
with highly detailed animations based on the performer’s
motion capture [26]. In more advanced realizations, high-
quality (but usually pre-recorded) live performances with
volumetric audio and video are integrated into the virtual
environments [27]. A simple form is to integrate 2D audio
and video live streams from video-streaming platforms into
virtual environments. This approach has been particularly
popular in the live coding community. However, the result
here is more like a public screening than a live performance,
in that the audience watches a large virtual screen instead
of the performer.

Not all the presented examples are in metaverse envi-
ronments by the definition given. They differ in the de-
gree of possible immersion, e.g., using VR/AR devices and
spatial audio, or in social interaction and participation. Pre-
produced performances, whether volumetric audio/video or
motion capture, exclude the artists from the virtual environ-
ment and don’t allow interaction between the audience and
performers. This also applies to integrated live streaming
using video-streaming platforms.

There is no open and customizable toolbox for web-based
metaverse environments that combines the possibilities of
live music performances and other realizations with volu-
metric audio streaming, virtual instruments, and live coding
in multiuser metaverse environments. Therefore, Orches-
tra’s live music performance components are developed for
implementation in web-based metaverse environments to
allow the creation of live music performances with a high
degree of immersion by integrating VR/AR devices and
spatial audio.

The focus is on the realization of real-time performances
inside these metaverse environments to enable participation
and social interaction between the audience and artists. The
components cover the possibilities of real-time volumet-
ric audio and video streaming, performances with virtual
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instruments and generative algorithms, as well as live cod-
ing. Intercompatibility and multiuser interaction allow for
the arbitrary combination of components and resulting per-
formance practices (for example, for NMP ensembles) or
interactive virtual installations. The use of the Web Audio
Application Programming Interfaces (API) enables inte-
gration into web-based metaverse environments with local
audio rendering in the browser, without the need for plugins
or other software installations.

2 METAVERSE ENVIRONMENT DEPENDENCIES

Web-based implementations are particularly suited for
creating an interconnected network of metaverse environ-
ments. Being built on the Internet, these are networked by
default and allow exchange between each other. There are
also available web technologies for browser-based imple-
mentations to meet the remaining requirements for meta-
verse environments (see SEC. 0). JavaScript-based APIs
such as Web Audio [28] and WebGL [29] allow the ren-
dering of audiovisual virtual 3D environments directly in
the browser without the need for additional software. The
WebXR API [30] enables the use of VR/AR systems with
stereoscopic rendering on head-mounted displays (HMDs),
roaming in 6 degrees of freedom (6-DoF) through head and
room tracking, as well as controllers and hand tracking for
interaction.

There are several ways to create web-based metaverse
environments using the APIs mentioned here. Game en-
gines such as Unity [31], especially in combination with
special add-ons such as the Spatial Creator Toolkit [32],
enable the high-level design of web-based multiuser virtual
environments using graphical interfaces. Far more control
over code and implementation is offered by low-level pro-
gramming of such applications. In addition to using the
APIs with plain JavaScript programming, frameworks such
as Three.js [33] facilitate development. A balance between
low-level JavaScript programming, a higher-level markup
language, and a graphical editor is provided by the A-Frame
framework [34].

2.1 A-Frame and Networked-Aframe
A-Frame is a higher-level framework based on Three.js.

Although it is also JavaScript-based at its core, it abstracts
the description of 3D virtual worlds into an HTML-like
[35] markup language. A-Frame also includes the A-Frame
Inspector, a visual editor that allows the design of 3D scenes
using graphical user interfaces similar to those of other
3D software and game engines. The software architecture
of A-Frame corresponds to an entity component system
(ECS) [36]. The JavaScript-based components allow the
programming of 3D entities such as geometries and models,
materials, light, shadows, and multimedia content such as
images, videos, or sounds. The scope of the components can
be extended by integrating third-party or custom-developed
components in JavaScript.

Although virtual environments developed in A-Frame
can also be used with conventional PCs or mobile devices

with interfaces such as a mouse, keyboard, or touch screen,
there is a special focus on VR/AR integration in A-Frame.
The integrated WebXR API also allows the use of current
VR/AR systems with associated hardware such as HMDs,
tracking, or controllers. By allowing the use of compatible
hardware of your choice, the virtual environments can be
accessed by as many users as possible.

For extending A-Frame worlds to shared multiuser en-
vironments, as required for the metaverse, the Networked-
Aframe (NAF) library is available [37]. Also written in
JavaScript, NAF provides a set of adapters for exchang-
ing data over WebRTC [38] or WebSockets [39] to syn-
chronize user interactions between each other or the envi-
ronment. Using the supplied adapters, data are transferred
from user to user in a peer-to-peer (P2P) network, ensur-
ing interactivity and persistence in resulting metaverse en-
vironments. It enables the implementation of shared ob-
jects such as avatars and the synchronization of attributes
of all A-Frame components, including custom-developed
ones. The integration of WebRTC also allows low-latency
broadcasting of audio and video streams. Using NAF, any
interaction with objects in the environment, as well as
user interactivity such as voice, video, or text chats, can
be implemented.

Just as the popular metaverse platform Mozilla Hubs
is based on A-Frame/NAF, the Orchestra toolbox was also
developed for this combination. Orchestra includes compo-
nents and entity primitives for the integration in A-Frame
environments. For multiuser interactivity using NAF, tem-
plates are included. NAF’s WebRTC real-time audio im-
plementation is used for the audio streaming component.
Interactions with virtual instruments, as well as the source
code of the live coding components, are shared over data
broadcast. The Orchestra components can thus be integrated
into any kind of metaverse environment that is designed and
implemented on the basis of A-Frame/NAF.

2.2 Resonance Audio
In addition to the visual reproduction with HMDs, as well

as the tracking of movements, the auralization of spatial au-
dio using headphones is another aspect of the immersive ex-
perience of 3D environments. A 3D sound experience over
headphones is achieved through dynamic binaural repro-
duction of sound sources, which are rendered by real-time
convolution with head-related transfer functions (HRTFs)
depending on the user’s head orientation and room position
[40]. By default, the A-Frame framework uses the Three.js
implementation of the Web Audio PannerNode object [41]
with the HRFT panner model to provide binaural audio for
headphones.

Instead of using this standard spatialization, a spatializer
with room simulation is implemented to add reverberation
to the acoustic scene, increasing the audiovisual coherence
by acoustically counteracting the visually designed envi-
ronment [42]. For this purpose, the Resonance Audio spa-
tializer [43] was integrated as a component in Orchestra.
The Resonance Audio Web SDK is based on the Omnitone
[44] spatial audio rendering framework, written using the
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Fig. 1. Architecture of the Orchestra toolbox with all components, dependencies, involved frameworks, and programming interfaces.

Web Audio API. It considers the room geometry and mate-
rial properties of the reflecting surfaces of a specified room
and thus supplements the binaural rendering with a spa-
tial room simulation. A ray-tracing-based model is imple-
mented for early reflections and filters for late reverberation
on ambisonic content [45].

The Resonance Audio spatializer is a suitable choice
for web-based solutions [46], particularly for the Orchestra
toolbox, because there is already an open-source port for the
A-Frame framework. The component [47] included in Or-
chestra is a fork of this existing A-Frame component [48],
extended with the possibility of moving sound sources and
implemented for use with the Orchestra live performance
components. The extended Resonance Audio component
thus forms the spatial audio rendering basis for Orchestra
and must therefore be integrated into the metaverse envi-
ronments created.

3 COMPONENTS FOR MUSIC PERFORMANCES

The Orchestra toolbox is a collection of A-Frame/NAF-
compatible components for live music performances. It is
developed in JavaScript and combines various web-based
technologies (see Fig. 1). As described in the previous sec-
tion, Orchestra is intended for use in A-Frame/NAF-based
metaverse environments, where the included Resonance
Audio component provides the spatial audio layer for the
audio components. The audio components use the Web Au-
dio API to render audio in the browser.

In addition to the audio components, the Orchestra tool-
box also provides visual, WebGL-based components, such
as the Kinectron component for rendering streamed vol-
umetric video [49], or the visual rendering of the IBNIZ
audiovisual live coding language [50]. As the visual parts

are beyond the scope of this paper, they will not be dis-
cussed further. In the following, we describe each included
audio component’s implementation and functionality.

3.1 Networked-Resonance-Audio
The networked-resonance-audio component enables

real-time streaming of audio signals over WebRTC as sound
sources for the Resonance Audio spatializer. It is closely
based on the networked-audio-source component from the
NAF library [51] and has been extended to integrate with the
Resonance Audio layer. In the original networked-audio-
source component, WebRTC streamed audio is used as a
MediaStream [52] for a Three.js PositionalAudio object
[53]. This already enables binaural auralization, but to inte-
grate room simulation as well, the networked-resonance-
audio component included in Orchestra implements the
stream as the source for an attached Resonance Audio
Source (reseonance-audio-src) [54]. In this way, audio
streams are reverberated to match the characteristics of the
specified acoustic room (see SEC. 2.2).

NAFs WebRTC implementation [55] uses RTCPeerCon-
nection [56] for audio MediaStreams with the Opus codec
[57] by default and aims for low-latency broadcasts using
the Real-Time Transport Protocol (RTP) [58]. Depending
on a number of factors, latency can vary greatly here [59].
When transferred over User Datagram Protocol (UDP) [60],
RTP is comparable with plain UDP with the addition of a
header, and the latency is additionally influenced by factors
such as the underlying network speed/latency, encoding and
decoding, and the audio input/output (I/O) latency.

Linked to an avatar and its position, users can broad-
cast speech or acoustic interaction such as applause via
microphone sharing in the browser. Likewise, immersive
audiovisual volumetric live performances can be staged,
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Fig. 2. A screen capture of the metaverse performance “The En-
tanglement” [83]. A telematic improvisation piece using streamed
volumetric audio and video involving components included in the
Orchestra toolbox.

especially when linked to the volumetric video rendering
of the Kinectron component (see Fig. 2).

3.2 PdXR
The PdXR (Pure Data extended reality) components [61]

allow the execution and shared interaction of Pure Data (Pd)
patches in metaverse environments. Pd is an open-source
visual programming language that offers a wide range of
possibilities for audio and multimedia programming [62],
such as virtual musical instruments or interactive genera-
tive algorithms. In addition to MIDI or signal processing
objects for programming algorithms, Pd provides numer-
ous Graphical User Interaction (GUI) objects for interactive
algorithms. A project that allows running and interacting
with Pd patches in the browser is PdWebParty [63]. Here
Pd, transpiled into WebAssembly [64] using emscripten
[65], is used as the Pd runtime, while GUI objects are ren-
dered as interactive HTML elements in the browser. This
project has been adapted to develop PdXR for metaverse
environments.

Based on PdWebParty, the Pd WebAssembly runtime,
which uses the SLD2 Audio API [66] with Web Audio as
the audio rendering backend, has been adapted for use with
the Resonance Audio spatializer. The emscripten-generated

implementation of the signal processing as a ScriptProces-
sorNode [67] with the resulting signal as a MediaStream
has been modified to be used as the source for a resonance-
audio-src. The audio from running Pd patches is thus ren-
dered as a monoaural sound source that is binauralized and
spatialized in the metaverse environment. The JavaScript-
based parser and API to handle the GUI objects and their
interaction are adapted to render them as interactive 3D
A-Frame entities (see Fig. 3). Changed parameters of the
objects, or applied interactions, are shared with all users
inside a metaverse environment using NAF. This enables
low-latency, bandwidth-saving NMPs, as there is no need
to stream audio.

As Pd is an open programming language, the algorithms
that can be implemented are manifold and almost countless.
Because PdXR is an implementation of the native Pd envi-
ronment, the possibilities are similarly diverse. Limitations
are mainly related to GUI objects, data management, and
audio I/O. GUI objects implemented at the time of writ-
ing are bang, toggle, vertical/horizontal slider, number2,
floatatom, and symbolatom. Although the implementation
of other GUI objects is in progress, some cannot be use-
fully ported to virtual environments (e.g., patch design el-
ements). The integration of Web MIDI API [68] is also in
the works. Data management (e.g., to support external files
such as samples) or I/O features of Pd such as microphone
input or multichannel audio cannot be usefully integrated in
the foreseeable future. The multiuser ability for interaction
with all Pd GUI objects makes it possible to perform to-
gether on virtual instruments or to create interactive virtual
installations.

3.3 Live Coding Components
The Orchestra toolbox contains components for live cod-

ing within metaverse environments [69]. Available live cod-
ing components include the Bytebeat, StackBeat, and IB-
NIZ languages. Not only is the implementation of these
components similar, but so are the properties of the lan-
guages. The similarity lies in the minimalist language de-
sign, and the reduced instruction set. For this reason, these

Fig. 3. A screen capture of an example metaverse environment with the PdXR component. The image shows the involved Pd patch with
the interactive GUI objects ‘bang,’ ‘toggle,’ ‘vertical slider,’ ‘floatatom,’ and ‘symbolatom.’
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Fig. 4. A screen capture showing the StackBeat live coding com-
ponent. It includes an open cube containing the current source
code and a virtual keyboard as a programming terminal.

are considered esoteric programming languages (Esolangs).
Esolangs are a type of programming languages that are not
intended for general-purpose use but for the implementation
of conceptual, creative, and sometimes artistic language de-
signs [70].

Because of the reduced instruction set, consisting of sin-
gle characters, the included live coding languages are par-
ticularly efficient for programming in virtual environments.
Thus, even when using virtual keyboards with arbitrary Hu-
man Interface Devices (HIDs), ranging from VR/AR con-
trollers to hand tracking and conventional computer mice,
programming can be done quickly and comfortably. All
three live coding components feature an A-Frame-based
programming interface (see Fig. 4) with an interactive vir-
tual keyboard that can be used with the aforementioned
HIDs. The programming interface was developed using a
modified version [71] of the Aframe-Super-Keyboard [72].
By using NAF, the live coding source code is shared be-
tween all users. Again, this enables low-latency and low-
bandwidth performances without audio streaming. Running
multiple instances of live coding components allows for re-
alizing NMPs or virtual installations.

As StackBeat and IBNIZ are based on the Bytebeat con-
cept, the languages also have a lot in common aesthet-
ically. The musical output of all three can be described
as 8-bit/Chiptune-like. Because the languages have a high
degree of complexity and expressiveness despite their min-
imalism, this aesthetic limitation is probably the most sig-
nificant. In the following, we describe the implementation
of the individual live coding components in more detail.

3.3.1 aframe-bytebeat
Bytebeat is a concept for composing algorithmic music

[73]. It uses arithmetic and logical operations as one-line
formulas. Bytebeat can be implemented in many program-

ming languages, in its most minimal form consisting of
arithmetic and logical expressions on a variable t, incre-
mented in an ideally infinite loop. The 8-bit data output can
be rendered as a raw PCM audio stream [74]. The arithmetic
and logic expressions on the infinite variable t can be con-
sidered as a small domain-specific programming language
[75]:

t&t>>8

Code 1. Bytebeat code for a Sierpinski triangle composition
[73].

There are several implementations of web-based Byte-
beat live coding environments, even for NMPs [76]. For
Bytebeat live coding within metaverse environments, we
have developed a JavaScript-based on-the-fly interpreter
component integrated with A-Frame/NAF. The parser was
designed to handle an adapted instruction set that includes
the conventional Bytebeat syntax with a few variations.
To reduce instructions to single characters, multicharac-
ter instructions were replaced by single characters (">>"
becomes "r" or "sin" simply becomes "s").

Using the Web Audio API, audio rendering is imple-
mented as an AudioWorklet processor [77] for prioritized
threading and seamless signal processing. The resulting
real-time audio stream is spatialized with the described
Resonance Audio layer as a positional sound source with
the location of the programming interface.

3.3.2 aframe-stackbeat
StackBeat is a stack-based implementation of the Byte-

beat concept [78]. By using a stack-machine architecture,
the number of instructions and characters required can be
further reduced. The algorithm for a fractal Sierpinski trian-
gle composition can be reduced from the Bytebeat variant
with 6 characters (see Code 1 in SEC. 3.3.1) to a Stack-
Beat algorithm with only 5 characters: 8 > &. This makes
StackBeat even more efficient for live coding in metaverse
environments with virtual keyboards. The original one-line
JavaScript implementation found on esolangs generates an
offline rendered wave file containing the composed music at
a specified length, making it unsuitable for live coding [78].
To enable StackBeat live coding in the metaverse, the code
parser of the original implementation was partially adopted
and reimplemented into an on-the-fly interpreter [79]. The
result is again an A-Frame component that uses the Web
Audio API, largely equivalent to the Bytebeat component.
It has a similar implementation of the AudioWorklet pro-
cessor and spatial audio rendering.

3.3.3 aframe-jibniz
IBNIZ, “Ideally Bare Numeric Impression giZmo,” is a

virtual machine (VM) for low-level programming of audio-
visual algorithms [80]. It is closely related to the concept
of Bytebeat but extends its musical possibilities with vi-
sual capabilities. Because of the on-the-fly interpreter of
the VM, IBNIZ is also suitable for live coding [81]. It in-
cludes a small set of stack operations that can manipulate
both a video and audio stack, separately or simultaneously
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Fig. 5. A screen capture showing two users collaborating on two
audiovisual jibniz live coding components.

[82]. This allows for efficient live coding of audiovisual
algorithms.

One project that brings IBNIZ to the browser is jibniz,
a JavaScript port of the IBNIZ VM [50]. For metaverse
environments, we developed an implementation that adapts
and wraps jibniz as an A-Frame component and integrates
it with the NAF library. As with the previous live coding
components, they share the same style of programming ter-
minal, the source code is shared between all users, and the
Web Audio implementation is adapted to the Resonance
Audio spatializer. The WebGL-based visual rendering acts
as a displacement texture for any 3D geometries. This al-
lows the jibniz live coding component to create animated,
constantly changing audiovisual objects using short, one-
line algorithms (see Fig. 5).

4 USE CASES

Components from the Orchestra toolbox have already
been used in several live performances. The realizations
took place in different metaverse environments and for dif-
ferent artistic concepts and performance practices. The first
public performance using described components took place
as part of the telematic artistic-research residency of the In-
stitute for Computer Music and Sound Technology (ICST)
at the Zurich University of the Arts (Switzerland). The
telematic metaverse piece “The Entanglement” (2022) [83]
was realized as a metaverse performance with volumet-
ric audiovisual rendering, using live-streamed networked
audio and 3D depth camera video of two violinists. It is
an improvisation based on a quantum computer algorithm
[84]. The telematic performance was realized within the
network of the Zurich University of the Arts, and both au-
dio and depth video from two Kinect 3D cameras were
streamed online to the audience in a P2P network topology.
The audience consisted of approximately 10 or more par-
ticipants in the two runs of the performance. In addition to
the online performance in the metaverse, it was also pre-
sented as a local AR concert installation in the Immersive
Arts Space of the ICST.

The live coding piece “Mnemonic Garden” (2022) pre-
miered at the “die digitale” festival in Düsseldorf (Ger-
many) [85]. “Mnemonic Garden” was realized using the

Bytebeat live coding component in a virtual environment
that was specifically designed for the concept of the piece
(see Fig. 6). As this was also a hybrid concert performance
for a virtual audience, as well as one in physical reality,
some elements of a conventional live coding performance
were adopted. The virtual world designed was an exten-
sion of the stage idea but included conventional live coding
elements such as a large projection screen to display the
source code. The virtual audience consisted of about 5 peo-
ple, with latencies being negligible despite the P2P network
topology because only changes to the source code need to
be transmitted as text data.

Live performances in metaverse environments make it
possible to experience concerts online in a way compa-
rable with physical ones through immersive technology
and social participation. However, in the use cases men-
tioned, it was primarily the capabilities of virtualization
that made unique stage designs and the implementation of
specific artistic concepts possible in the first place. The
potential of live performances in metaverse environments
lies not only in bringing artists and audiences together on-
line but above all, in realizing novel art experiences and
performance practices. This is where the advantages of the
Orchestra toolbox become particularly apparent. The in-
tegration and combination of technologies for audiovisual
volumetric live streaming, virtual instruments, and live cod-
ing can be used for different combinations of performance
practices, for single performers or ensembles, or interactive
installations.

Because the audio and visual representations of the com-
ponents are interpreted as spatial sound sources and vir-
tual objects in a 3D virtual environment, they can also be
combined with common spatial composition techniques,
such as creating trajectories and adding reverberation and
echoes through acoustic simulation [86]. Besides the use
cases already realized, virtual environments also allow the
realization of new practices, such as the integration of gam-
ification elements [87], like worldbuilding concepts known
from sandbox multiplayer games such as Minecraft [88],
and much more to be explored.

5 CONCLUSION AND FUTURE WORK

With Orchestra, we have developed an open-source tool-
box that combines several technologies for different types
of live performances in A-Frame/NAF-based metaverse en-
vironments. It allows the realization of immersive online
solo performances, NMPs, interactive virtual installations,
and the creation of new art practices for metaverse environ-
ments. The open-source code allows deep customization
and extension to desired implementations. So far, the tool-
box includes components for volumetric audio and video
streaming, a Pure Data implementation for virtual instru-
ments and interactive algorithms, and three programming
languages for live coding. As shown in the use cases, public
performances have already been realized with these com-
ponents.

These also revealed some limitations with the current
implementations. Even if, as described in SEC. 4 with the
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Fig. 6. A screen capture from the “Mnemonic Garden” live coding performance [85]. Realized with the Bytebeat live coding component,
included in a custom-designed virtual environment, and the programming terminal enhanced with an audio visualization.

"The Entanglement" performance, NMPs with audio and
video streaming via WebRTC in P2P topologies are pos-
sible with high-bandwidth networks and latency uncritical
compositions, limits in terms of latency and stability of the
connections can quickly be reached. As latency can vary
strongly and no synchronization process is built in, care
needed to be taken during the conception and composition
of the piece to ensure that latency would not have a negative
impact on performance and reception. As a result, the cur-
rent implementation is more suited to realizing novel and
tailor-made music pieces and performances than transform-
ing existing material. Even under good conditions, latencies
in standard WebRTC audio streams can be perceived as too
high (>60 ms) for latency-critical NMPs [89]; this is also
true for volumetric video streaming [90].

As a solution, audio streaming for networked perfor-
mances in the metaverse can be combined with software
optimized for NMPs [12] to achieve tolerable latencies on
the performer side. On the audience side, because higher la-
tency is negligible, volumetric audio and video streams can
be transmitted using HTTP Live Streaming (HLS) from
video streaming platforms. This type of streaming archi-
tecture would also be beneficial for solo performances
with large audiences. HLS streaming and optimizing the
WebRTC audio streams for lower latency [89] are being
considered for future development. With the current com-
ponents, latency-critical NMPs and solo performances are
also achievable when using virtual instruments with PdXR
or the live coding components, as no audio streaming is re-
quired. The three live coding languages presented, although
one of them is audiovisual, are similar in their aesthetic re-
sults.

In order to expand the possibilities of live coding in
the metaverse, the implementation of other languages is
also being considered. Although the realization as browser-
based applications means high accessibility for users be-
cause they are platform-independent, device-agnostic, and
do not require additional software installation, browsers
can also impose additional barriers. Compatibility can vary
even among popular browsers (e.g., incompatibility with
Apple’s Safari), particularly due to security mechanisms
(such as disabling automatic sound playback) or local set-
tings that are beyond the developer’s control. Through ex-
tensive testing and additional scripts, high compatibility
with Mozilla Firefox and Chromium-based browsers (e.g.,
Google Chrome or Microsoft Edge) has been achieved. To
mitigate bugs and add compatibility and features, the com-
ponents in the Orchestra toolbox are constantly being devel-
oped. The repository of the Orchestra toolbox can be found
here: https://github.com/AudioGroupCologne/Orchestra
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[11] J. P. Cáceres and C. Chafe, “Jacktrip: Under
the Hood of an Engine for Network Audio,” J. New
Music Res., vol. 39, no. 3, pp. 183–187 (2010 Nov.).
https://doi.org/10.1080/09298215.2010.481361.

[12] C. Rottondi, C. Chafe, C. Allocchio, and A. Sarti,
“An Overview on Networked Music Performance Tech-
nologies,” IEEE Access, vol. 4, pp. 8823–8843 (2016 Dec.).
https://doi.org/10.1109/ACCESS.2016.2628440.

[13] G. Hajdu, “Quintet.net: An Environment for
Composing and Performing Music on the Internet,”
Leonardo, vol. 38, no. 1, pp. 23–30 (2005 Feb.).
https://doi.org/10.1162/leon.2005.38.1.23.

[14] C. Nilson, “Live Coding Practice,” in Proceedings
of the Seventh International Conference on New Interfaces
for Musical Expression, pp. 112–117 (New York, NY)
(2007 Jun.). https://doi.org/10.1145/1279740.1279760.

[15] N. Collins, A. McLean, J. Rohrhuber, and A.
Ward, “Live Coding in Laptop Performance,” Organ-
ised Sound, vol. 8, no. 3, pp. 321–330 (2003 Dec.).
https://doi.org/10.1017/S135577180300030X.

[16] D. Ogborn, J. Beverley, L. Navarro Del Angel, E.
Tsabary, and A. McLean, “Estuary: Browser-Based Col-
laborative Projectional Live Coding of Musical Patterns,”
in Proceedings of the International Conference on Live
Coding (Morelia, Mexico) (2017 Dec.).

[17] C. Basica, “Quarantine Sessions #3,”
https://www.youtube.com/watch?v=5eSeLVCh2cE (ac-
cessed Feb. 15, 2023).

[18] L. Turchet, “Musical Metaverse: Vision, Opportu-
nities, and Challenges,” Pers. Ubiquitous Comput. (2023
Jan.). https://doi.org/10.1007/s00779-023-01708-1.

[19] L. Turchet, R. Hamilton, and A. Çamci,
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