
Freely available online PAPERS
I. Clester and J. Freeman,
“Distributing Generative Music With Alternator”
J. Audio Eng. Soc., vol. 71, no. 11, pp. 780–789, (2023 November).
DOI: https://doi.org/10.17743/jaes.2022.0113

Distributing Generative Music With Alternator

IAN CLESTER,
∗

(ijc@gatech.edu)
AND JASON FREEMAN

(jason.freeman@gatech.edu)

Center for Music Technology, Georgia Institute of Technology, Atlanta, GA

Computers are a powerful technology for music playback: as general-purpose computing
machines with capabilities beyond the fixed-recording playback devices of the past, they can
play generative music with multiple outcomes or computational compositions that are not fully
determined until they are played. However, there is no suitable platform for distributing gener-
ative music while preserving the spaces of possible outputs. This absence hinders composers’
and listeners’ access to the possibilities of computational playback. In this paper, the authors
address the problem of distributing generative music. They present a) a dynamic format for
bundling computational compositions with static assets in self-contained packages and b) a
music player for finding, fetching, and playing/executing these compositions. These tools are
built for generality to support a variety of approaches to making music with code and remain
language-agnostic. The authors take advantage of WebAssembly and related tools to enable the
use of general-purpose languages such as C, Rust, JavaScript, and Python and audio languages
such as Pure Data, RTcmix, Csound, and ChucK. They use AudioWorklets and Web Workers
to enable scalable distribution via client-side playback. And they present the user with a music
player interface that aims to be familiar while exposing the possibilities of generative music.

0 INTRODUCTION

From now on there are three alternatives: live music,
recorded music and generative music. Generative music
enjoys some of the benefits of both its ancestors. Like live
music, it is always different. Like recorded music, it is free
of time-and-place limitations — you can hear it when you
want and where you want.

— Brian Eno, A Year With Swollen Appendices

In the essay “Generative Music” [1], Eno describes three
kinds of music. The first is live music, in which the music
comes out differently every time. Even the same musicians
playing the same piece will sound a little different between
performances. In musical traditions that emphasize impro-
visation on a form, each performance of a piece may differ
significantly, but still be recognizably the same piece. Freer
practices go further still, taking each performance in differ-
ent directions bound together only by the improvisational
spirit of the performers—or by a score that embraces ran-
domness, with variability built-in by the composer.

The second kind is recorded music, in which music is
frozen in time. The recording consists of whatever partic-
ular sounds occurred that time, e.g., samples output by an
analog-to-digital converter or grooves etched into a record,
and the recording does not change each time it is played
(other than, perhaps, the medium degrading). Nonetheless,

*Corresponding author: ijc@gatech.edu

recorded music is wildly successful because it is conve-
nient for both artist and listener. Once an artist records
their music, their fans can listen to it across time and space,
whenever they want and however they want. A recording, as
information, is inherently less scarce than a performance—
a performer can only play one thing in one place at a time.
Digital recordings in particular are non-rivalrous: one’s lis-
tening to a recording does not prevent another’s listening
to an identical copy of the same recording, and there is no
venue to limit the size of the audience.

So on one hand, there is live performance, which is dy-
namic but constrained and scarce, and on the other, record-
ings, which are static but easy to distribute and reproduce.
Then there is the third alternative: generative music. By rep-
resenting music as systems that generate audio rather than
audio itself, the best of both worlds can be had: dynamism
and availability, possibilities and scalability.

Eno described that third alternative in 1996, but where is
it today? Live music and recorded music are ubiquitous, but
generative music remains niche. Modern music production
invariably involves a computer, but playback uses almost
none of the machine’s potential. Languages and environ-
ments abound for making computer music, but distribution
remains challenging, and the solutions that exist are typi-
cally custom-made for a particular musical work, artist, or
language. From the perspective of the listener, these forms
of distribution present a barrier to listening and separate
generative music not only from other music, but even from
other generative music.

780 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

PAPERS ALTERNATOR

Fig. 1. Conventional streaming model (a) vs. Alternator (b).

In this paper, the authors address this state of affairs
and investigate the problem of distributing generative mu-
sic. They describe Alternator: a system for distributing
and playing computational compositions, making the pos-
sibilities of such compositions more accessible to listen-
ers and more useful to composers.1 The authors originally
presented Alternator at the 2022 Web Audio Conference
(WAC) [2]; here, they recapitulate their previous exposi-
tion and expand on it, connecting Alternator to additional
literature on generative music distribution and providing
updates since their presentation at WAC.

Fig. 1 summarizes the conceptual model of Alternator.
In conventional music distribution platforms [Fig. 1(a)], an
artist produces an audio recording of their music and up-
loads it to a streaming service, which then streams it to lis-
teners. A fixed, unchanging waveform represents the musi-
cal work, and listeners hear the same thing every time. In the
Alternator model [Fig. 1(b)], the artist creates and uploads
a computational recording of their music instead—rather
than audio, a program that generates audio (represented by
a contraption in the figure). At the time of playback, the
program runs, and there may be many possible outcomes;
listeners hear a different one each time.

1 BACKGROUND AND RELATED WORK

1.1 Musical Inspirations
This work is inspired by the long tradition of thinking

about music in terms of systems and processes. Aleatoric or
indeterminate music may include instructions in the score
that allow for many possible outcomes at the time of perfor-
mance, as in works by Cage, Brown, and Stockhausen [3].2

Steve Reich [4] made explicit the notion of a piece of music
as a process and emphasized gradual, perceptible processes
as opposed to the chance of Cage (or the “seldom audible”

1A live demo is available at https://ijc8.me/alternator, and the
source code can be found at https://github.com/ijc8/alternator.

2Some aleatoric works are “indeterminate with respect to their
composition,” as Cage puts it (or, as the present authors might
say, they vary only at “compile-time”). In this paper, the authors
are more interested in those that are “indeterminate with respect
to their performance” (which vary at “run-time”), because these
compositions encompass multiple outcomes.

processes of serial composers). Brian Eno [1], inspired in
turn by Reich, articulated the idea of generative music as a
kind of hybrid between live and recorded music and linked
its future to advances in the capabilities and ubiquity of
computing technology.

Alternator also builds on work in algorithmic composi-
tion; for a summary, see Essl [5]. Algorithmic thinking long
predates automatic computing machines, but as Essl notes,
“[by] using generative composition algorithms on comput-
ers, music can be created in real-time by an autonomous and
infinite automatic process.” Essl also observes that, due to
the nature of generative music, “distribution on a reproduc-
tive medium such as a compact disc seems highly inappro-
priate.” Although CDs may have since been eclipsed by
streaming services, the fit is no better, because the medium
(static audio recordings) remains reproductive rather than
generative. As Levtov [6] puts it, “the widespread formats
of today have one particular defining characteristic that is
fundamentally at odds with the experiential, transient nature
of live music or indeed algorithmic music; once their sonic
content is defined, they are designed to sound identical at
every hearing.” Alternator aims to provide a more appro-
priate medium, suitable for the variable output and variable
(potentially infinite) length of generative compositions.

Although it draws on these artistic movements and fields,
Alternator does not enforce any particular aesthetic con-
straints. The sole requirement is that a musical work have
a computable translation into sound:3 thus, Alternator sup-
ports generative and aleatoric music as well as determin-
istic or conventionally recorded music—and everything in
between. Despite this aesthetic agnosticism, Alternator’s
existence is predicated on the idea that there is value in
generativity and that the idea of the musical work as a
computable process—ever-changing, describing a field of
possibilities—is an idea worth sharing. Alternator embraces
the vision of composers of aleatoric, generative, and algo-
rithmic music and deals with the problem after composi-
tion: getting music to a listener.

1.2 Technical Precursors
1.2.1 Generation

Many projects have addressed the problem of allow-
ing for many possible outcomes from a computer-playable
piece of music. SSEYO’s Koan software (used by Brian
Eno as described in [1]) and its successors explicitly address
this under the umbrella of generative music, usually with
an ambient emphasis. Programming languages designed
for music offer a general solution, from Max Mathews’s
original MUSIC onward [7]. Today, a composer can use
audio programming languages (Max/MSP, Pure Data, Su-
perCollider, ChucK, RTcmix, Csound, etc.) to describe a
computational program that may depend on random val-
ues or external input and thus encompass a broad range
of possibilities. A composer may also use general-purpose

3Technically, Alternator requires bundles that produce up to
two channels of floating point samples at consumer-audio sample
rates, but these practical restrictions are not essential to the idea.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 781

https://ijc8.me/alternator
https://github.com/ijc8/alternator

CLESTER AND FREEMAN PAPERS

languages toward the same end, possibly in conjunction
with composition/synthesis libraries such as Aleatora [8]
(for Python) or JSyn [9] (for Java).

Alternator does not offer a new language for composi-
tion, nor does it enforce the use of any particular exist-
ing language. Instead, it leverages the development of We-
bAssembly and open-source projects such as Emscripten
and Pyodide to allow the composer to choose among the
large set of existing options.

1.2.2 Distribution
Generation is only part of the puzzle. After creating a

generative piece using one of the many available languages
or environments, the composer still needs to distribute it to
listeners. Unfortunately, their options are limited; the au-
thors lay out a few options and examples here and recom-
mend consulting Levtov [6] for a more complete treatment.

One option is to render the piece as an audio file and
distribute that instead, but then the composer must choose
one fixed rendering of the piece, eliminating all other possi-
ble outputs. This approach is taken, for example, by Eno’s
Music for Airports: “although Music For Airports is the
result of a process which can be exploited to deliver differ-
ent results time after time, ad infinitum, the actual master
recording of the album available today is merely a forty-
eight-minute snapshot of one particular variation” [6]. To
avoid this fate, a composer may opt to run a few renderings
to generate and include multiple versions of the piece, but
doing this for every piece (or even a single piece, if there
are millions of possible outcomes) is infeasible.

Alternatively, a composer may distribute their work as
software, which presents its own challenges. The composer
may upload their piece somewhere as an executable and
send out a link, but this requires listeners to run an un-
trusted binary executable. Even if listeners trust the artist
completely or use a virtual machine, the playback expe-
rience is isolated: instead of their familiar music player,
they see the executable’s interface (which may lack basic
controls such as pause, rewind, and seek), and there is no
way to put it in a playlist with the rest of their music. Per
Levtov [6]: “For even the most open-minded of listeners,
these differences in procurement and procedure create a
psychological disconnect between algorithmic music and
static music, which limits the rate of its adoption. A fu-
ture reality where algorithmic music is as common as static
music will surely feature a listener experience where the
various music formats sit together and on equal footing in
the user interface.”

Some artists have solved the distribution problem indi-
vidually by leveraging their programming expertise; this
route requires that the composer take on the additional role
of programmer. For example, Jason Freeman’s Grow Old
EP consists of pieces that vary their output as the days pass.4

New audio files are automatically generated each day and
replace the old ones. Thus, the pieces are always available
in the same place, can be readily played in a web browser

4http://distributedmusic.gatech.edu/GrowOld/.

without requiring the user to execute code, and realize new
possibilities day by day.

Alex Bainter’s Generative.fm [10] solves the same prob-
lem another way. On Generative.fm, listeners are presented
with a web-based music player offering 50+ ambient music
generators in a familiar interface. The interface is simple
and consistent across pieces. Unlike the Grow Old EP, the
pieces are generated at the time of playback. The generation
occurs client-side, as the user’s browser executes the code
for each piece on demand.

Though these both effectively distribute generative mu-
sic, they are artist-specific and technology-specific. The
Grow Old EP is an album with all pieces written in RTcmix
by Jason Freeman and rendered server-side. Generative.fm
is a collection of ambient works written by Alex Bain-
ter with the Web Audio API. As Levtov notes, “Web Au-
dio represents yet another innovation that is founded on
technologies that are unfamiliar to algorithmic music com-
posers, this time the JavaScript programming language . . .

[which] had never been used in the production of interac-
tive audio until the introduction of the Web Audio API. . . .

As such, although Web Audio represents a further widen-
ing of the potential audience for algorithmic music, it also
comes with a significant narrowing of the group of po-
tential composers capable of exploiting it until new tools
which help bridge this gap are adopted” [6]. Alternator aims
to bridge that gap by generalizing, serving as a platform
where many composers, using many different languages,
tools, and workflows, can share their music.

The nearest precursors to Alternator are automated In-
ternet radio stations that stream real-time generative music,
such as rand()%5 and Streaaam [11]. Unlike the pre-
vious examples, these projects serve as independent plat-
forms where artists (at least within a particular community)
can submit their own work using a variety of languages.
As radio stations, all listeners hear the same thing per the
station schedule. Alternator similarly serves as a platform
where artists can submit their own generative music, with
the key distinction that it takes the form of a personal music
player (such that listeners can independently listen to what-
ever they want, whenever they want) rather than a radio
station. This would be difficult if Alternator rendered on
the server-side like rand()% or Streaaam, because each
simultaneous listener would require their own sandboxed
composition process running on the server. Instead, Alter-
nator executes compositions in the browser, which allows
listeners to choose what they hear while avoiding the scal-
ability issues inherent to server-side execution.

1.2.3 Platforms and Archives
Although it has a different focus, Alternator bears some

relation to the mobile apps RjDj, MobMuPlat [12], and

5rand()% has been down since 2007, but some information
is available on the Internet Archive (https://web.archive.org/
web/20070629095427/http://www.r4nd.org/rand_home.html)
and at https://www.bbc.co.uk/radio3/cutandsplice/rand.shtml.

782 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

http://distributedmusic.gatech.edu/GrowOld/
https://web.archive.org/web/20070629095427
https://web.archive.org/web/20070629095427
http://www.r4nd.org/rand_home.html
https://www.bbc.co.uk/radio3/cutandsplice/rand.shtml

PAPERS ALTERNATOR

PdDroidParty,6 as well as JSyn [9] and WebPd.7 The three
apps play Pure Data patches on mobile devices, and JSyn
and WebPd enable interactive musical applications to run
in the browser. Like these, Alternator runs computational
compositions in the browser and on mobile, but it aims to
support many different languages and provide a consistent
music player interface.

Looking further back, MPEG-4 Structured Audio [13]
deserves special mention. This forward-thinking stan-
dard likewise dealt with the distribution and playback
of computational audio. However, it focused on the ef-
ficiency (in terms of compression) of describing audio
computationally—an ill-fated tack given increasing band-
width and storage—rather than the new possibilities af-
forded by such a general representation. Additionally, it
inherited a synthesis framework from Csound (and older
MUSIC-N languages) and embedded a high-level language
(SAOL) in the standard itself, making it difficult to use alter-
native languages or approaches to computational composi-
tion (and more difficult to implement the standard). In con-
trast, Alternator aims to be a “common carrier,” providing
an executable format sufficiently low-level to accommo-
date all kinds of approaches to computational composition
and sound synthesis.

Alternator differs from digital archival projects such as
Rhizome ArtBase8 and Miller Puckette’s Pd Repertory
Project [14]; it aims to enable any composer to share their
work, rather than attempting to preserve works of historical
significance. It also differs from platforms such as Scratch
[15], EarSketch [16], and TunePad [17]; like Alternator,
these are focused on computational art and music and en-
able sharing, but they are geared toward pedagogy rather
than distribution and lack a dedicated interface for the lis-
tener.

In short, Alternator aims to fill a void. It endeavors to be a
generative music player for any composer, in any language,
on any device with a browser.

2 GOALS

Alternator’s goal is to enable composers to easily dis-
tribute and share their compositions—including generative
music, without compromises to fit it into static media. From
a complementary perspective, Alternator’s goal is to enable
listeners to easily discover and listen to such compositions,
experiencing the field of possibilities inherent in each piece
without abandoning the features, interfaces, and portability
they are used to finding in a music player.

This goal implies two others. The first is generality: to
enable composers to easily distribute and share their compo-
sitions, Alternator must play their compositions. Therefore,
it must avoid mandating a single chosen way to create com-
putational compositions. If composers have to drop their
existing tools, expertise, and workflows to fit into a mold,
the battle is already lost. Alternator must strive to provide a

6https://droidparty.net/.
7https://github.com/sebpiq/WebPd.
8https://artbase.rhizome.org/.

general platform, suitable for the tools and languages that
exist today and for those yet to be invented.

The second implied goal is stability. A platform is not
useful to composers if it requires them to continually main-
tain and update their compositions every time the platform
changes. This is unheard of in music streaming services
for the simple reason that PCM data is forever—after a
composer uploads the audio recording for a given track,
no maintenance is required. Unfortunately, this situation is
common in software, especially on the ever-changing web:
an API for some service changes, or disappears entirely,
and breaks anything that depends on it. This requires reg-
ular upkeep by software engineers to keep their software
running as the foundations shift beneath it. As this is un-
acceptable for most composers, Alternator must endeavor
to make its compositions more like audio files than living
software with regard to maintenance requirements. The fol-
lowing section describes how Alternator meets this and the
other goals in its design and implementation.

3 DESIGN AND IMPLEMENTATION

3.1 Architecture
The core of Alternator is a music player that executes

computational compositions, generating samples on de-
mand for playback. These computational compositions
are represented as bundles containing all of the resources
needed to run the piece: code (potentially in multiple lan-
guages), audio samples, MIDI data, models, etc.

These bundles could be executed server-side (streaming
generated audio to each client) or client-side. Server-side
generation, however, would require a backend capable of
running a process for each concurrent listener (or else trade
off some of this computation cost for storage cost or com-
promised variability).9 Given that most digital music lis-
teners today are listening on relatively powerful devices
(smartphones, tablets, and laptops), client-side execution is
feasible and inherently more scalable, because the available
resources grow with the number of concurrent clients.

Thus, Alternator executes musical bundles client-side,
in the browser. However, the browser does not understand
languages like Csound or Pd. Until a few years ago, it only
understood JavaScript; this limitation led to asm.js and then
to development of WebAssembly (henceforth “Wasm”), a
binary instruction format for a portable virtual machine. Al-
ternator takes advantage of this development, using Wasm
builds of libpd,10 libcsound [18], ChucK,11 RTcmix,12 and

9Note that the Grow Old EP, which does use server-side gener-
ation, avoids this problem by only generating each piece once per
day. This optimization is only possible because it fits the artistic
intent of the album; the pieces evolve slowly, day by day, so there
is no need to generate them at the exact time of playback.

10Claude Heiland-Allen’s empd: https://mathr.co.uk/empd/.
11https://github.com/ccrma/chuck/tree/chuck-1.5.0.6/src/

host_web.
12The authors created a Wasm build in a fork:

https://github.com/ijc8/RTcmix.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 783

https://droidparty.net/
https://github.com/sebpiq/WebPd
https://artbase.rhizome.org/
https://mathr.co.uk/empd/
https://github.com/ccrma/chuck/tree/chuck-1.5.0.6/src/host_web
https://github.com/ccrma/chuck/tree/chuck-1.5.0.6/src/host_web
https://github.com/ijc8/RTcmix

CLESTER AND FREEMAN PAPERS

Fig. 2. How music flows from the composer to the listener in Alternator.

Fig. 3. It is feasible to generate and play compositions (such as
this Csound reconstruction of “Stria”) smoothly, in real time, in a
browser or on a smartphone.

the like to enable the execution of patches and scores in the
browser.

The complete flow of a piece of music in Alternator
is depicted in Fig. 2. First, the composer creates a piece
using their preferred tools. In this example, their piece con-
sists of a Pure Data patch (“main.pd”), an abstraction
(“helper.pd”) used by the main patch, a MIDI file
(“funky.mid”) containing recorded performance data,
and an audio sample (“guitar.flac”). The patches

and MIDI/audio resources are then bundled together by
the bundler, using the Pure Data template. The template
consists of a Wasm blob and some glue JS. These are com-
bined with the composer’s assets and some metadata about
the track (title, artist, etc.) to produce a bundle. Finally, this
bundle is statically served to a listener’s client, which exe-
cutes the JS and Wasm (which may access the static assets)
to generate audio in real time when the listener plays the
track.

3.2 Execution
In the last subsection, Pure Data was used as an example,

but the Alternator player does not have special support for
any particular audio language built in. Rather, it supports a
general executable format; the only requirement is that the
executable can fill buffers with samples and (optionally)
indicate when it is finished.

An Alternator executable is called a bundle. A bundle
includes some JavaScript that implements two functions:
“setup(),” which takes the listener’s sample rate as an
argument and does any necessary preparation, and “pro-
cess(),” which takes in a buffer and fills it with samples.
Unless the piece is written in JavaScript, the bundle also
includes a Wasm blob. Typically this blob corresponds to a
language runtime, but it may also correspond to the piece
itself if it is written in, e.g., C/C++ or Rust.

Thus far, the authors have implemented templates for
Pure Data, ChucK, Csound, RTcmix, Python (with the au-
thors’ composition framework Aleatora [8]), and static au-
dio files (WAV and Ogg Vorbis). Alternator’s design is
intended to be future-proof: regardless of what music pro-
gramming environments exist in the future, they can work
in Alternator as long as they 1) can output samples and
2) fit in a Wasm blob. The first is a prerequisite for any
audio programming environment (it must be audible), and
the second is in a good state today thanks to efforts such
as Emscripten and the Rust toolchain. It is of course im-
possible to predict the future, but existing support and the
simplicity of the WebAssembly specification bodes well
for its continued viability as a compiler target.

One important execution detail is endings: how does Al-
ternator know when a piece is done? Pieces can end at any
time by returning fewer than the requested number of sam-
ples in process(). This signals to the player that the
piece is finished, and it will not call process() again.
Some languages lack built-in notions of endings. In these
cases, the bundle template can implement this notion in
whatever way is most convenient. For example, the Pure
Data template allows a patch to signal that the piece is over
by sending a “bang” to a “send” object named “finish.”

784 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

PAPERS ALTERNATOR

Fig. 4. Alternator extends the visual language of conventional music players for computational music. Seeking to the dashed region,
which represents the unknown future, will trigger faster-than-real-time rendering.

When the listener plays a piece, Alternator fetches the
corresponding bundle. The JavaScript is executed in a Web
Worker and typically fetches and instantiates a Wasm mod-
ule. An AudioWorklet communicates with the Web Worker,
transferring buffers to fill with freshly-generated samples.
The AudioWorklet uses double-buffering with a moderate
buffer size (1,024) to avoid hitches, connects to a GainN-
ode for volume control, and finally gets audio out to the
listener.

3.3 Listener Interface
In pursuit of its goal for listeners, Alternator adopts a

familiar music player interface. The basic features of a
music player include playing, pausing, resuming, seeking
(skipping forward/backward within a track), and switching
tracks. It is clear what these should do in the case of a
static recording, which is pre-computed time-series data to
be replayed. Alternator translates these core operations into
a generative music context. From Alternator’s perspective,
music is something that can generate sound. To play, then,
means to start generating sound; pausing pauses generation;
and resuming picks up from the same point. However, some
aspects of the interface require special consideration in a
computational music context.

Seeking is less straightforward, but nonetheless has clear
analogs. Seeking backward should replay exactly what was
heard the first time, because the listener typically uses seek-
ing backward to hear something again. So, Alternator main-
tains a growing history buffer for the playing piece. Seeking
backward 10 s, for example, will replay the previous 10 s
of generated samples, and then return to generating fresh
samples from where it left off.

Seeking forward, however, requires playing samples that
have not been generated yet. The only way to generate those
samples is to reach that point in the piece. Thus, when the
user seeks forward, beyond what has already been gener-
ated, Alternator generates the intervening samples as fast
as possible (faster than real time, only limited by the per-
formance of the bundle) and then resumes real-time audio
generation and playback from the target position.

Alternator expands the visual language of the seek bar
to convey these differences. Electric blue indicates the seg-
ments in the past, which have necessarily already been gen-
erated. Solid gray indicates samples in the future that have
already been generated. Such samples only exist after a
seek backwards; the user can seek forward to these samples
instantly because they were already generated. Dashed gray
indicates samples in the future that have yet to be gener-

ated; this region is still “potential sound,” as yet unrealized
in this playthrough and possibly indeterminate. When the
current position is also the end of the generated samples
(in other words, when there is no solid gray), the dashed
line moves as it shrinks to convey activity: the system is in
motion.

Another consideration for a computational music in-
terface is duration. In an ordinary music player, duration
is straightforward: because each recording is static, it is
known in advance, and therefore, it must be finite, with
a known duration. In Alternator, none of this is necessar-
ily true. A piece may be infinite, continuing until the user
intervenes. Or a piece may be finite, but with many possi-
ble durations (say, anywhere from 2:30–3:00). Due to the
Halting Problem, it is impossible for Alternator to deter-
mine the duration of a piece in advance (or whether it ever
ends). From a UX perspective, however, it is valuable to
the listener to know what to expect. Thus, the composer
declares the duration of a piece in its metadata. If the piece
is finite, Alternator will display the piece’s duration (or du-
ration range) and use it in scaling the seekbar. If the piece is
infinite, Alternator will display “∞” as the duration instead
and will use the time of the last generated sample + 10 s as
the duration in the seekbar,13 so that the user can still skip
ahead of the already-generated audio.

Finally, there is one element of Alternator’s interface that
has no analog in a conventional music player: the “view
source” button. Pressing it opens a window showing the
contents of the bundle: the code and assets that make up the
piece. It also includes a link to the repository (elaborated in
SEC. 3.4) containing the piece, which may have additional
information about how the piece was made (such as doc-
umentation or more source code, if the piece is written in
a compiled language). The implications of this feature are
discussed further in SEC. 4.

3.4 Backend
The discussion so far has focused on the Alternator client

and bundler. By comparison, the backend is simple: the only
essential thing is static file hosting for bundles and some
mechanism for composers to upload their work. Other fea-
tures such as search, recommendations, and playlist man-
agement require more from the backend, but these have
been solved in existing music players and do not require
changes in a computational music context.

13In the future, this seek-ahead window may be user-
configurable.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 785

CLESTER AND FREEMAN PAPERS

Fig. 5. Example Pure Data Patch.

Because the backend is not the focus, the existing open-
source ecosystem is leveraged. Drawing inspiration from
“utterances,”14 a comment widget backed by GitHub
Issues, Alternator uses GitHub as its backend for the time
being. Albums in Alternator—which are both software and
music—take the form of GitHub repositories. An album
repo includes all the track bundles, some JSON metadata,
and cover art.15 Alternator can discover and search through
these albums using the GitHub API because the repositories
are marked with the “#alternator-album” tag.

3.5 Composer Interface
The preceding sections have described how Alternator

works and what it looks like for the listener. This section
demonstrates how it works for the composer with a concrete
example.

To get started, a generative piece to bundle is needed. For
this example, the authors use the simple Pure Data patch
shown in Fig. 5, which plays random harmonics with vi-
brato for 10 s. This is an ordinary patch which is playable
on its own if Pure Data is installed, but there are two de-
tails of how this connects with Alternator that are worth
mentioning.

First, as in normal Pd usage, “loadbang” sends out
a bang when the patch is loaded. In Alternator, this hap-
pens when the user plays (or resets) the track. Second, the
patch sends a delayed bang to a special destination called
finish. As mentioned in SEC. 3.2, the Pure Data tem-
plate for Alternator listens for this to indicate that the track
has finished playing. This is necessary because Pure Data,
like other signal-processing–oriented languages, does not
have a built-in notion of “endings,” and it demonstrates the

14https://utteranc.es/.
15Beyond the bundles and metadata, album repos can contain

anything else that a repository can: source code, a README, a
LICENSE, documentation, etc.

adaptability of Alternator’s model to different languages
and environments.

Next, the authors need to set up the right structure
and provide some metadata. First, they create a directory
for their album. Inside, they name their album art “my-
album-cover.svg” and create “album.json” with
the contents:

{
“title”: “My Cool Album”,
“artist”: “Jen Rétive”,
“cover”: “my-album-cover.svg”,
“tracks”: [“bundles/my-first-track”]

}
Next, the authors save the patch as “main.pd” in a sub-

directory called my-first-track. Inside, they create a
file called “track.json” with the contents:

{
“title”: “My First Track (Some Harmonics)”,
“artist”: “Jen Rétive”,
“duration”: 10,
“channels”: 1

}
Finally, they run the bundler:

$../alternator/bundle.py pd my-first-track

Creating output directory: bundles/my-first-track

Copying main.js from pd template.

Copying main.wasm from pd template.

Bundling /main.pd

Saving finalized track.json.

Finished bundle: bundles/my-first-track

The bundler takes the patch and bundles it together
with everything needed to run it (the Pure Data runtime
compiled to WebAssembly and some glue code). Every-
thing that Alternator needs to play the piece is stored in
“bundles/my-first-track.” If the patch had any
additional assets it needed (e.g., a .wav file or an abstrac-
tion in another patch), these would likewise be bundled up
in the track.

At this point, the authors have a playable bundle in
Alternator (Fig. 6). If it is hosted somewhere on the
Internet, the authors can then distribute a working link like
https://ijc8.me/alternator/?u=https://example.com/my-
album. If they want their album to be discoverable via
Alternator’s search feature, the authors can put it on
GitHub as discussed in SEC. 3.4.

4 DISCUSSION AND LIMITATIONS

In this paper, the authors have presented Alternator, a
platform for distributing and playing computational music
compositions: music that is generated on-demand, such that
each track may encompass a field of possibilities rather than
a single fixed recording. In this section, they reflect on the
implications of Alternator’s design and its limitations.

786 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://utteranc.es/

PAPERS ALTERNATOR

Fig. 6. The authors’ example patch is now playable in Alternator!

4.1 Music as Code
Alternator’s premise is distributing music as code (in-

structions that generate audio) rather than pre-rendered au-
dio. This premise suggests exciting possibilities: an en-
thralled listener who thinks “this is amazing, how did they
do it?” can look at the source and start to get a glimpse.
Other musicians (typically avid listeners) can go even fur-
ther, forking the repository and experimenting with it to
make it their own. These ideals are shared by other contem-
porary projects, as in Fluid Music’s [19] vision for music
production and sound design shared as code.

Alternator does not guarantee any of these possibili-
ties. Most music released today is opaque, with alternatives
such as releasing stems or digital audio workstation (DAW)
projects being the exception rather than the rule. A com-
poser is free to follow this trend and distribute their music
as an opaque binary blob, as with ordinary closed-source
software. Indeed, this may be necessary for proprietary sys-
tems such as Max/MSP to be usable in Alternator.16 Alter-
nator can suggest another way through its design (the “view
source” button, the repository link, hosting on GitHub) and
practices (releasing the player, templates, and demo albums
as open-source), but ultimately the culture will be deter-
mined by the artists.

4.2 Interactive Music
One intentional limitation is that Alternator only deals

with purely generative music. It does not handle reactive
or interactive music, in which the output depends on ex-
ternal user input. The reason for this is simple: Alternator
is a music player, not an instrument. All generative mu-
sic fits essentially the same interface (samples out), which
translates well to the conventional music player of static
recordings. In contrast, interactive music comes in many

16Hybrids are possible: the runtime engine may be closed,
whereas the composer’s patch is open. Also, in the case of the Max
add-on RNBO, exported code can be distributed under GPLv3.

shapes and sizes, requiring different input devices that the
user may or may not have or that might make sense for a
listener on a smartphone but not on a laptop. It also ex-
pects a different mode of engagement from the listener.
Finally, from a technical standpoint, any potential interface
for interactive bundles will be more complex and likely to
change than the simple setup() + process() required
for generative pieces. Such a platform would thus be more
prone to breaking existing compositions, making it less re-
liable and thus less useful for composers who expect their
pieces to remain playable without maintenance.

That said, interactive music is a vibrant area that of-
fers unique experiences impossible with purely generative
works. It may be worth exploring a separate UI/API in Al-
ternator for interactive compositions, for composers willing
to accept increased uncertainty (and maintenance require-
ments) in exchange for interactivity. The possibility of com-
positions (interactive or autonomous) generating video as
well as audio is likewise intriguing, especially given the
large body of work and literature on generative visual art.

4.3 Updates and Future Work
So far, the authors have described the version of Al-

ternator presented at WAC [2], in which the API is de-
fined in JavaScript and thus each bundle contains some
JavaScript “glue code” (even if the main body of code is
compiled to WebAssembly). The JavaScript code runs in a
Web Worker, resulting in imperfect isolation. For example,
a well-meaning composer could exploit this to fetch exter-
nal data (e.g., the current weather) over the network for their
compositions—rendering the composition broken if the ex-
ternal resource should move or disappear. A less scrupulous
composer could exploit this to, e.g., run a browser-based
cryptominer using spare cycles.

For the goal of stability, composition code would ideally
be totally self-contained WebAssembly, with as little API
surface area shared with the browser as possible. Since the
authors’ presentation at WAC, they have experimented with
moving to pure Wasm bundles, using the WebAssembly
System Interface (WASI) instead of Emscripten-generated
glue code to facilitate loading assets.17 In addition to fully
isolating generative bundles, the authors have found that
this move has several other benefits. For one, the external
state observed by the bundle [via WASI host functions such
as “random get()” and “clock time get()”] can
fully be controlled, and thus particular outputs can be re-
produced; this functionality could allow listeners to save
and share interesting variations by storing random seeds.
What’s more, generative bundles outside of the browser
can be played back, because this requires only a Wasm VM
rather than a complete browser engine. In the future, this
may enable generative playback through a dedicated app
(lighter on resource use than the browser) or even on em-
bedded devices. As a proof of concept, the authors have
implemented a simple generative music player in Rust that
can play pure Wasm bundles.

17This version of Alternator is available at
https://github.com/ijc8/alternator/tree/next/wasm.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 787

https://github.com/ijc8/alternator/tree/next/wasm

CLESTER AND FREEMAN PAPERS

One issue that remains is that Alternator uses a “stati-
cally linked” model for bundles, in which they are expected
to come with everything they need to run. This means that
every piece using Pure Data comes with its own Wasm-
compiled version of libpd. To reduce bundle size and load
times, it may be worth allowing composers to simply refer-
ence common templates (provided by Alternator or perhaps
hosted on an CDN) rather than always bundling them with
the composition. At a minimum, the player could cache
.wasm files in localStorage.

Finally, a major limitation is lack of tooling. Currently
the only way to determine if a piece will play smoothly
on a given device and browser is to try it and see. Profil-
ing tools and benchmarks on common devices could give
composers more confidence in distribution. Also, the ex-
isting workflow for creating bundles is straightforward but
technical. It would be simple enough to make a graphical,
web-based version of the bundler (possibly embedded in the
Alternator client). It would be even better to fit into artists’
existing workflows, integrate with DAWs, and provide ac-
cess to generative possibilities without requiring composers
to code. Since presenting at WAC, the authors have begun
to integrating generativity into the DAW with their work on
LambDAW [20]; in the future, the authors hope to enable
the export of generative bundles directly from the DAW
and thus make generativity as accessible to composers as
possible.

5 CONCLUSION

Behind all the technical details and design discussion, a
question lurks in the background: will Alternator, or some-
thing like it, have an impact? Will generative music reach a
wider audience? Is there an appetite for distributable music
that changes?

The popularity of dynamically generated playlists (as
on Pandora and Spotify) and endless YouTube music
streams suggests an appetite for familiarity with variety:
give me more like this, but different. Generative approaches
in other media have proven popular: procedural genera-
tion is used in games like Minecraft, Dwarf Fortress, and
countless roguelikes to make the game more fun and im-
prove replayability.18 And musicians—including songwrit-
ers, composers, and producers—are not shy about trying
out and adopting new technologies on their own terms.

Ultimately, the appeal of generative music, like any mu-
sic, depends on its content. Much computer music has his-
torically been “pure” computer music, generated in-the-box
with techniques, timbres, and textures that set it far apart
from its contemporaries. Or else it has stuck firmly to cer-
tain genres, such as electronic and ambient music. There
is opportunity to broaden the horizons of computer mu-
sic, blur the boundaries, and explore hybrids: music with
both conventional and computational aspects. For example,
a pop musician might record several good takes in a DAW

18Indeed, some games feature generative soundtracks. In this
sense, the most successful distribution platform for generative
music thus far might be Valve’s Steam.

and then create a computational bundle that chooses a path
through them dynamically at the time of playback. Uses
like these may serve to bring generative music to a wider
audience and enable more artists to take advantage of its
possibilities, and the authors hope to engage with artists
and conduct user studies to explore the space of generative
hybrids in future work.

As Eno put it in the essay that opened this paper [1], “I
too think it’s possible that our grandchildren will look at us
in wonder and say, ‘You mean you used to listen to exactly
the same thing over and over again?’” Realizing this future
requires bridging the gap between the composer and would-
be listener of generative music; it requires a distribution
channel that opens up the possibilities of generative music
to both.

6 REFERENCES

[1] B. Eno, A Year With Swollen Appendices: Brian
Eno’s Diary (Faber and Faber, London, UK, 1996).

[2] I. Clester and J. Freeman, “Alternator: A
General-Purpose Generative Music Player,” in Pro-
ceedings of the International Web Audio Con-
ference, paper 9 (Cannes, France) (2022 Jul.).
https://doi.org/10.5281/zenodo.6767436.

[3] J. Cage, “Composition as Process: Indeterminacy,”
in C. Cox and D. Warner (Eds.), Audio Culture: Readings in
Modern Music, pp. 176–187 (Continuum, New York, NY,
2004).

[4] S. Reich, “Music as a Gradual Process,” in Writings
on Music, 1965-2000, pp. 34–36 (Oxford University Press,
New York, NY, 2002).

[5] K. Essl, “Algorithmic Composition,” in N. Collins
and J. d’Escrivan (Eds.), The Cambridge Companion to
Electronic Music, Cambridge Companions to Music, pp.
107–125 (Cambridge University Press, Cambridge, UK,
2007). https://doi.org/10.1017/CCOL9780521868617.008.

[6] Y. Levtov, “Algorithmic Music for Mass
Consumption and Universal Production,” in R. T.
Dean and A. McLean (Eds.), The Oxford Hand-
book of Algorithmic Music, pp. 628–644 (Ox-
ford University Press, New York, NY, 2018).
https://doi.org/10.1093/oxfordhb/9780190226992.013.15.

[7] G. Wang, “A History of Programming and Music,”
in N. Collins and J. d’Escrivan (Eds.), The Cambridge
Companion to Electronic Music, Cambridge Companions
to Music, pp. 55–71 (Cambridge University Press, Cam-
bridge, UK, 2007).

[8] I. Clester and J. Freeman, “Composing the Network
With Streams,” in Proceedings of the 16th International Au-
dio Mostly Conference, pp. 196–199 (Trento, Italy) (2021
Sep.). https://doi.org/10.1145/3478384.3478416.

[9] P. Burk, “JSyn - A Real-Time Synthesis API for
Java,” in Proceedings of the International Computer Music
Conference (ICMC), paper 289 (Ann Arbor, MI) (1998
Oct.). http://hdl.handle.net/2027/spo.bbp2372.1998.289.

[10] A. Bainter, “Generative.fm,” in Proceedings of the
International Web Audio Conference (WAC), p. 148 (Trond-
heim, Norway) (2019 Dec.).

788 J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November

https://doi.org/10.5281/zenodo.6767436
https://doi.org/10.1093/oxfordhb/9780190226992.013.15
https://doi.org/10.1145/3478384.3478416
http://hdl.handle.net/2027/spo.bbp2372.1998.289

PAPERS ALTERNATOR

[11] F. Hollerweger, “Streaaam: A Fully Automated
Experimental Audio Streaming Server,” in Proceed-
ings of the 16th International Audio Mostly Con-
ference, pp. 161–168 (Trento, Italy) (2021 Sep.).
https://doi.org/10.1145/3478384.3478426.

[12] D. Iglesia, “The Mobility is the Message: The De-
velopment and Uses of MobMuPlat,” in Proceedings of the
International Pure Data Convention, pp. 56–61 (New York,
NY,) (2016 Nov.).

[13] E. Scheirer, “The MPEG-4 Structured Audio Stan-
dard,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 6, pp. 3801–3804 (Seattle, WA) (1998 May).
https://doi.org/10.1109/ICASSP.1998.679712.

[14] M. S. Puckette, “New Public-Domain Realizations
of Standard Pieces for Instruments and Live Electronics,”
in Proceedings of the International Computer Music Con-
ference (ICMC), paper 59 (Havana, Cuba) (2001 Sep.).
http://hdl.handle.net/2027/spo.bbp2372.2001.059.

[15] J. Maloney, M. Resnick, N. Rusk, B. Sil-
verman, and E. Eastmond, “The Scratch Program-
ming Language and Environment,” ACM Trans. Com-
put. Educ., vol. 10, no. 4, paper 16 (2010 Nov.).
https://doi.org/10.1145/1868358.1868363.

[16] B. Magerko, J. Freeman, T. Mcklin, et al., “EarS-
ketch: A STEAM-Based Approach for Underrepresented
Populations in High School Computer Science Education,”
ACM Trans. Comput. Educ., vol. 16, no. 4, paper 14 (2016
Sep.). https://doi.org/10.1145/2886418.

[17] J. Gorson, N. Patel, E. Beheshti, B. Magerko,
and M. Horn, “TunePad: Computational Thinking
Through Sound Composition,” in Proceedings of
the Conference on Interaction Design and Children
(IDC), pp. 484–489 (Stanford, CA) (2017 Jun.).
https://doi.org/10.1145/3078072.3084313.

[18] S. Yi, V. Lazzarini, and E. Costello, “WebAssembly
AudioWorklet Csound,” in Proceedings of the International
Web Audio Conference (WAC), paper 24 (Berlin, Germany)
(2018 Sep.).

[19] C. J. Holbrow, Fluid Music, Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA (2021
Sep.).

[20] I. Clester and J. Freeman, “Composing With Gen-
erative Systems in the Digital Audio Workstation,” in Pro-
ceedings of the 3rd Workshop on Intelligent Music Inter-
faces for Listening and Creation (MILC), paper 15 (Sydney,
Australia) (2023 Mar.).

THE AUTHORS

Ian Clester Jason Freeman

Ian Clester composes music and programs. His research
interests include the design of languages, environments,
and tools for composing and performing music with com-
putational or generative aspects. His composition and
performance practice includes algorithmic composition,
instrumental improvisation, and live coding, and he is a
founding member of the MIT Laptop Ensemble. His work
has been recognized with best paper (Web Audio Confer-
ence 2022) and best poster (Audio Mostly 2021) awards.
He received his B.Sc. in Electrical Engineering and Com-
puter Science (EECS) and Music and his M.Eng. in EECS
from MIT, and he is currently pursuing a Ph.D. in Music
Technology at Georgia Tech.

•
Jason Freeman is Professor of Music at Georgia Tech

and Chair of the School of Music. His artistic practice
and scholarly research focus on using technology to en-

gage diverse audiences in collaborative, experimental, and
accessible musical experiences. He also develops educa-
tional interventions in K-12 and university environments
that broaden and increase engagement in STEM disciplines
through authentic integrations of music and computing.
His music has been performed at Carnegie Hall, exhib-
ited at ACM SIGGRAPH, published by Universal Edition,
broadcast on public radio’s Performance Today, and com-
missioned through support from the National Endowment
for the Arts. Freeman’s wide-ranging work has attracted
funding from sources such as the National Science Foun-
dation, Google, and Turbulence. It has been disseminated
through over 80 refereed book chapters, journal articles,
and conference publications. Freeman received his B.A. in
music from Yale University and his M.A. and D.M.A. in
composition from Columbia University.

J. Audio Eng. Soc., Vol. 71, No. 11, 2023 November 789

https://doi.org/10.1145/3478384.3478426
http://hdl.handle.net/2027/spo.bbp2372.2001.059
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/2886418
https://doi.org/10.1145/3078072.3084313

